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Abstract

We derive the Christoffel-Geronimus—Uvarov transformations of a system of bi-orthogonal polynomials
and associated functions on the unit circle, that is to say the modification of the system corresponding
to a rational modification of the weight function. In the specialisation of the weight function to the
regular semi-classical case with an arbitrary number of regular singularities {z1, ..., zps} the bi-orthogonal
system is known to be monodromy preserving with respect to deformations of the singular points. If
the zeros and poles of the Christoffel-Geronimus—Uvarov factors coincide with the singularities then
we have the Schlesinger transformations of this isomonodromic system. Compatibility of the Schlesinger
transformations with the other structures of the system — the recurrence relations, the spectral derivatives
and deformation derivatives is explicitly deduced. Various forms of Hirota—Miwa equations are derived for
the 7-functions or equivalently Toeplitz determinants of the system.
© 2008 Elsevier Inc. All rights reserved.
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1. Motivations

The unitary group U (N) with Haar (uniform) measure has the eigenvalue probability density
function (see e.g. [12, Chapter 2])
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Table 1

Examples of the regular semi-classical weight (1.3) occurring in random matrix theory and condensed matter physics.
% w1 wy & Interpretation

0 0 0 & Generating function for the probability of exactly k

eigenvalues of a random unitary matrix with phases in the
sector (r — ¢, ], Dyson CUE

k 0 0 0 k-th moment of the characteristic polynomial for random
unitary matrices

1/4 1/4 —i/2 0 Diagonal spin—spin correlations of square lattice Ising model
1/2 0 0 2 Density matrix of impenetrable Bose gas confined on a circle
1 2 i6;
o 1] -zl a=eeT fe-m ] (1.1)
( n) " 1<j<k<N

where T = {z € C : |z] = 1}. One of the motivations of our study is to characterise averages
over U € U(N) of class functions w(U) (i.e. symmetric functions of the eigenvalues of U only)
which have the factorisation property ]_[lli { w(zy) for {z1,...,zn} € Spec(U). Such functions
w(z) can be interpreted as weights. Introducing the Fourier components {w;};c7 of the weight
w(z) = Z?i—oo w;z!, due to the well known Heine identity [48]

N
1_[ w(z;) = det{w;_;li j=0,.. . N1, (1.2)
=1 U(N)

we are equivalently studying Toeplitz determinants.

Such averages over the unitary group are ubiquitous in many applications to mathematical
physics, in particular the gap probabilities and characteristic polynomial averages in the circular
ensembles of random matrix theory [12,1,16], the spin—spin correlations of the planar Ising
model [39,31], the density matrix of a system of impenetrable bosons on the ring [14] and
probability distributions for various classes of non-intersecting lattice path problems [13]. All of
these applications can be subsumed within a generic class of weights, termed the regular semi-
classical class and its degenerations. The simplest non-trivial example of a regular semi-classical
weight is

1, 8e(—nmn,m—9¢)

1-&, 6e(@m—9¢,n], (1.3

w(z) =17 MO+ P (1 4 1) {
where i, @ = w; + iw are complex parameters and &, t = e'? are complex variables. It has
been previously shown [16] that the average (1.2) with weight (1.3) can, as a function of ¢, be
characterised as a t-function for the Painlevé VI system. The examples mentioned above then
are characterised by solutions to the sixth Painlevé equation with the parameters given in Table 1.
One of our primary motivations for our study is to deduce recurrence relations that can be used
to characterise (also in an algorithmic sense) this class of unitary group averages.

However one notices that members of this class of weights are not necessarily positive or
even real valued, w(z) # w(z) for z € T, where the bar denotes the complex conjugate,
and consequently the Toeplitz matrices are non-Hermitian w, # w_,. Systems of orthogonal
polynomials constructed with such weights defined on the unit circle are naturally split into
a bi-orthogonal pair of polynomials (see (2.3) and (2.4)). Following the pioneering works on
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orthogonal polynomial systems (OPS) on the unit circle by Szeg6é and Geronimus (see the
monographs [48,19] and the contemporary state of affairs in Simon [44,45]) the study of
bi-orthogonal polynomial systems (BOPS) was initiated by Baxter [4] motivated in part by
the desire to analyse non-hermitian Toeplitz matrices and applications in probability theory.
In an independent development a study of systems of orthogonal Laurent polynomials was
begun by Jones and Thron [34] which has its origins in the theory of a particular type of
analytic continued fraction, the T-fractions, in multipoint Padé approximation and the strong
forms of the Stieltjes and Hamburger moment problems. In subsequent work [35,25] it was
realised that these orthogonal Laurent polynomial systems (OLPS) are equivalent to a pair of
bi-orthogonal polynomials, and furthermore that these were found to be equivalent to Baxter’s
BOPS in [41]. In fact one can construct a system of bi-orthogonal Laurent polynomials through
the defining recurrence relations, with the consequence that our conclusions apply equally to the
bi-orthogonal Laurent polynomial systems or BOLPS.

A systematic study of BOPS on the unit circle and the regular semi-classical class was initiated
in [17] where a number of basic structures were laid out — the well-known recurrence relation,
the spectral derivatives of the system and the deformation derivatives with respect to the free
singular points of the weight. Subsequently a similar programme in the context of BOLPS was
undertaken in [6]. The present study is a continuation of the programme [17] and here the central
theme is the rational modification of the weight and the consequences for the system and its
structures.

Why do we consider rational modification? The answer to this question is two-fold — there
are direct applications of such formulae and because a given regular semi-classical weight should
be seen as a member of a family of weights whose exponents differ by integer increments or
decrements and such systems are linked by Schlesinger transformations. The historical literature
has focused on the rational modification of weights defined on the real line or the interval and the
formulae expressing the new orthogonal polynomials in terms of the original ones were derived
— see the work of Uvarov [50,51] following the pioneering study of Christoffel [8]. There has
emerged a modern period of interest in this subject, see for example [53,46,7].

Formulae for the polynomials orthogonal with respect to weights changed by polynomial
multiplication and division written in terms of the original system were extended to those defined
on the unit circle in the works [20,21,26,22]. The extension of such formulae to BOPS on the
unit circle was undertaken, however in an incomplete way, in [42]. The most general rational
modification of a weight w(z) on the unit circle takes the form

u)|: ’ L*;z]=w[al Koo a’i;z] (1.4)

L; ﬂ] “e ‘BL ; ‘Bik oo 'BL*
K K*
[[@—a) [TC —Otj-‘z’])
i=1 j=1

= T w(@), oo}, pr, B €C. (1.5)

L
[1G—=80 10 —=8z7hH
k=1 =1

Whilst this contains redundancies it manifestly exhibits interesting symmetries and is rendered
real and positive under simple conditions on the parameters. In addition it is this case, or more
precisely the polynomial form, that arises in studies on the symmetrised model of last passage
percolation and non-intersecting lattice paths, e.g. see Formulae (2.3), (3.9) and (6.12) of [15]
which were first derived in [3]. The general rational modification (1.5) is also fundamental in
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the calculation of the averages of ratios of characteristic polynomials (which are an example of
a class function) with respect to the Haar measure (here the original weight is trivial, w(z) = 1).
In this situation we are, in effect, considering the average (1.2) with respect to a rational weight
function. A contemporary interest in such averages arises from analytic number theory where
the average (1.2) of (1.5) with w(z) = 1 is conjectured to reproduce the integral of ratios of
the Riemann zeta function along the critical line [11,10,9], in an asymptotic sense as N — 00.
This conjecture has been enlarged to apply to similar averages of certain families of L-functions,
which now involve the calculation of averages of ratios of characteristic polynomials over the
Haar measure for the compact classical groups Sp(N), O (2N) and OT (2N + 1).

Our penultimate result gives the bi-orthogonal polynomials ®,, @ and their associated
functions =, 5 for the modified weight defined by (1.5) as a (K + K* + L + L* + 1) x
(K + K*+ L+ L*+ 1) determinant with a block structure whose elements are the bi-orthogonal
polynomials ¢,, ¢, and their associated functions &,, & (see (2.3), (2.4) and (2.11)—(2.13) for
their definitions) corresponding to the original weight. For example the bi-orthogonal polynomial
&, is given by the equation in Box I. The constant C is independent of z. The other components
of the bi-orthogonal system are given by the above formula with the following substitutions:
HiK=1 (z—a;) Hﬁl(l —a;fzfl) &% (z) is given by the equation in Box I with C — C*, ¢, > ¢
in the first row, and second and third block rows and &, — & in the last two block rows;
niL:1 (z—Bi) l_[f; (1 - ,B;fz_l) Z,(z) is given by the equation in Box I with ¢, (z) — &,(z) in
the first row; and ]_[iLzl (z—Bi) ]—IJL; (1- ﬂjz‘l) Z*(z) is given by the equation in Box I with
C — C*, ¢, — &7 in the first row, ¢, — ¢, in the second and third block rows and &, +— &, in
the last two block rows. To find the leading coefficient K,, of the modified polynomials one can
use the ratio formula

K2 2[z2"1 9, (2) _ 297(0)
T [2"5(2) ZX2)

lim
—> 0

There is a recent parallel body of work [2,5,23,24] which treats a BOPS defined with a
measure du(x, y) on a two-dimensional domain (x,y) C R? and the rational modifications
of this measure. This is more general in one sense than the problem we consider here and
there are significant simplifications occurring in our system such as the existence of closed form
expressions for the Christoffel-Darboux sums which are not present in theirs. As a consequence
the resulting expressions have rather different forms. In the main these works only consider the
normalisation constants of the modified system and are completely formal in their approach.
In addition there is no attempt to develop a theory of the semi-classical weight case and its
connection to isomonodromy preserving systems.

For the class of regular semi-classical weights on the unit circle, taking for the purposes of
illustration the simple example

w(z) = (1.6)

it was first shown in [17] that this bi-orthogonal system is monodromy preserving in the spectral
variable z with respect to deformations of the singularities z ;. This fact is the unit circle analogue
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of the result for orthogonal polynomial systems on the line with regular semi-classical weights,
first shown by Magnus in 1995 [37]. Either of these systems constitutes a realisation of a Garnier
system and one can construct a dictionary to translate one into the other, and we refer the reader
to [52] for details. In the regular semi-classical context the Christoffel-Geronimus—Uvarov
transformations, under the specialisation of positioning the zeros or poles of the rational factors
at the singular points of the weight, are the Schlesinger transformations of this Garnier system
The fundamental Schlesinger transformations shift the exponents p; — p; £ 1, ,o > p + 1,

so that we are in effect considering a family of regular semi-classical weights w1th exponents
displaced by integral values.

The theory of Schlesinger transformations for Garnier systems was initiated by
Schlesinger [43] and Garnier [18] where only the regular singular case was treated, and the the-
ory for irregular singular points was completed in the contributions by the Kyoto school [28-30,
33,32]. Schlesinger transformations are a special type of Bicklund transformation, which were
systematically studied in the simplest non-trivial case of a Garnier system, i.e. the sixth Painlevé
system by Okamoto [40]. All the Béicklund transformations can be composed of fundamental
transformations, generated by the elementary reflections and automorphisms of the extended
affine Weyl groups Dil) for M = 3 and B,(W)Jrl for M > 4 and the permutation group Sy;+1 [36,
27,49,47].

In the final section we present an alternative construction of the Schlesinger transformation
theory to the studies mentioned above, starting from the BOPS with a regular semi-classical
weight, which constitutes the most general classical solution to the Garnier system. Using all
of the structures of such a system from the approximation theory point of view we can recover
all of the known results, and some novel results to be reported in [52], in a very efficient and
transparent manner. Furthermore the present study can also be seen as the completion of the
tasks begun in [17], in that this work did not cover the aspects of the integrable system relating
to the Schlesinger transformations or the systems of bi-linear difference equations governing the
t-functions. Our approach is to employ the simplest of classical arguments from approximation
theory although we fully recognise that all of the results presented here could be found in an
elegant manner using Riemann—Hilbert methods. A natural formulation of the bi-orthogonal
system as a Riemann—Hilbert problem was given in [17] and it remains an interesting task to
employ these techniques on the questions posed here.

2. General structures of bi-orthogonality

Let T denote the unit circle with ¢ = el 9 e (—m, m]. Consider an absolutely continuous
weight w(z) and assume that its Fourier decomposition has meaning in a domain containing T,

OO d¢
w(z)=k;mwkz", wy = / S @.1)

We define the bi-orthogonal polynomials {¢,(z), ¢y, (2)}52,, with respect to the weight w(z)
with support contained within the unit circle by the orthogonality relation

d¢
/ ﬁw(;wm(cm(c) — S 22)

Alternatively one can express this definition in terms of orthogonality with respect to the
monomial basis
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d¢ -m O m<n
d¢ mz = |0 m<n
[ azmora@={, m=n @4)

Notwithstanding the notation, ¢, is not in general equal to the complex conjugate of ¢,,. We set

On(2) = knZ" + An 2" 2" 4+ 9 (0),
d_)n(z) = ann + )'ann—l + ﬂnzn_z +---F d_)n(())v

where again A,, fi,, ¢,(0) are not in general equal to the corresponding complex conjugate.
We have chosen the leading coefficients of both polynomials to be the same without any loss of
generality as this preserves the relations arising from the orthogonal polynomial theory with, of
course, the distinction made above. The initial values of the polynomials are ¢o(z) = qBo(z) = Ko
and the normalisation implies w()Kg =1.

Denote the U (n) average by I,[w],

n
qu=@1wm» = det[w; 41)k=0,..n—1- 2.5)
=1 Un)
By a result of Baxter [4] the existence of the bi-orthogonal system is guaranteed if and only if
I,[w] # 0 for n € Z>o. We define a sequence of r-coefficients by

¢ (0) _ $a(0) i

fn = , Fn = , ro=rp =1, (2.6)
Kn Kn

which differs slightly from the standard definition of the reflection or Verblunsky coefficients «,,

in that o, = —r,41. It is a well known result in the theory of Toeplitz determinants that
I I,—
n+1 (W]l —1[w] =1 —ryFy. 2.7
(In[w])?

The coefficients are related by many coupled equations, two of the simplest being

_ A An—
K2 =k2 + du (0 (0), 2

Kn Kn—1

= e, 2.8)

Introduce the reciprocal polynomial ¢ (z) of the nth degree polynomial ¢, (z) by

¢5(2) = "Pu(1/2). (2.9

Fundamental to our study [17] is the matrix

_ (@) E()/w(2)
“Q”‘<ﬁ@>-fﬂ@M@D’ nz0, (2.10)
where the associated functions are defined, for n > 0,
. d¢ ¢+z2
§n(z) = /T Imic ¢ _Zw(s“)(ﬁn(é), (2.11)

* . _n d_§§+z (-
£ = zﬁhﬁpﬁw@%@, 2.12)
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_ d¢ ¢+z .
'_ Kn /IF 2mic ¢ — Zw(§)¢n (98 (2.13)

A central object in the theory is the Carathéodory function, or generating function of the Toeplitz
elements,

d¢ ¢+z
F(z) = - w(l). 2.14
@) fﬂm“_z © (2.14)
The initial values of the associated functions are defined as &y(z) = kolwo + F(z)] and

&y (2) = kolwo — F(2)].
A consequence of the definitions (2.3), (2.4) are the following determinantal representations
for the polynomials,

wo . w_; cee Wy
Kn : : : : :
On(z) = —det]| - : : : N (2.15)
In Wp—-1 ... Wp—j-1 ... W-1
1 7/ n
wo e Wept1 7"
. K, . . . .‘
gn(@) = det|wyj . owojn 2| (2.16)
n
Wy wi 1

The associated functions have representations analogous to (3.1) and (3.2)

wo w— e Wy
E.0) = Tdet| : S B 2.17)
Iy Wp—1 +-r Wp—j—1 ... W—]
g ... gi@ ... g
wy ... W_pi1 gn(2)
EX(2) :—';—” det |waj ... w_j1 g@ |, (2.18)
Wy, wq g0(2)
where
-<>~—2f € e (2.19)
g/Z.—ZTznié_;_ng'. )

A further consequence of the definitions is the difference system [19]

1 Kn+1Z  Pnt1(0)
Yot = K,Yy = — | - Yo, 220
n+1 ntn P (¢n+1(0)2 Kntl n ( )
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or its inverse

1 Kn+1 _ Pn11(0)
Yn=—1| _z z Yoy1. (2.21)
“n —@n+1(0) Kn+1

‘We also note that
27"

detY,(2) = — et

(2.22)

If one writes the coupled first order difference system (2.20) as one decoupled second order
difference equation for the monic polynomial ¢, := ¢, /k, one finds

'n+1 I'n+1 _
—- = $n =2 |:‘/’n - T— (- rnrn)§0n1:| . (2.23)

n n

Pn+1

These are the recurrence relations that serve to define one of the bi-orthogonal Laurent
polynomials [34,35,25] (the partner polynomial is found under the substitution r, +— 7,

©On > Q).
Theorem 2.1 ([19]). The Casoratians of the solutions ¢n, ¢, &n, EF are

n+1(0
bn+1(2)6n(2) = Ent1(2)Pn (2) = 281 @ ) (2.24)

Kn

n 0
bni1(DE, (D) — &1 (D9, (2) = 2¢ +1(0) L

bn(2)&, (2) + & (D), (2) = 22", (2.26)
valid for n > 0.

(2.25)

The bi-orthogonal system satisfies the spectral differential system [17] (with the abbreviation
d/dz :=
d
d_Z n = AnYn

fntl an(z)] Pn1r® g

Kn Kn Y,
n»

26;(2) 25 = V(@) — 2 61)

1 — [Q,,(z) + V() —
T W@ _ $n41(0)

Kn

(2.27)
for n > 0 under the sufficient conditions of the existence of the moments

/ d¢ « logw(2)] — [log w(z)

w(¢)¢ keZ.

2mig {—z

The particular parameterisation of A, into the spectral coefficients W(z), V(z) and
2,(2), £27(2), Bn(2), O (z) will serve a purpose when we specialise to the regular semi-classical
weights. We see that

~

TrA, = & — (2.28)
Z

g|s
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The compatibility relation between the recurrence relations (2.20) and the spectral derivative
(2.27)is

K! = Api 1Ky — Ky Ay, (2.29)

and this is equivalent to recurrences in n for the spectral coefficients, which can be found in [17]
but are not required here.

We will require the leading order terms in expansions of ¢,,(z), ¢, (z), £, (2), & (z) both inside
and outside the unit circle.

Corollary 2.1. The bi-orthogonal polynomials ¢, (z), ¢;i(z) have the following expansions for
lz] <1
1

Kn—1

¢n(z) = ¢n(0) + (knPn-1(0) + n(0)hn-1)z

n - 2 (0) i
+ [K—<xn_1¢n_z<0) byt (O _y) 4+ POt

Kn—1Kn—2 Kn—1

} 2+ 0@, (2.30)

G} (2) = iy + Az + fin2® +O(2Y), 2.31)

whilst the associated functions have the expansions

Kn Xn—H )_‘n+1)_hn+2 Hn+2
_é:n (Z) — Zn _ _Zn+1 _|_ _ Zl’l+2
2 Kn+1 Knt1Kn+2 — Kn42

At1 4 X Upio N X 1): 2)_\
n+1Mn+3 + n+3Mn+2  Mnt3  Antlindt n+3:|zn+3 +O(Z”+4), (2.32)
L Kn+1Kn+3 Kn4-2Kn43 Kn43 Kn4+1Kn42Kn+3

Kn () = dn+1(0) RS <¢n+2(0) B ¢n+1(0))¥n+2> /2

+

n
2 Kn+1

Kn+2 Kn+1Kn+2
1) Gt Oiinss | Taia(©) (énmmm B ¢"n+2(0>)} o

Kn+1Kn+2 Kn+2

+

L Kn+3 Kn+1Kn+3 Kn+3
+0(" . (2.33)

The large argument expansions |z| > 1 are
n(2) = k2" + 22"V 2"+ 0", (2.34)
_ 1 _ -
G (@) = (02" + ——(knn—1(0) + $n (O)hp_2" "'

Kn—1

n 7 - 5 (0)
+ [ o ey 1Bn-2(0) + B (OVAn_2) + GnO)ptn—1
Kn—1Kn—2 Kn—1

} 240", (2.35)

whilst the associated functions have the expansions

2
kny oy 2 Bl @)y ( 2 Gni20)  puy1(0) AnH)Z_z Lo Y, @36)
K

2 Kn+1 3+1 Kn+2 Kn+1 Kn+l

A A A
Bngsiy =1 = 2l -1 +< ntafntl “”+2>z—2+0(z—3). (2.37)
Kn4+2Kn+1 Kn+42
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From the Riemann—Hilbert perspective [17] it is apparent that our bi-orthogonal system demands
the existence of two domains, one containing z = 0 and the other containing z = oo, where the
above expansions are valid in order to specify the system.

3. Christoffel-Geronimus—Uvarov transformations

Starting with the determinantal representations of the polynomials and associated functions,
given in (2.15)—(2.18), it is easy to recast these as multiple-integrals using the Heine formula.
We observe that the following integrals occur with the weight modified by a rational factor

L@@ — 2] = (=) I[w (¢>]¢’”(Z) n=0, 3.1

L@ - 22~ = I[w (;)]¢ @ s (32)
1 Kn—léfn—l(z)

I, [w@)m} = In[w(é')]?» n>0,|z| #1, (3.3)
1E ()

[ (o@—)} — () uw (5)]L, >0, 12 £ 1. (3.4)

These are the analogues of the Christoffel formula or the simplest cases of the Uvarov formulae
for orthogonal polynomials [50,51], and are specialisations of the Ismail and Ruedemann
formulae for OPS on the unit circle [26] and those of Ruedemann [42] for BOPS on the
unit circle. We seek to generalise the above expressions and derive formulae for the BOPS
corresponding to an arbitrarily rationally modified weight (1.5) in terms of the original BOPS.

However Ismail and Ruedemann’s study is incomplete for our purposes in a number of ways
— only the modification of a real, positive weight on the unit circle by a quotient of a real, non-
negative polynomial and a real, positive polynomial is considered. This does not cover the case
of complex weights, or equivalently non-hermitian Toeplitz determinants, and consequently the
bi-orthogonal systems associated with this type of weight. In addition this type of transformation
is a composite of fundamental transformations and it is not possible to disentangle these. In a
subsequent work [42] the extension to the bi-orthogonal system was made, but still only treating
the case of a composite transformation. In both of these studies formulae were given only for the
modified polynomials ¢,, ¢ whereas we require expressions for the complete system, that is to
say for &,, £ as well. Another technical caveat applying to the results of [26] is that the degree
of the polynomial n cannot be less than the degree of the denominator polynomial L + L*. The
studies by Godoy and Marcelldn [20-22] are limited in similar ways, and have the additional
complication that expressions for the modified orthogonal polynomial system are given in terms
of determinants with elements containing reproducing polynomials. Formulae for the polynomi-
als and recurrence coefficients of the bi-orthogonal Laurent system under a modification of the
weight by multiplication with a single factor, and division by a simple factor plus addition of a
mass point were derived by Zhedanov [54]. While we do not consider the problem of additional
mass points at all here we will extend his results to arbitrary rational modification.

We will carry out our task in seven steps, each one exhibiting our methods of deduction in
their simplest setting, rather than give the proof for the general case. In the notation of the most
general modification (1.4) and (1.5) we will derive formulae for the cases — K # 0,n > L # 0,
n<L#0,K,L #0,K*#0,L*#0and K*, L* # 0. The most general case has been
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given the equation in Box I. In each step we will denote the modified bi-orthogonal polynomi-
als and associated functions by the same symbols ®,(z), @} (2), Z,(z), 5, (z) and it should be
appreciated by the reader that the formulae only apply in their specific context. We also denote
the modified leading and r-coefficients by K, R,,, R,; C, C* are arbitrary constants of propor-
tionality independent of the spectral variable z; and lastly we denote the space of polynomials
in z with degree at most n by I1,(z). The same normalisation condition applies for the modified
system, i.e. (2.2) holds. We will assume hereafter that the following generic conditions apply —

e that the zeros and poles are not pairwise coincident o; # oy, B; # P, oz;‘ # o, ,3;.‘ #+
B(. J # k, in the proofs for convenience although confluent formulae can be derived from our
results,

e assume the existence of the original BOPS and of the modified BOPS, i.e. that r,7, # 0, 1
and R,R, # 0, 1foralln € N.

Proposition 3.1. For the polynomial modification of the weight

K K
w[‘;z] =[] -epw@). (3.5)
j=1
the corresponding bi-orthogonal polynomials are given by
n(2) cee Pnik (2)
dn(c1) ... Putk(ar)
det . . .
K
1_[(2 - Olj) o (Z) = (_I)Kbn,nJrK ¢’1(aK) - ¢”+K (aK) s n >0, (36)
j=1 Gn(@) ... nrk-1(a1)
det : : :
Gnlak) ... Pnyx—1(ak)
@ ... k@
(1) ... Ghyg @)
det . . .
K * *
TG =) 7@ = (DK —r @) o k@] 3.7
j=1 ¢:(“1) ¢Z+K71(041)
gt o .
bnak) .. brig_i(ak)
and the associated functions
@) ... Gk (@
Gn(cr) ... Putk(a1)
det . . .
(@) = (—DXbp sk ulok) o Prix () . n>0, (3.8)
Gn(ar) ... Gprk—1(ar)
det . . .

dn(oex) ... Putk—1(ak)
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@ ... &.x©@
b)) ... @ik (en)
det . . .
552 = (=1)Xby ik k) - i"*’((“’() . n=>0. (3.9)
¢:(a1) ¢,,+K_1(0‘1)
det
¢;(0‘K) ¢:+1(71(05K)

Here by n1x = Ku/kntk, I;n,yH_K = &, (0)/<5n+1<(0) and the leading and r-coefficients are
given by

Kn e Kn+K
onlar) ... Ppi (@)
det . . .
K * *
[Teik? = )F ) e Oner (ORI (3.10)
i=1 Vkn oo 1/kntk
onlar) ... gpig(an)
det . . .
Onlag) ... dpiglag)
and
&0 ... Purk(0)
dn(ay) coo Guyk(ay)
det . . .
R, IK Onlag) ... Gurk(ak) ’ 3.1
ki [] @ Onl@r) ... Pnrkx—1(a1)
Sl z
Onlak) ... Gutk—1(0k)
and
¢Z(al) ¢:+K_1(al)
det
K * *
Ry = busk O [ J AGLINISLI = O \GLY (3.12)
i=1 Kn cee Kn+K
nla) ... ¢rig(an)
det . . )
onlag) ... onix(ak)

Proof. Taking (3.6) first we note that ]—[f= 1z —aj) D,(2) € I,k (z) so that

K n+K

n(z —aj) Pu(2) = Z bn,j9;(2), (3.13)
1 =0

j=
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with
&
bui = [ gz - (01‘[(4—0:,)@(;)@(;)
j:

However by orthogonality (2.4) b, ; vanishes for j < n and in fact

n+K

K
[[c=e) @@ = bujoi).
j=1 j=n

(3.14)

(3.15)

To determine the non-vanishing coefficients we observe that there are K vanishing conditions

n+K
an,j’¢j(dz) =0, [=1,...,K,

j=n

(3.16)

which enable the {b,,, ]}”+K ! to be solved in terms of bp n+x - This establishes (3.6). Result

(3.8) follows from (3.6) upon using the definition (2.11).
To derive (3.7) we start with
K n+K .
[[c—e) i@ =" b d} ).
j=1 j=0

Form =0, ...,n — 1 we see that

— d§ K. mgg (&
0_/2ni§w["§]§ 8.0,

~ d¢
_ anjfz " @),

However the integral given above vanishes for j > n — m, and as

d
[ v @8, @ [ S w20,

2wig
are non-zero we conclude that l;n,j =0forj=0,...,n— 1 and thus
K n+k
[[c—) i@ =" b b}
j=1 i=n

Again we have K relations

ek
an,j¢7(al) =0, I=1,...,K,

j=n

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)
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allowing us to solve for {bn j}"+K ! in terms of l;,,,n+ k- This yields (3.7). From this result we

can derive (3.9) using the first deﬁmtlon (2.12) and (2.9). This gives us the formula

d¢
/2 - (;)—; Bu s (0

det | - ¢::+J(“1)
. by (k)
552 = —(=DXb " ot , 3.23
n (2) (=D"bynykz det@7, ;) (3.23)
but we rewrite the integral appearing here as
¢ cz,-—_—_/dc cf—f
/271{ (¢ - =3 ;w(o@ +2)—— ¢n+j(§)
‘ {+z-
i [ @ g0, (3.24)
The first term vanishes because (¢ + z) ‘u;:i/‘ € 1I;(¢) and the second term evaluates to

—n

i (2).
n+j

The relation for b, ,x preceding (3.10) follows from examining the leading coefficient of
(3.6) and comparison with (2.34). Similarly the relation for l;n,n+ k follows from the leading
coefficient of (3.7) and using (2.35). The formula (3.10) is found from the leading coefficient
of the z — o0 expansion in (2.37) and the corresponding coefficient of the z — 0 expansion
in (2.31). The relation (3.11) is derived from the ratio of the leading and trailing coefficients of
(3.6) and the relation (3.12) from the leading coefficient of the z — oo expansion in (2.37) and
the result for l;,, a+x- O

Proposition 3.2. For the reciprocal polynomial modification of the weight

w [L z] = L;w(z), (3.25)
[T@—8)

j=1

the corresponding bi-orthogonal polynomials are given by

(@) e (@
B e (B .. BTMEBD
det . . .
L —n+L ._ 7n.n
B0 < 1L> B e, (BL) Bl b)) . (3.26)
Kn l/Kn_L I/K,,
Bt e (B . BT E(BD)
det . . .

B (B o BT E(BL)
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e (@

By EEY (B

det

B e (BL)

¢ (2)
B &y (B1)

BL"& (BL)

2,2) = (=)',

det

and the associated functions

By her (B

B EEr L (BL)

B EE (B

B HER (B

e 12 £n(2)
; By e (BY) ... BE(BY)
et . . .
L —n+L . ’ —n )
B e (B ... BL"E(BL)
(z—Bj)En() =C
,-1:[1 ’ B e, (B ... BT E(B)
det : : :
B e (Br) ... BT E—1(BL)
n>1L,
e @) o EN Q)
By e (B ByEX(B)
L —n+L .* —n-*
B TE L (BL) B &, (BL)
(z—B) 5i (@) = (=DEb), "
]1:[1 ’ ’ By EEY (B B HER (BD
det : : :
CREE (B o BLMTIER L (BL)
n>1L

Here b, ,, = K, /x, and the leading and r-coefficients are given by

Kn—L Kn
By Ea—L(BY) By En(B1)
det . .
K2 ()t B Ea—L(BL) BL"én(BL)
. 1/kn1 1/
B e L (BY) B e (B1)
det . .

BT L (BL)

B e (BL)

(3.27)

(3.28)

(3.29)

(3.30)
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and
B gL (BY) B g1 (B
det
—n+L —n+1
_ (7)L¢n(0) ﬂL Sn—L(ﬁL) ﬂL g‘_n—l(ﬂL) (331)
Kn—L Kn
B EaL(BY) By & (B1)
det . .
B e L(BL) B Ex(BL)
and
d_)n —L (O) ¢Zn (0)
B e (BY) By "En(B1)
det . .
_\L —n+L .7 —n n
R” _ ( ) IBL+L %'n L(,BL) lgLJrl%' (IBL) (332)
Kn By e L (BY) By e (B)
det
B e (BL) B a1 (BL)
Proof. We begin with the derivation of (3.27). Writing
Bu(2) =) b}, 1$,(2), (3.33)
j=0
we have
b, ‘=fd—§w g f[(c—ﬁw-(c)éi @) (3.34)
nJ 2mic (L |1 DPJRETZn i) '

We observe that ]_[lL=1 (¢ — B¢j(¢) € IIj1(¢) and therefore b;,,l.

Now consider the integral

=0for0<j<n—1-1L

dz : L o

0= : — B , 3.35
/ i [L c} lzl;lm(; B Bu(2) (3.35)

form =1, ..., L and subject to n > L. This can be rewritten

w(¢)
——¢;(). (3.36)
_Zn:L ”f/z ¢ &~ Bm ¢
=- Z b, B’ €5 (Bm). (3.37)
j=n—L

which yields L conditions. These enable us to solve for bn n_L> b;/l ,_1 in terms of b and

we have the result (3.27). From this formula we proceed to the derlvatlon of (3.29). Usmg the
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definition (2.12) on this last result we require an evaluation of the integral

d +z - -
[ w© Bus (D). (3.38)
i ¢ —z2 L
[1¢—-8)
=1
We employ the partial fraction decomposition (assuming z # f;)
+z 1 _{+z 1 B 1
t-z L a

é‘ —z L L
ll:ll(é - B ll:Il(z—ﬂz) ll:[l(z—ﬂz)

L
+3 ; _lﬂ ﬂ”’;rz , (3.39)
" Bu—2 T1 Bu—B)

I=1#m

m=1

and evaluate the above integral as

1 i L m | " *
- L—Z_n+/r§:_j (z) + Z p L+ < E/gm A 15,,_,' (Bm)-
11_[1 (z— B "= (B — Z)z l;[é (Bm — B1)

(3.40)

When this result is inserted into the first row of the determinant formula (3.27) we see that the
last term of this is a column independent linear combination of the last L rows of the determinant.
Thus we can eliminate this term and arrive at (3.29).

To establish (3.26) we take an approach differing from the preceding arguments. We postulate
the determinant

142

B ey (B)

det , (3.41)

B e, i (BL)

and examine its orthogonality properties with respect to the weight w [ o g“]. Let0O <m < nand

0<k:=L—j <L (weknown > k), and consider the integral

dé‘ . k om __ d{' ;kim
/ gV [L’ §j| k(5T = / ﬂw(i)%—k@)L—- (3.42)
[T¢ -8
I=1
In the case m > k we have the partial fraction decomposition
L -N
+=%+~-~+6N+ZC_IIB Lﬂp , N=0. (3.43)
eV TG =B R | (PRS0
=1 I=1#p
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This can be inserted into the preceding integral and, by orthogonality and (2.11), we see the first
N + 1 terms vanish leaving

L ﬂ—m+k—1 1
> ————5Ek(Bp). n>m=k (3.44)
P=t T By — B
I=1%p

In the remainder of cases, i.e. when 0 < m < k, we use the decomposition

CN L 1 ﬁN
- =5NL+Z§ 51 L . N=0. (3.45)
¢ -8 p=tt TP By — B
=1 I=1sp

Utilising this form in the integral we are left with
L k—m—1
By 1

Yok, n=m=k (3.46)
=L T By = B

I=1sp

In either case we conclude that integration of (3.41) with the modified weight yields the
determinant

L
Y By ek (By)
p=1
det] ... B ek (B1) . (3.47)

B e,k (BL)

where the f, are independent of the column index. Therefore the sum in the first row is a linear
combination of the lower L rows and the determinant vanishes. Thus &, (z) is proportional to
(3.41) by (2.3). All that remains is to settle the normalisation. To show that (3.28) is true we
utilise the foregoing result. Here we are lead to a determinant which has the following integral
as entries of its first row,

d{ .. { +z k
/27ri§w[L’ C} C—ZC Gn—k (). (3.48)
Then we can apply (3.45) to £X/ ]_[lL= 1 (¢ — B) and so obtain the evaluation
k L ﬂn—l + 1
@) =y L i — ﬁ” 5B ek (Bp). (3.49)
ER:D =L BB T
=1 I=1#p

By an identical argument to that employed with (3.26) we conclude that only the first term
survives in the determinant and (3.28) follows. [

We need to extend the preceding proposition to cover the case n < L, which is the subject of
the following proposition.
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Proposition 3.3. For the reciprocal polynomial modification of the weight

e s w@
w[L,Z}—w[ﬂl ﬁL’Z:|_L—’ (3.50)
[TGz—-8)
j=1
with n < L the corresponding bi-orthogonal polynomials are given by
0 o 0 "0 ... ()
BIT"Th 1 EB) . BTE(BD
@y (z) = C - det . . . . (3.51)
it 1 &L . BE(BL)
0 o0 e ... 5 (2)
BIT o B EBD o BTEBD
By(2) =C*-det| . . . . (3.52)
BL" ... BL EBL) ... BLUENBL)
and the associated functions
! RV S 44 119 B 1 (2)
L BN 1 EoB) . BE(BD)
[[c-8pa@=C-det| : : : : (3.53)
j=1 : : : : :
BE" 1 &) ... BME(BL)
A A 1 ¢ ISP M3
L BIT" o B EBD . BTENBD
[1Gc-8)5@=C*det . , , . (3.54)
j=1 : : : : :
BT . B &BL ... BENBL)

Proof. Orthogonality of the proposed formulae (3.51) and (3.52) with respect to the modified
weight according to the criteria (2.3) and (2.4) is easily proved using the methods of the preceding
proposition and the interpolation identity

L r
ZLﬁ—on, F—0.... L2 (3.55)
p=1 ]_[(,Bp_ﬂj)

J#p

The remaining formulae (3.53) and (3.54) then follow from these two again using the methods
of the preceding proposition. [

Remark 3.1. There is a simple observation that renders the above formulae (3.51)—(3.54) as
transparently obvious — the inverse recurrence relation (2.21) allows for a backwards recurrence
and therefore gives meaning to the bi-orthogonal system with negative indices n < 0. Recall that

ko(wg + F)
Yo = Ko(wu()) -F | (3.56)
kg ———=

w
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so that using (2.21) we find ¢_1(z) = ¢*(z) = O and 3k_1&_; = 1/z and 3k_1£*, = 1,
assuming k| # 0. Proceeding in this way we next find that ¢_»(z) = ¢*,(z) = 0 and in fact all
the polynomials with negative argument can be set to zero. The solutions of the backward recur-
rences for the associated functions can be shown to be polynomials in 1/z, namely with N € N

leNng(Z) _ v @1 4t !

= 3.57
2 K-N Z N (3-57)
1 ¢-_n11(0) 1

EK—NEL\](Z)= 1+.“+TZN_717 (3.58)

subject to the conditions k_p, ¢_n(0), (]3, ~(0) can be defined in some way and the x_p are
non-zero. We note that the above formulae are precisely the terminating forms of the general
expansions (2.32), (2.33), (2.36) and (2.37). In defining the bi-orthogonal system with negative
indices in this way we have to break the relationship between the polynomials and their associ-
ated functions as given in relations (2.11)—(2.13).

Then using elementary column operations on (3.51)—(3.54) we can recast these as

do_w-m@ . 0@ .. (D)
BET e (B1) .o (B ... BME(BD)
®,(z) = C - det . . . . , (3.59)
E e —myBr) .. &BL) ... B"E(BL)
Fo @ o e . i@
. . BI"E mBD o E5BD . BTUESBD
P (z) = C* - det ] . . ) , (3.60)
BL"E L BL) - EBL) ... BUEN(BL)
and the associated functions
L
(z— B)) En(2)
j=1
de i@ 0 L@ 8GR ... &Q
BE" e —m(B1) ... BiE—1(B)  EB) ... B"E(BD)
= C - det ] ) , ) ) , (3.61)
:Bfiné—(L—n)(ﬂL) oo BrEo1(BL) Eo(BL) ... Br"E(BL)
L
[1c-8) 5@
j=1
ey o TE PR .. £
. BrT"E B .. BIES (B EBD ... BTENBD
= C* - det ’ , , , ] . (3.62)
BrTE L BL) .. BLEN(BL) E(BL) ... BLUEN(BL)

Propositions 3.1 and 3.2 can be combined into one result covering the case of rational
modification of the weight.
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Corollary 3.1. For a general rational modification, subject ton > L,

K
(z—aj)

K j=I
w [L; Z] -7
[TG@—-8)

j=1

we have the corresponding bi-orthogonal system

K
[T = o) @u(e) = C - det
Jj=1

K
[TG-a) @@ =cC* - det
j=1

L
[1c=8) 5 =C-det
j=1

L
[TG-8) 5@ =C"-det

j=1

w(z),

ZL¢n7L(Z)

afgu_r (@)

akdu_r(ax)

By gL (B1)

B E—L(BL)

er_, (@

aber_; (1)

akoi_; (ak)

By hEr (B

B ther (B

ZL%'n—L (z)

albgu_r (1)

akdu_r(ak)

By gL (B1)

B E—L(BL)

e @
aber_, (ar)

aki_;(ak)

B EER L (BY)

B ther (B

n (2)
dnlar)

onl(ak)
B1 & (B1)

ﬂ;ngn(ﬂL)

o (2)
o (1)

o (k)
B EY(B)

BL"&: (BL)

&1 (2)
o (1)

onl(ak)
B "En(B1)

BL"En(BL)

£5(2)
o ()

o (k)
B"EN(B)

Br"&: (BL)

¢n+K (z)

Pn+k (1)

Pn+k (k)

By "Envx (B1)

BL"En+k (BL)

¢;+K ()

¢Z+K(al)

¢Z+K (ag)

By &k (B1)

B &k (BL)
Entk (2)

On+k (1)

Pn+k (k)

B "Enrk (B1)

BL"En+x (BL)

§:+K (@)
¢Z+K(al)

¢:+K (ag)

By "&n sk (B1)

Br"&v ik (BL)

(3.63)

(3.64)

(3.65)

(3.66)

(3.67)
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Proof. This follows by using the methods of Propositions 3.1 and 3.2. I

We now present a “conjugated” version of Proposition 3.1.

Proposition 3.4. For the polynomial modification of the weight

. - K* K
w[, f ,:Z]:]_[(l—oc}‘z‘l)w(z), (3.68)
9 ]:1
the corresponding bi-orthogonal polynomials are given by
on(z) ... Zik*?rH»K*(Z)
x* 1 gnl) o @D gugke (@)
(1 —aiz™) &) = C - det _ _ , , (3.69)
j=1 : : :
bk o @) Guyie ()
¢r) .. K (@)
K* gr@) . @)K @D
[[0-azher@=craee| 0 7 70 TR (3.70)
j=1 : : :
@) o (@) K G ()
and the associated functions
164 K bk (@)
pale})) . @D purke @)
5,(z) = C - det . . . , (3.71)
bu(@f) oo (@) ik ()
£@ .. e (@)
or) o @)K g k@D
s@=crdet| AR (3.72)
Gr@s) o (@)K G g (@)

Proof. This result follows by employing the methods of Proposition 3.1. [

There is also a “conjugated” analogue of Proposition 3.2 and is given in the following
statement.

Proposition 3.5. For the reciprocal polynomial modification of the weight
S 1
w |: oL Zi| = L*—w(Z)’ (3.73)
[a- g
j=l1
the corresponding bi-orthogonal polynomials are given by
On—1+(2) e &n(2)

B "En-r-BY) ... (BDTE(BD)

$,(z) = C - det n>L* (3.74)

(BL) ™ "En—r1=(B+) - (BL)"&n(BL+)
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Bn_1+(2) .- én(2)
B e B . BDTEBD
@ (z) = C* - det . . : n>L"
Br) e« (BL) oo (BL)TES(BL)
and the associated functions
En—r+(2) e §n(2)

L* B e (B . (B T"E(B])
[Ta-8;"" 5@ =C - det . ‘ . n>L*
=1 : : :

Br)"En—rLx(BLe) .. (BL) & (BL+)

&p_p+(2) e &)
L* BB o BDTEBD
[Ta-8;z"H 510 =C* - det ‘ . . . n>L*
j=i : : :
Br) " (Brs) oo (Br)T"E (Brx)

Proof. This result follows by employing the methods of Proposition 3.2. [

(3.75)

(3.76)

(3.77)

Analogous to Corollary 3.1, Propositions 3.4 and 3.5 can be combined into one result covering

the case of a “conjugated” rational modification of the weight.

Corollary 3.2. For a general rational modification, subject ton > L*,

K* 1
[Ta—e¥z7")
-5 K* j=1 !
w . . L*;Z = L* w(Z)s

11— B}z

J
we have the new bi-orthogonal system

K*

[Ta-eizH &
j=1
b1+ (2) - éu(2) - 7K ik (2)
b1+ (@) . on (@) e @)K (@)
= C - det b (@) ... bn (@) e (@) K ke (@)
BB oo BDTE@BD o BT K k(B
Br) " u—r (Br) oo B TEBED o BT K ke (B

(3.78)

(3.79)
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K*
[[a-ez) o)

j=1

4 (2) ... b: () ... T (@)
e (e}) . oF (@b) v @)K G @)
= C* - det bF (@) O () e @)K e | (3.80)
B ey B o BDTUEBD (ﬂi‘)f"fk*é,ﬁm B
Br)T"En_ 1 (Bl) oo (BL)TUEN(BL) .. (ﬁ}f*)f”*'{*é,ﬁm (BL+)

L
[Ta-8z"hH 50
j=1

E0e17(2) o £4(2) . K k)
b1+ (@) o dn(a}) e @) g @)
=C-det|  ¢ur-(@ks) e ek o @) K ki [ (3.81)
BB . BOTEB) .. BT gk (B
BE) o1 (Br) oo BEOTEBE) o BT T Gk (B

L
[Ta-#:z"hHsi@
j=1

£ (2 . £1(2) . IR (9
Br_ o (e]) . (el e @M @]
= C* - det OF () e e @)K g | (3.82)
B e B BDTEBD . BT E B
Bi) & By o BrOTENBR) o Br) T T EN k(B

Proof. These results may be derived by utilising the methods of Propositions 3.1 and 3.2. [

Corollaries 3.1 and 3.2 can be combined into a single result for the most general rational
modification of the weight (1.5) and this is stated in Box I without proof.

Remark 3.2. We now show how the results of Ismail and Ruedemann [26] and of
Ruedemann [42] can be recovered from a specialisation of the result for K, K* > 0, which
follows easily by combining (3.6) and (3.69),
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K K*
H(Z — Olj) 1_[(2 - Ol;k) D, (2)
j=1 j=1

K (2) e Gk @ e Gurkrk (@)
@)X pul@) . Garke@) . Gurkeik (@)
=C-det| (@) pulak) ... Gurkr@k) ... Gurkrix(ax) |, n=0. (3.83)
@O @) . @) o Gk @)
@) pu@l) o Gk @) o Purkrrk (@)

The other result of [26] is a likewise a special case of L, L* > 0

Fpnr-1+(2) e bn—L+(2) o @)
Bl e B BT E(B) o (B TE(B)
Gu(@)=C-det| B"E LB ... BEsBL) ... B"EBL) |
B e B BD T EBD o BN EBD
Br) ™" oo (Bf) oo BE) e (B . (Br) (B
N (3.84)

In the context of orthogonal polynomials Theorem 1 of [26] states a formula which is extended
to the bi-orthogonal polynomial setting by Theorem 2 of [42]. This is the K = K* = m case
in (3.83) and we now proceed to show that our result is equivalent to theirs. Our result can be
expressed, keeping only the first row, as

det(Zm¢n (@), s 20nm—1(2)s Pupm(2), Grnam+1(2)s -y Puyom(2)),

and we use elementary column operations and the forward and backward recurrence relations
(2.20) and (2.21). The initial step is to recast this as

-1
det(zm ¢:+1, cees ¢;1k+ms Pntm, Pntm+1s .-+ Pntom),

and then conduct a sequence of m consecutive sweeps. The first sweep uses ¢, , ,, and those on
and to the right of ¢, 4,41 in a sequence of successive steps. At each of these steps a recurrence
relation is used to transform the first element by incrementing its index and then another is used
to decrement the index of the second and thereby introducing a factor of z. (we use - to denote
an intervening element not involved in the column operations)
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-1
det(zm ¢;lk+1a cees ¢;:+m’ S Ondmtls - Putom),
1 |
det(zm_ ¢:;+15 R ¢;lk+m+]’ ) ¢n+m+1 LI ¢n+2m),
—1
det(Zm ¢;’:+1a DR} ¢;:+m+11 '1 Z¢n+ms cee ¢n+2m)s
—1
det(zm ¢Z+1’ e ¢;,k+m+2a ) Z¢n+m» ¢n+m+2; vy ¢n+2m)a
-1
det(zm ¢:+] LR ¢:+m+27 ) Z¢n+m, Z¢n+m+1 [ECR ] ¢n+2m):
-1
det(zm d)::_l'_] PRI ¢:+2m—1 [ Z¢n+m7 ) Z¢n+2m71)'

Then we successively use a recurrence involving the first element and the second in reverse
direction in order to decrement its index, restoring the index to n + m.

-1
det(zm ¢:+] LA ¢;«T+2m7] ’ ¢Vl+mv Z¢Vl+mv ) Z¢n+2m71),

—1
det(Zm ¢;lk+17 ey ¢;lk+m7 ¢n+ma Z¢n+ma e Z¢n+2m71)~

*

The second sweep uses z¢,,

sequence of steps

| and those of z¢ym+1 and the ones to the right in a similar

det(z" @ 1 2 te s Znbms WPt - - Zng2m—1),
et 1y 2D s s s Zntms ZPnmt s - s ZBntrom—1),
det(szlqﬁ:fﬂ, s 2 s s WBntms P Pntms - s Wntam—1),
det(z" ' i 1s e 2 s s i P Chnimits - Pbuian2).
det(zm_lqﬁ,’jﬂ, e T s Z.¢n+m, Phutms s o Pntrom—2).

We repeat this procedure m times and the final sweep yields
-1 2
det(zm ¢1>1k+m’ ey Z¢:+m1 ¢;:+ms Ontms Zntms T Pntms - -+ Zm¢n+m)s
which is the desired expression.

We now specialise the above results and consider the K = 1,L = 0and K = 0,L = 1
cases in further detail as these particular transformations form the generators for the group of
Christoffel-Geronimus—Uvarov transformations. To this purpose we define the matrix generators
R (z; ) and R, (z; B) forthe K = 1, L = 0and K = 0, L = 1 cases respectively

Y, (@)=Y, [(1); z} =R (z; )Yu(2), (3.85)

V@) =Y, [‘1) z} = Ry @ AY(2). (3.56)
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In our specialisation to the regular semi-classical weights we will draw heavily on the results for
the K =1,L =0and K = 0, L = 1 cases as they will form the generators of the Schlesinger
transformations in that context.

Corollary 3.3. For K = 1, L = 0 with the numerator factor of z—a denote the coefficients of the
transformed BOPS by k,5, ;b F;F and the bi-orthogonal polynomials and associated functions by

Dy, Pk, 5y, 5. Assuming ¢>n (oz) # 0 for n € Zxq these are given in terms of the base system by
2 _ én(a)
or)" = =it gy G0
= G (0)Pnt1(r) — Pny1(0)n (Ol)’ (3.88)
okp 1190 (@)
= @ (3.89)
Gn(0)
and the corresponding bi-orthogonal polynomials and associated functions are
+r * _ *
B,2) = 1| 4 2) — Pnt1(0) @, ()P (2) — Pn(), (z)} , (3.90)
Kn L Kn+l¢n(a) 77—
. Ky [ () o ¢ (@)Pn(2) — Pu()g;(2)
¢ = - " , 91
q (2) s _¢n(a)¢(Z)+¢n(a) — ] (3.91)
+r » 0
5@ = | (2 — () — 1@ (D5 (@)En(2) + Pu ()& (z))} 7 (3.92)
Kn L Kn1@n(c)

=%k
5 () =—
n Kn

i [—M@—a)sn(z) (65 (@80 (2) + b (@) (z))} (3.93)
$n (@) Pn(@) "

Alternatively the matrix generator R} is given by

Knbai1@)  uy1(0)

+ ]
ey Kn1¢n (@) Knt1
RI(z;a) = P ¢;;? )Z _+ . (3.94)
On(a)

Proof. This follows easily from Proposition 3.1 and the expansion formulae (2.30)-(2.37). O

Remark 3.3. This case has been given by Zhedanov [54] in the context of BOLPS, which he
termed as a Christoffel transformation, so we can directly compare some of the above results

with his. Accordingly we verify that Eqs. (2.6) and (2.7) of [54] follow from (3.87) and (3.88),
while Eq. (2.1) follows from (3.90).

Corollary 3.4. For K = 0, L = 1 with the denominator factor of z — B denote the coefficients
of the transformed BOPS by k,; ,r, , r,; . Assuming & (B) # O for n € Z> these are given by

o BE* | (B)
= —Kpky_1———, 3.95
()" = —knsen- £ (B) (3.93)
_ BE(B

= s 3.96
T (B (3:96)
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_ o 0BEr [ (B) — du—1(0)5 ()

s s (3.97)
" Brn&,_ 1 (B)
and the corresponding bi-orthogonal polynomials and associated functions are
kn B
dSn l— . n n . 5 3.98
(@) o B [£5(B)bn(2) + Ea (B (2) ] (3.98)

1 b (0 b, (0
$r(o) = — [(z —p <¢ O - ¢;‘(z>> + 50O e gy + sn<ﬂ)¢:;‘(z))] . (3.99)

Kn Kn Kn»f,’f(ﬂ)

kn B E(BEn(2) — En(B)E; (2)

En@=—-— 3.100
D= 5® Py (G-100
5:(2) — L’l [5:(2) + én(0) £,(2) + ¢n(0) *.3 &, (B)en(2) — 64(B)E, (Z)] ) (3101)
n Kn Kn Sn (,B) <= /3

Alternatively the matrix generator R, is given by

£n(B)
R~ (2 _ kn B p ﬂ%',f(lg) 3.102
O EACTRST (R | (3.102)

Kn Kné;,k(ﬂ)

Proof. This also follows from Proposition 3.2 and the expansion formulae (2.30)-(2.37). O

Remark 3.4. This case is specialisation of the Geronimus transformation given by
Zhedanov [54] in the context of BOLPS. These transformations include a contribution from a
mass point which we do not consider here, and we effect this by the choice of the variable (in
his notation) i = B, ¢» = §,(B)/ky. Consequently we find V, = Brn&n—1(B)/¢n(0);_;(B)
and therefore we verify that Egs. (2.15) and (2.16) of [54] follow from (3.95) and (3.96), while
Eq. (2.11) follows from (3.98).

Compatibility of the Christoffel-Geronimus—Uvarov transformations (3.85) and (3.86) with
the other fundamental structures of the bi-orthogonal system imply a number of simple relations.
For example compatibility with the n +— n + 1 recurrence (2.20) implies the following result.

Proposition 3.6. The K, and R, matrices satisfy the compatibility relation
R (2)Kn(2) = KF () RE(2), (3.103)
forall z,n, o, B.

Proof. Considering the K = 1, L = 0 case first we use the explicit forms for the matrices
Ky, K[ given by (2.20) along with (3.87) and (3.88), and the matrices R;", R:+1 as given in
(3.94). A direct calculation of the difference of the left-hand and right-hand sides then yields the
null matrix upon repeated use of the recurrence relations for ¢, 42 (o), ¢n41(), ¢>:: 41 (a0) implied
by (2.20). For the K = 0, L = 1 case we used (2.20), (3.95) and (3.96) for the matrix K, and
the formula (3.102) for R,, R, ;. The appropriate difference was shown to be identically zero
using the forward recurrence for E: 1 (B) as implied by (2.20) and the backward recurrence for

é:_l(ﬂ) as implied by (2.21). O



594 N.S. Witte / Journal of Approximation Theory 161 (2009) 565-616

The other structure that we have to verify compatibility with the Christoffel-Geronimus—
Uvarov transformations is the spectral derivative, namely (2.27). In order to verify this we have
to find expressions for the transformation of the spectral matrices A,jf (z) under the action of the
generators K =1, L =0and K =0, L = 1, which are given in the following lemma.

Lemma 3.1. With the assumptions of Corollary 3.3 the transformed spectral matrix A} (z)
under the Christoffel-Geronimus—Uvarov transformation K = 1, L = 0 is given by

—$n11(0)¢;, (@) ¢n+1(0)¢n(0!)>

— + =
(-4, @) = Kn@Pn+1(at) ( ki1, (@) —aknp1dn ()

1 </<n¢n+1(a) — Knt1¢n(0)z —¢n+1(0)¢n(a))A @)
KnKn+l¢n(a)¢n+l(a) _Kn+1¢;1k(a)z aK”+1¢n(a) "
—akp11¢Pn () —Pn11(0)y, (o)
x (—xn+1¢:(a)z nt 1 (@)2 —xn¢n+1(a))’ (3.104)
or
+
Ay () = —'%Z — aReSRI + R () AR ()17, (3.105)

and the analogous result for A, (z) under the Christoffel-Geronimus—Uvarov transformation
K =0, L = 1 assuming the conditions of Corollary 3.4 is given by

1
(z—,B)An(Z)ZK—(_ 0 0)

¢n(0)  Kkn
+ 1 (_,BKnS,T(ﬂ) Binén(B) )A 2)
Bien 11" (BYEF(B) \@n(OEF(B)z  —kn (B)z + Brn & 1 (B)) "
knkr (B)z — Brn—1&7_1(B)  Brn&n(B)
X ( 3 (0)E* (B)z —ﬁmé,i‘(ﬁ))’ (3.106)
or

_ Kk, 1 d__ _ _ _

A () =— —R, + R, ()A (D[R, ()] . (3.107)
kn 72— B dz =B

Proof. To establish the first result (3.104) we differentiate the expressions (3.87) and (3.88)
with respect to z and employ the matrix equation (2.27) for the derivatives of ¢,, ¢. Having
rendered the two derivatives in terms of ¢, and ¢ we invert (3.87) and (3.88) so that these two
polynomials are given in terms of @, and @;. The second result is found by an identical argument
starting with (3.95) and (3.96) instead. [

Now compatibility of the Christoffel-Geronimus—Uvarov transformations with the spectral

derivative must imply the following result.

Proposition 3.7. Compatibility of the Christoffel-Geronimus—Uvarov transformations K =
1,L =0and K =0, L = 1 with the spectral derivative imply the condition

%Rf(z) + RE@ AN = AXQRE(), (3.108)

foralln, z, o, B.
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Proof. We shall verify (3.108) by treating the + cases separately. For the + case we employ
(3.94), which we also differentiate with respect to z, and the formula for A" (3.104). Then it is
a matter of an exercise to check that the difference between the left-hand and right-hand sides
are identically zero without making any assumptions on A,. The — case is treated in a similar
manner starting with (3.102) and (3.106). O

In concluding this section we shall display the matrix generators for modifications with
K* =1or L* =1 for the sake of completeness even though these can be found from composite
transformations with K = 1, L = 1 and 8 = 0, o = 0 respectively. These results also exhibit an
elegant symmetry with respect to the other generators.

Corollary 3.5. For K* = 1,L* = 0 with the numerator factor of 1 — a*z~" denote the
coefficients of the transformed BOPS by kF,rt Y and the bi-orthogonal polynomials and
associated functions by @,, ¥, 5,, ZF. Assuming ¢ (a*) # 0 for n € Zs these are given

in terms of the base system by

¢, (™)
(k) = K 1kn e (3.109)
n+1( )
*
rr = 2@ (3.110)
)
ot _ $n 91 @) — 1 0" (@) G
" Kn+1975 (@*)
and the corresponding matrix generator is given by
o Pn(a*)
+ 2 e T—
oo _ k1 _ ()
Kn+1 Kn+l¢;,k(a*)

Proof. This follows from Proposition 3.4 and the expansion formulae (2.30)—(2.37). O

Corollary 3.6. For K* = 0,L* = 1 with the denominator factor of 1 — B*z~! denote the
coefficients of the transformed BOPS by «,; —. Assuming &,(8*) # 0 for n € Zs>g these

are given by A
—\2 ﬂ*gn—l(,g*)
= KnKn—1——"_.7 > 3.113
()" = eukn 1 = 5 G
o= $n(0)&,—1(B*) — ¢n—1(0)§-n(,3*)7 (3.114)
Kn€n—1(B*)
B*En—1(B*)
and the corresponding matrix generator is given by
k& (BY) ! Pn(0)6:(B*) -
R;(Z; ﬂ*) — KL Kn—1&p—1(B*) Kn—1&n— 1(,3 ) . (3.116)

Kn Kn§p (B*) Kknén(B*)
Kn—1B%En—1(B*) Kn—1B%En—1(B%)
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Proof. This follows from Proposition 3.5 and the expansion formulae (2.30)—(2.37). [
4. The Semi-classical class of weights
From the viewpoint of classical orthogonal polynomials the weight (1.3) is a particular

example of the regular semi-classical class (4.3), characterised by a special structure of their
logarithmic derivatives

1 d V@) K pj
——w(Z) = = - 5 i € (C 41

w(z) dz @ W(z) ;)Z—Zj bi “
Here V (z), W(z) are polynomials with degV(z) < M + 1, deg W(z) = M + 1. The zeros of
W (z) define M movable singularities {z; }?’[: | located at arbitrary positions in the finite complex

plane. The residues at the finite singularities, the parameters {p; } ;"’z o are also arbitrary complex
constants only restricted to ensure that the trigonometric moments have meaning. In addition the
matrix spectral differential equation in z (2.27) has a distinct set of fixed singularities, due to the
bi-orthogonal system and its support on the unit circle, at zo = 0 and z)+1 = oo for generic
values of the parameters p;. It is possible that one of the zeros of W (z) coincides with the origin
and we cover this situation by denoting this zero by zo and its exponent by pg.

To avoid technical complications we require the following generic conditions for the regular
semi-classical class —

(1) deg(W) = 2,

(2) deg(V) < deg(W),

(3) the M + 1 zeros of W(z), {zo, 21, - .., 2m} are distinct,
(4) the residues p; =2V (z;)/ W' (z;) & Z>o.

From the expansion of the denominator in terms of elementary symmetric functions

M M+1
W@ =[]e=zi) =) (=Delzl". 4.2)
j=0 1=0

and (4.1) one sees our system is characterised by the singularity data {z;, o j}ﬁ@’l= o of the weight,
and our task is to deduce the consequences for the bi-orthogonal system. If (4.1) is viewed as an
ordinary differential equation for w(z) given the data {z;, p; }?’1: o then one particular solution is
the generalised Jacobi weight

M
wi) =[[@-2)". p;jeC. 4.3)
=0

We will find that a certain symmetry will be present if we consider the following “conjugate”
expression to the above weight

M
w@) =[] -2z, pjeC. (4.4)
j=I

For the regular semi-classical class the spectral coefficients 6,(z), 0, (z), {2,(z) and 2}(z)
in (2.27) are polynomials in z of fixed degree deg {2,(z) = deg(2(z) = M, deg @,(z) =
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deg ©%(z) = M — 1, independent of n. This is true provided that W(0) = 0, i.e. one of the
singularities is located at the origin zop = 0, and is taken only in order to simplify the ensuing
expressions. Once the singularity data is given these polynomials themselves are most usefully
characterised in two distinct ways — either in terms of the coefficients of the monomials in z or
their evaluations at the singular points {©,(z;), 0, (z;), 2,(z;), 2} (z j)}M: ]

As a consequence of the polynomial form of the 6,, Oy, (2,, {2¥ the spectral matrix A,
appearing in (2.27) has a partial fraction decomposition

M

An=) Anj (4.5)

J=0

in terms of the residue matrices A, ;. The n-th residue matrix A, ; at the finite singularity z; is
given by

¢n+1 ©

0 -1, (Z])_V(Z])+ Z/Qn(zj) O, (z ])
Anj = 2V(Jz ) $n1(0) . Knil .
J -7 9n (Zj) 27(zj) — V(Zj) T 6, ()
P Dr@E(z)  —bu(z))En(z)) (4.6)
—on(@)DEN(Z)  n@ES () )] '
for j =1,..., M, while for j = 0 the expression is
1 —ry,
An,O - (n - pO) (0 0 ) ) (47)
and for the singular point z);41 = 00
" —n 0
M M
Apoco=— Ap = _ . 4.8)
00 ; i —(n+ij>rn D P
j=0 j=0
Let us define the diagonal matrices of formal monodromy 7 for j = 0,1, ..., M, oo by the
diagonalisation
-1
Anj=Gn;jTi(Gnj) . (4.9)
and we compute these as
0 0 .
(0 0), j=1...M
T; =3 \0 —pj (4.10)

—n 0

M .
0 ij » S =
=0
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¢, (0) dO/Kn .
( Kn 0 ’ j=0
(bn(Zj) dan(Zj) .
Gni= , =1,....M 4.11
& (¢;:<z N —digrap) (10
(o al) 1o
$n(0)  doo/kn 7=
where dy, di, ..., dy, dx are fixed by the weight and its support. The reader should note that
our conventions are slightly different from those of the Kyoto School in that det A, ; vanish for
J =0,..., M and TrA,, ; are non-zero in the generic case for j =0, ..., M, cc.

There are sum identities implied by the above relations (4.6) and (4.8)

M

e (Z’;)i” O — 0~ poyra. “.12)
k=1 Zk

M *

> ¢, (ZI;)in(Zk) — 1o, (4.13)
=1 Zk

L. (z,k)s (zk)

" Z (4.14)
k=1

A (g ()

g (L),
=1 %k k=0

What is clear from our experience is that the evaluations of the polynomials 6,, 6,, {2,, {27
at the singular points and their subsequent use as auxiliary variables greatly simplifies the theory.
We shall therefore seek to cast our theory in terms of these quantities. Firstly we note that the
bilinear products of a polynomial and an associated function evaluated at the finite singular point
z; are related to the spectral coefficient evaluations at the same point by the following equations,
validforall j =1,..., M

$n+1(0) o On(z;)

G n(ey) = 27 S (4.16)
b ()6 (2)) = — ¢”;L(O)z’}+‘fv*gj; 4.17)
Bzt =22 O 9,1@2,;2;(;, ) (4.18)
Br(@ e () = 221D (szé(‘zg(zf), (4.19)
01 ) = —2‘1_’"2(0) g+ (ZZJ;ZX(ZJ' ), (4.20)
P12 () = WL A @) ~ V&) @21)

Kn 2V(z;)
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n

dn(2))E,(z)) = _V( ) [Q (zj)) = V(zj) — "+1z]9 (z,):| (4.22)
Zj
—- _ 27 *ooN N Kntl o
- V(z)) I:“Qn (zj) = V(z)) o 6, (Z]):|, (4.23)
b (2))en(z)) = [Q (Z])—i-V(Z])— ZJQ (z]):| (4.24)
V( J)
- [9*(1 )+ V() — = — O, )] (4.25)
Vi(z ]) / / J :

In the semi-classical class the singular points are free parameters in the complex plane and
another key structure in our integrable system are the deformation derivatives of the system (2.10)
with respect to arbitrary trajectories of the singularities z;(¢), j = 1, ..., M parameterised by the
deformation variable 7. The deformation derivatives were derived in [17], and given by (where
d/dt :=")

dy By, =1p fA"*j'- Y, (4.26)
dr n — DPn - e e} j:lZ_ZjZ] ns .
with
] 0
Kn - -1
Bo=|. - : | =6GunGil . 427
T kan ) + ko @) iy | T O Cnee @27
Kn Kn

This latter term arises in our system because the leading term of Y, as z — oo is not normalised
to the identity matrix as is the case in most other treatments.

Compatibility between the set of deformation derivatives and the spectral derivatives (2.27)
leads to the system of integrable non-linear partial differential equations for the residue matrices
known as the Schlesinger equations,

Zj — Zk

Anj=[Boos Anj]+ Y [Ank, Anj], j=1.....M, (4.28)
k#j

Anco = [Bos:, Anso] - (4.29)

Z] _Zk

A number of deformation derivatives will be required subsequently, which were computed
in [17],

B Z 2k ¢n(Zk)E (zk)

= , (4.30)
N
M .
. Z_k [@n(zk) — rn¢*(zk)]%_n(zk)
Py = k; P 2 4.31)
;o= Z 3 [rn¢n (z1) — o ()1, (Zk) 4.32)

2z



600 N.S. Witte / Journal of Approximation Theory 161 (2009) 565-616

In addition we will need the deformation derivatives of the polynomials and associated functions
evaluated at a singular point P, j := ¢} (z;)/¢n(zj) and Q,j = &,(2;)/£F(z))

M .
. 2k [ zi) Pa,j — &y (21)16; (21)
Py j :;pk; ! ZZZ

B Z o 2j = 2k [@n (@) Pu,j — &5 (@)116n (20) Pu,j + &, (20)]

= (4.33)
ety %% 27y
and
M .
. 2k On,jlon k) + ¢ (21) O, 16, (21)
Qn,] = kz:;Pka 2Z’]:
_ Z o 2j — 2k [Pn(zi) + ¢>;§(Zk)Qn,j][n§n(Zk) - é,T(Zk)Qn,j]’ (4.34)
ety %% 2z

which can easily be deduced from the above work.
A consequence of the evolution of the residue matrices under (4.28) is the result that arbitrary
deformations preserve the monodromy data, in this case the collection of monodromy matrices

{M; }?’I:E)l , with each defined by

Yo(zj + 8™ = Y, (zj + &) M;. (4.35)

Each monodromy matrix has an upper triangular form, one of the three structures expected for
classical solutions of the Garnier systems [38],

1 cj(l—e i)

—1_27iT; .
MJZC] e?Tl/Cj:(O 6—27Ti;0j ), ]:0,...,M, (436)

where the c;, and thus the M, are independent of z; or ¢, and also of n. The connection matrices
are given by

c]:((l) le> j=0,.... M. (4.37)

We note that the BOPS satisfies the necessary condition for being a classical solution of a
Garnier system [52]. This means that the formal monodromy exponents given by

9() =n-— po, (4.38)

0j=—pj, j=1,...,M, (4.39)
M

bo=n+> pj. (4.40)
j=0

satisfy the classical condition ) o1 3/ o 0 = 2n.

There is a final structure in our integrable system that needs to be put into place and this
concerns the discrete deformations of the parameter set of the singularity data, the set of
exponents {p j}j!”: o- These are known as the Schlesinger transformations and are the subject of
the next section.
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5. The Schlesinger transformations

When one of the free parameters «, 8, «*, B* in Corollaries 3.3-3.5, or Corollary 3.6
coincides with a singularity of a regular semi-classical weight, say z;, then the weight (4.3)
undergoes a modification p; — p; £ 1 or p;’f > p;‘.‘ £ 1 respectively. In this situation
we are in reality treating a family of weights whose exponents differ by integers and in the
context of isomonodromic systems these modifications are Schlesinger transformations. These
transformations and the basic recurrence entail the following types of transformations in terms
of monodromy exponents

ni—>n=+l Op > 0p £ 1,05 > 0o £ 1
pj—>pjx1 0;j > 0; F1,00 1 0o £1
p;’fv—>p;fj:1 OG> 0x1,0;—~06;F1
nn—>n:|:l,,oj»—>,oj:|:1 90!—)90:&1,9jl—>9j:t1
nt—)n:l:l,p;‘r—mo;q:l 0j > 0; £ 1,000 > 0o =1

If we define the matrix transformations for the mappings p; = p; + 1, ,o;f > ,o;f + 1 for
j=0,....M,

Ya(z pj £ 1) = R (25 p)Yu(: p)), (5.1)
Ya(z; pf £ 1) = Ry (25 ) Ya(z; 9)), (5.2)

(cf. (3.85) and (3.86)) then these are given in the following proposition. For this and the following
propositions it is only necessary to exhibit proofs for the R; /= cases as the R, */% transformations

B
are composed from the R~ and R%* transformations.

Proposition 5.1. The elementary Schlesinger transformations for the shift p; — p; £ 1, with
zj # 0, are given in terms of the base system with parameter exponents {p; }?’1: o by the formulae

Kn¢n+1(zj) n+1(0)

. 1 «+ %™ ,
Ri* o = ——"& g’;{z‘ﬁ”(zﬂ i |, (53)
. j Kn —z;
¢n(Zj)

nkr (2)) K (2))
- LK Kn—18,_1(2)) kn—1&;_1(z;)
B @GoD =" 606D 2 ki) z | o

kn—18;_1(z)) z; kn—1&;_1(2)) 2

assuming that ¢, (z;) # 0 and &;(z;) # 0 for all n € Zxq respectively.

Proof. The results (5.3) and (5.4) follow immediately from (3.94) and (3.102) respectively.  [J

Remark 5.1. One can verify

i 1 -
det Ry " (23 pj) = ——, det R, (z; pj) =z — zj, (5.5

J




602 N.S. Witte / Journal of Approximation Theory 161 (2009) 565-616

using the forward recurrence for ¢,+1(z;), i.e. (2.20), in the first equality and in the case of the
second, the forward recurrence for &, (z;) (2.20) and the backward recurrence for &,_1(z;) (2.21)
plus (2.8).

Corollary 5.1. The transformed leading coefficients are given now by

2 _ ®n(z2;) _ On(z;) 56
()" = —kusin g " = T G S V) 60
o 0B 1(Z) — 1Oz $a(0) L) + V(@) — B ()
ot = _ 5.7)
Zan+l¢n(Zj) Kn+1 Zj Qn(zj)
AT B L) o)) 5.9
®n(z)) in $55(z)) = Vi(zj) — 2205 (z))
and
N2 z;Er (z5) 0,_1(z)
(Kn) = KnKn—l—%_;(Zj) —KnKn—-12j Q* 1(Z1)+V(Z/) (5.9
- Zjin—l(zj) __9© Zj n—l(Z,’/;) , (5.10)
&_1(z)) Kn—1 $-1(2j) = V(zj) = 22 On-1(2)
i _ 00 OEL ) — G105 ()
" ZJK"E;: 1(zj)
) o* .
_ ¢n 1(0) I(Z])_I_V(Zj)_ C0° n_l(Z])' sl
Kn Zj n—l(ZJ)

Proof. These six formulae follow from the Corollaries 3.3 and 3.4 and the bilinear product
expressions — in particular (5.6) is a consequence of (3.87), (4.16), (4.18) and (5.7) from (3.88),
(4.16), (4.18) and (5.8) from (3.89), (4.17), (4.23) and (5.9) is a consequence of (3.95), (4.17),
(4.20) and (5.10) from (3.96), (4.16), (4.22) and (5.11) from (3.97), (4.17) and (4.20). O

Proposition 5.2. Subject to the conditions in Proposition 5.1 the inverses of the Schlesinger
matrices (5.3) and (5.4) are given by

Kn+1 Z ) ¢n+l (0)
it ¢n(z Gn+1(2;) Onr1(z2))
(Ri*Gipn) =R Gp+1 =22 Sdll) ) W "L | e

o1 CNEG) . b)) bari (@)
Kn—l%-n_l(zj) En(z)) )

. 1 (o Py PN
(Ri@pp) = RiT@po =1 = L2 3"5(652") @) (5.13)
7(72 %

respectively.

Prpof. To establish the first equality of (5.12) starting from (5.3) and (5.4) we require
R (zp ; + 1) and this is found from (5.4) under the mapping p; = p; + 1. This we compute
to be the second equality of (5.12) and first then follows easily. For the first equality of (5.13) we
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now require R,J;+(z; pj — 1) which is found from (5.3) under the mapping p; + p; — 1. Our
computation of this yields the second equality of (5.13) and the first follows in a straightforward
way. O

From the explicit forms of the Schlesinger transformations it is not obvious that they
are commutative, however this must be the case and the following proposition verifies this
fact.

Proposition 5.3. Any two distinct Schlesinger transformations p; +— pj + €, px — pp + €,
k # jand € = 1, € = +1 commute

RIS (0, ok + € VR (0, o) = RE (0 + €, p) RIS (0, 01)- (5.14)

Proof. We take the upward shift case (¢ = ¢ = +1) first. To check (5.14) we have to form
R,ﬁ+(pj, px+ 1) and R,I§+(,0j + 1, pr) using the explicit formula (5.3) which entails replacing all
coefficients and polynomials appearing therein under the mappings ox — px+1and p; = p;j+1
respectively. We observe that

(K'{+,k+)2 — ks (2 Pn1(2)) — on (@) Pny1(zk) (Kk+,j+)2' 5.15)

2 b1 @O 12(2)) — bu1 G Pur2e) N

All components of the difference between the left-hand and right-hand sides of (5.14) vanish
trivially except the (1, 1) component. To show this also vanishes we have to use the three term
recurrence relation

Kn41[n41(0)Pn12(2) — $p12(0)Pr11(2)]
= z[kn+2Pn+1(0)Pn+1(2) — kndn2(0)Pn(2)]. (5.16)

The other cases of mixed up- and down-shifted or down-shifted parameters can be proved using
the above equality and employing the inverse formulae (5.12) and (5.13). O

Corollary 5.2. The up-shifted bi-orthogonal polynomials and associated functions have
evaluations at the singular points given by the formulae

K P12 n (k) = b (z)) a1 (zk)

oy
BT () = { 1905 ey . (5.17)
Kn_ ) n—+1 Jt+. . —
P {"’”(Z’”KM&"(Z,-)T" (Z’)}’ K=
F 1 @) b (k) — dp (2 (zk) oy
@*JJF(Z ) = ‘13n+1(0)¢n(2j) j — %k ’ / (5.18)
nok Kt dn(z)) Zj it . '
S Y (z)) — T/ " (z)) k=j
Knn(2)) R e ’
+
| {401 (@) — a1 CNE(D] kA
5t = | o1 9nz)) (5.19)
K, Pn11(0) 2 k=i
_ K 1O _

KnKn+l¢n(Zj) /7
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+

E}T’H_(Zk) — ¢n+1(0)¢n( ])

K

[¢ (z j)En_i,_l(Zk) ¢;,k+1(zj)€:(zk)]a

n 2 n+]
Kn¢n (Z/) ’
provided ¢, (z;) # 0 for all n € Z>o, where
i+ 1 Pk Pn(z))$, (2k) — ¢ (2j)Pn (2k)
T, (Zj) = n
pj+1 ey 27 Zj — Zk

x [dn(z))E(zk) + 5 (2))En ()] -

The corresponding results for the down-shifted system is

[0 (20085 (2)) + ¢ 20)En (2], k #

o (@) =1"" 15,5 1@)
N — k=j,
Kn—lé;,k_l(zj)
. m (28671 @b (ar) — iy @dr_1 (2] .
n k) = K ¢n(0) 5 r§’
KnKn—li::_](Zj) /
Ky €n(2)€, (2k) — &, (z)6n (zk) .
. PR k~—Zk T k)
Sl @) =" LY
" 7 k=j,
PR ’
ey gE @DEN@Y — akdy @)E ()
iy = | B 2~ % ’
B A e $a(0) i £5(z))
e e oy @) ’
Kn | Kn— 1%-” 1( ]) Zj

provided & (zj) # Ofor all n € Z>q, where
(z))&, (zx) — &, (z)én (2k)

N P
—1k¢/2zk Zj — 2k

x [EX @) bn(zk) + En(z) s (z0)] -

T () =

k#

k=],

k#

k=j,

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)

(5.25)

(5.26)

Compatibility constraints need to be satisfied by the over-determined linear bi-orthogonal
system and we have to consider three such constraints. The first is the compatibility of
Schlesinger transformations (5.1) with the recurrence relation (2.20) and this implies the

following proposition.

Proposition 5.4. The recurrence matrix and the Schlesinger transformation matrices of the bi-

orthogonal system satisfy the compatibility condition

j+ ==
R (2 pj)Kn(z: pj) = Kn(z; pj £ DRI (25 pj)-

(5.27)
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Proof. Taking the + case first we construct K, (z; p; + 1) using the specialisation o« — z; of
(3.88) and (3.89). Forming the difference between the left-hand and right-hand sides of (5.27)
we find the (1, 2) and (2, 2) elements vanish trivially. Then employing the forward recurrence
for qb;l“ +1(Z j) we find the (2, 1) element also vanishes. Utilising the forward recurrences for
¢n+1(zj) and ¢, 12(z;) and finally the previous recurrence we see that the (1, 1) element is
also identically zero. In the — case we compute K, (z; pj — 1) using the specialisation 8 — z;
in (3.96) and (3.97). Forming the difference again we find (1, 1) element vanishes when the
backward recurrence (2.20) is applied to 5:—1 (zj) and £ (z;). The (2, 1) element vanished after
application of the forward recurrence for E: +1(Z j) and the backward recurrence for 5:-1 (z).
The (1, 2) element vanishes after the backward recurrence for &, (z;) is utilised. Finally the (2, 2)
element was shown to be zero upon the application of (2.8), the forward recurrence of & +1(z))
and the backward recurrence for £y, (z;). [

The second constraint is the compatibility of the Schlesinger transformations with the spectral

derivative (2.27). Again we need a preliminary result giving explicit formulae for the transformed
residue spectral matrices Af; = Ay k(p; £ 1), which is contained in the following lemma.

Lemma 5.1. The transformed residue of the spectral matrix under the Schlesinger
transformation pj — p; & 1 is given by

. . ; -1
AL = R0 Aw (R @) (5.28)

for k #£ j or explicitly by

| | Kns1n(z)) + i1, () a1 (0)n(z))
Aj+: *Z‘—Zk Zj — 2k An i
mk Ki1Kn+1¢n(Zj)¢n+l(Zj) _ M M
Zk Zj
Tj — T —
« ZjK}’H-ld)n(Zj) ¢n+1(0)¢n(2j) , (5.29)
knt 107 (Z5)  (2j = 2)Kn 100 (2)) + Pur1(0)9; (2))
and
KnE:(Zj) Kkn&n(z;)
i— 1 T T
Ak = e 3051 ) 08y | At
kn—1knZj5,_1(2)E5 () a2 i Zj enE (2) + 2 2 '_n Zj
7j—2 7j — 2k
(@ = 2Kn&y (2)) + 2jfn(OEn(z))  —2jKnEn(2)) 530
* ( —2uhn (018} ) 2jknr (2)) ) 30
In the special case k = j we have
jf _ 1 _¢n+1(0)¢;1k(zj) G110y, (Zj)
I ke nr1(Zi) \ 2iKnt19,(25)  —ZjKnt10n(25)

X{(ij)H I Ang <ZJK,1+1¢n<zj) ¢n+1<0)¢n<zj)>} (5.31)

Kn+1Pn(25) Y T Zjkne195(2j)  Pur1(0)P) (2)
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- _ Lt 0 0y
An,j B Kn _¢;n(0) Kn (,0/ b

2

v ( Kn%_:(Zj) Kné}_n(zj) )

and

J
Kn—llcng;:,l (ZJ)E,T (Zj) ¢_7n (O)EIT (z;) ¢_7n 0)&, (zj)

X

An (—én Oz Knkalz)) ) . (5.32)

Gn(OE (2))  —kn&(2))

kAj Tk

Again we require that ¢, (2 ;) # O for alln € Zx for the upward transformation and & (z;) # 0
for all n € Zxg for the downward shift.

Proof. We offer two types of proof here. The first utilises the transformed bi-orthogonal
polynomials and associated functions given by (5.17)—(5.21) or (5.22)—(5.26) in the formula
(4.6). One then has to separate out from each of the elements of the transformed A, matrix
the original matrix and perform a matrix factorisation with the structure of a similarity
transformation. This yields the final formulae (5.29), (5.31), (5.30) and (5.32). Alternatively
one can start from the general Christoffel-Geronimus—Uvarov transformation of A, given by
(3.104) or (3.106), insert the partial fraction expansion (4.5) and resolve the resulting products
on the right-hand side of the formula in this way. In order to eliminate the unwanted terms on the
right-hand side we need to note the eigenvector identities

. ¢n(Zj) _ ¢n(zj)>
An.j (ax:(z/)) =0 (¢:<z.,~> :

(e &)
An.j (—s:(zj)) =P (—é,j‘(z,-)) !

(d):(zj) _¢n(Zj)) An,j = —pPj (¢:(Z]) _¢n(Zj)) s
(Erz) &n(z)) Anj =0(5(z) &nlz))),
and the form for A, o, (4.8). O

Using the results gained up to this point we are now in a position to deduce the compatibility
of the Schlesinger transformations with the spectral derivative and deformation derivatives. We
begin with the spectral derivative.

Proposition 5.5. The spectral matrix and the Schlesinger transformation matrices of the bi-
orthogonal system satisfy the compatibility condition

d ; .

TR @ o)+ R 0 A ) = An(zi pj £ DRI @ p))- (5.33)
¥4

Proof. Take the + case first. Using (5.3) we compute the difference between the left-hand and

right-hand sides of (5.33) and resolve the expression into partial fractions in the z variable. The

(z— z.,-)_2 term has a coefficient proportional to

<¢n+1(o>¢;:<z,~> —¢n+1<0>¢>n<z,->> U4,
—Zjkn185(2j)  Zjknt19n(2)) ™

i (S OFEE) i1 Opu(z))
A (‘Zj"n+1¢;zk(zj) 2jkns16n(2)) ) (5:34)
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Using (5.31) this simplifies to
<—¢n+1(0)¢,f(1j) Gnt+1(0)n(z;)

2161 (2) —z,-xn+1¢n(z,->> Py + An.j)- (5:35)

which, with the formula (4.6), is identically zero. The nett coefficient of the (z — z j)_1 terms is
proportional to

( 1 0>A __Aj+< 1 0)
¢ (zj)/dn(zj) 0) "7 nJ \#y(2j)/bn(zj) O
1 I:(_rn+l¢;lk(zj)/¢n(zj) rn+1> Ak

ket j=0 <J T %k 2jbn(2j)/bn(z)) —Zj
_AJt _rn+l¢;1k(zj)/¢n(2j) rn+1>:|
A ( 2o (z))/az)) =z )]’ (5.36)

Taking the summand of the above expression, substituting (5.29) and simplifying the result and
then employing (4.6) we arrive at

+

o] $n(2))5 (2)) —¢>,%<z,-))
22 knt102(2)) @iz =2y (z))

(60 251 G0 + B3 GO @B @) — B )b (20)) (f”j;((’) 8)} .
jKkn+1
(5.37)

[_(Zj — Z)Kn+10n (210 (2k) (

When this is inserted back into (5.36) the first term is amenable to (4.12) and cancels with another
term. Next (5.31) is utilised in the simplified version of (5.36) and another term is annulled,
leaving only two summation terms. Again appealing to (4.6) we find the remaining two terms are
equal and opposite in sign. Thus (5.36) is zero. Finally we are left with the (z — z;) ™!, k # j
terms whose coefficient is proportional to

P10 () Pnr1(0)n(z))

Kn+1®n (Zj) +

Zj — Zk Zj — Zk Ak
% Kn+1¢;:(zj) i Kn+1®n (Zj) n
Zj — 2k ! Zj — Zk

Gn 1O (Z)  Pur1(0)a(z))

N CECACHE s Z”k L ”+Z Z"k /

_ A/ J j =
Ak IR |t | (5.38)
Zj — 2k ! Zj — Zk

and utilising (5.29) we find that this vanishes.

We now treat the — case. Employing (5.4) and computing the difference of the left-hand and
right-hand sides of (5.33) we can resolve it into partial fractions in z. The (z — z j)_l terms have
a coefficient proportional to

_Kné;zk(zj) _Knén(zj) ) L AJ— (_Kné;(zj) _Knén(zj) )
<¢n<0)s:<z,-> G (0Enz)) A T i\ G0 @) Bz (5-39)

The first term is easily seen to be zero using (4.6). In the second term we employ (5.32) and
note that the matrix multiplications yield a null result. The coefficient of the (z — z;) ! terms is



608 N.S. Witte / Journal of Approximation Theory 161 (2009) 565-616

proportional to

( zjknky (2)) Zjkn€n(z5) )A
2bn(OENZ)  zjkn—1EF 1 (z)) — zkknEl (z)) ) F
j— Zl"(ng:(Zj) Zj’(ngn(zj) )
nk (zk¢n<0>s:(z Dz E (@) — 2R z)) (>40)

Substituting for AJ from (5.30) and carrying out the matrix multiplication we find this
expression is 1dentlca11y zero. Lastly we examine the constant term of the partial fraction
expansion, which simplifies to

_0 0 _ - (_0 0
<¢n(0) _K”) (I — An0) + Ao (¢n(0) _Kn) . 541

This is easily shown to be zero using (4.8). This concludes the proof. [J

The final constraint is the compatibility of the Schlesinger transformations with the
deformation derivative (4.26) which is established in the following proposition.

Proposition 5.6. The deformation matrix and the Schlesinger transformation matrices of the bi-
orthogonal system satisfy the compatibility condition

aRﬁi(z; i) + RIE(z: pj)Bu(z: pj) = Bu(z: pj £ DRI (25 p)). (5.42)

Proof. Our strategy is to show that the difference between the left-hand and right hand sides of
(5.42) is zero. We begin with the + case first. Our initial task is to compute Rﬁ (z) starting

with the expressions for R,, (z) given by (5.3) and (5.6) and employing the derivatives (4.30),
(4.31) and (4.33). This yields the following complicated expression (omitting an overall factor
of k5 /kn)

Zj <_rn+1Pn,j rn+l)
(z—2z))?\ 2jPnj  —%j

1 1
1 1 5=z =i Pajl — 5t
+ Zj 1 1
2= 2 2j T rng1Puj [_EZ +2j+ran Pn,ji| Pu,j 5% T Pu,j
1 1,
. Z 2| eroEr o Ern+1[z +2j + a1 Pujl 3Tt
Pk— | — 1 1
k=1 %k 2z —2|2j + =rpt1 P — =412
2 2
¢n(zk)§ (zk) 0 —rn+1
2—,,[2] + a1 Pl 2Py 8
1 1
¢n(Zk)§n(Zk) _E[Z_'_Zj + rut1 P j1 P Zj+§rn+1Pn,j
2Zk 1 P2 1 . .
—=Z 53j Pn,j

2 md 2
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T Z — 2k [¢n (Zk)Pn j ¢:(Zk)][$n (Zk)Pn,j + if,;k(Zk)]

. n
k#j=0 T 2%

1 1
5 n+1[2 + 2 + rnt1 Pl Er’%“
-z |:z,- + Ern+1Pn,j] —5ntZj

From the definition (4.27) we can recast B, (z; p;) as

1
G| er@ENE) (0 0) | da@Ero [T O
Pl 2 e o) T T 1
- %k 4 2y 0 -
2
— 3 A (5.44)

In regard to the formula for B,(z; p; + 1) we require deformation derivatives of /c,{ * and f,{ +
We have found the former in the above calculation whereas the latter can be computed starting
with (5.8) along with (4.33). In summary we find B, (z; pj + 1) to be

W 2 X
Zj "n+10n,j _Pn,j E
! 0
2k | ¢nR)é, (2k) 1 5n+l
+ Zpk_ - 5 nn P 2 1
4y Zj +Tny1 P, ~3j —5fer
1 1
L 0@EE [T V) L @E ) P -5 0
2Zk 0 1 2Zk Z2j+7n+1 P —P, 1
2 )
n Z j = 2k [@n (@) Pa,j — ¢y @) 1180 (2i) Pu,j + &5 (20)]
. Zk 2Z"
k£j=0 %I T k
! 0
1 _rn+1 . Zk
J+
X 2 ! _ZA"”‘z—z' (5.45)
j n+11Ln,j —zj ——Fpi1 k=1 k

2

Having all the terms in (5.42) we now perform a partial fraction decomposition with respect to z
and examine the resulting coefficients in this decomposition. Collecting the 1/(z — z) terms with
k # j we find its nett coefficient is proportional to (5.38) in the preceding proposition and thus
vanishes. Considering the 1/(z — z j)z terms we find the resulting coefficient is proportional to
(5.34) and also vanishes according to the preceding proposition. Assembling all the constant
terms and carrying out the matrix multiplications we find the single terms and summands
cancel internally without recourse to identities. This leaves the 1/(z — z;) terms which we will
break down into further sub-divisions. Of these the terms with the factor z;/[z; + rnuq1 P, ]
(excluding those proportional to the monodromy exponent n — pg) are easily seen to cancel. In
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the summations over A, x and Af,; we make the substitution z; = z; — (2 —2x). We then collect
the terms with the factor of z; resulting from this and all the remaining terms with this factor.
Using (5.36) these terms are simplified to (they do not vanish in totality because the sum over k
excludes k = 0)

Zj —Fnt1Puj  Tntl j+ (1 Paj g
B P JAno+ Ay, P .
Zj Zjln,j —Zj ’ Zjln,j —Zj
_ Zj ranPn,j_rn+an,j(l_rnPn,j) —tnlj 4
=L(n—po) o S (5.46)
<j <jln,j —ItnZjly,j
The k = 0 term is extracted from the summations containing z; — zx and simplifies to

Zj Fn+1 0
é(” —po)(1 — rnPn,j)Pn,j (_nzj O) . (5.47)

Adding (5.46) and (5.47) we get
: ¢ ) (Pn,j -1 ) (5.48)
zi(n — po)r, b3 . .
J n Pn,j _Pn,j

Now consider the k£ # 0 terms in the summations containing z; — zx. Using the working leading
to (5.47) and the formulae (5.29) and (4.6) we find the summands reduce to

¢ — 20 (Anp) 1 (_P”z’f ! ) (5.49)
T _Pn,j Pn,j
Combining the contributions of (5.48) and (5.49) we have
. . _Pn,j 1
Y G| _pr’ ) (5.50)
k#j=0 n,j n,Jj

There is one group of terms in the 1/(z — z;) coefficient to be simplified, namely the summation
with the factor z; /zx. After considerable internal cancellation this group simplifies to

. P, 1
sz(An,k)l,Z _p2 p ) (5.51)
k=1 nj o imj
In summary the 1/(z — z;) coefficient reduces to
) (A k)12(_Pn’j ! > o —2j(Anoo)12 =0 (5.52)
' K1, 2 —2j(Ap,c0)1,2 =0, .
! k=0 ’ P Puj e

where we have used (4.8) in the last step.

Next we treat the — case. We recall the definition of Q, ; = &,(z;)/&;(z;). We compute
%R,ﬁi(z; p;) first beginning with (5.4) and (5.9) and utilising the derivatives (4.32) and (4.34).
Up to an overall factor of «,, /«, we find this term is

G 2jQn,j
2zj \=z 2+ 2j(1+7Qn,j)
1 1 )
PR KACHLACY 7% Qn.j =52 Qn,j
_ 2k 2 L | )
=1 <k 2z, z |:—1 + ErnQn,j:| —an,j[Z +2z2;(1+7,0p )]
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N Gn(z0)EF (2k) ( 0 —zj Qm)

2ZZ an 0

B Z o 2j = 2 [Pn (1) + On, jPy @)IQn, &y (k) — §n(zi)] 1

k=0 Zj — 2k 21]': 1+ann,j
1 _ 1_
_Ezjrn Zj 1+§rnQn,j
x ] (5.53)

_ 1_ _
—3Taz Siale 421+ 700 )]
However in contrast to the formula for B,(z; p;) (5.44) the one for B, (z; p; — 1) is more
complicated as we have to compute the deformation derivatives of the shifted quantities «,, 7, .
Starting with the expressions (5.9) and (5.11) we can employ the derivatives computed earlier in
addition to (4.30). In summary we find B, (z; p; — 1) to be given by

1
Gl O +pr—" [ (28) = P GO (26) + P (20)] 2 0 0
T E

z; . ZZZ Zj[l + 7y Qn,j] Lo
1 1
IRACALACON A 0 ], s [~ °
A5 _ 1 n 1
ZZk —[1+ rnQn,j] EQn,j 2Zk 0 5
1
2j = 2k [$n(@i) + On 5 @ONQn j&r (@) — En(z)] T 5 0
+ =
k;()pkz]'—zk 2z} L+70nj | 7, _l
2
3ol (5.54)

We now decompose (5.42) into partial fractions with respect to z. Taking the 1/(z —zx) terms we
find they are proportional to the expression (5.40) which was shown earlier to vanish. Collecting
the z terms together one finds they vanish identically in a straightforward manner. This leaves
the constant terms. After making the obvious simplifications here one is left with

0 0 0 o0 i— 0 o0
Zj + Y Ankik = Y ALz
zj <Fn _1) <7n —1> k=1 ik k=1 n’ka (Fn —1>

+ L {0 0 Zpkfk (&, (zk) + Fnén (@)@ (2k) — Trn (zi)]
T+700, \1 0u;) & 220
<j o =1 2j = 2k [@n(zk) + On,jbn @) On,j&y (k) — &n(21)]
+ L+ 7 On,j (f,% —I_’n) k;;.:()pk Tj — Tk 2z} - (5:35)

In the second and third terms we substitute zx = z; — (Z; — zx) and split them into two terms
each. Collecting the terms with a factor of z; we can perform the k summation using (4.8). This
group of terms vanishes because of (5.41). In the remaining group we employ (5.30) and (5.32)
along with (4.6) and carry out the matrix multiplications yielding

_Zpk(i'—ik)w 0 0
k=0 J 27} —r @) )
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Zj Z P Zj — 2k [én(zi) + Qn,j¢Z(Zk)][Qtl,j$:(Zk) — & (zi)] (in _1>

- k 2 _
1+rnQn,j k=0 Zj — Zk ZZZ n T TIn

[d’n (zk) + On.jOn @IE, (zk) + Fubn(zi)] ( 0
'n

1+rnQn] Zpk(zj 27 _1>' (5.56)

The second term of the above expression cancels with the last term of (5.55). In what remains
of the constant terms we separate them into those with a factor of z; and those with z. In the
former set of terms we can perform the k¥ summation using (4.12)—(4.15) and find complete
cancellation. In the latter set we find the summands mutually cancel. Thus all the constant terms
vanish identically and the theorem is proved. [

It is expected that the explicit Schlesinger transformations derived here (5.3), (5.4), (5.29)—
(5.32) should coincide with those found by the Kyoto school [32] however we refrain from
carrying out this verification as this would entail a significant enlargement of the tasks considered
here and add substantially to the length of the present study.

We conclude this section and our study with a selection of results on the bi-linear difference
equations satisfied by the t-functions of our integrable system, i.e. the Toeplitz determinants.
These are pure difference equations in the parameters of the system, n,{p;}j=0,..m or
the monodromy exponents {6;};=0,...M,00, for products of r-functions, and are known as
Hirota—Miwa equations. So in this sense we return to one of the initial motivations of our
study, namely to find alternative means of characterising averages over the unitary group (1.2) of
the regular semi-classical weights (4.3). All of the Hirota—Miwa type equations are very easily
derived from the preceding analysis and one might consider them to be immediately apparent.
Let us define the following notation for the Toeplitz determinants

Li[{pj}] =10, ....0,...,000). (5.57)

Proposition 5.7. For j = 1,..., M (the j = 0 cases are trivial) the t-functions satisfy the
Hirota—Miwa equations
T0t(0 + 1,000 + 1)
=10+ 1,00+ Dt@+1,0; = 1) —z;1(0; — 1,000 + DT (0 +1,0; + 1), (5.58)

and
70T — 1,000 + 1)
=70 = 1,00 + DT — 1,0, + D)+ 2,70 + 1,000 + Dt (60 — 1,0, — 1), (5.59)

where t() denotes the t-function with unshifted monodromy exponents. These constitute all of
the independent equations involving one generic exponent 0.

Proof. These follow from identifying the bi-orthogonal polynomials and associated functions in
terms of modified Toeplitz determinants using (3.1)—(3.4) and employing these formulae in the
Casoratian equation (2.24)—(2.26). We find that

*j+ pxj J
Inlpy1 = I In+1 _Z]I In+1’
+ +
(=)' d2 =10 47500 11,;11,

. +j- + i
("Rl = LT+ L
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and we note that these last two equations lead to the same bi-linear equation. Consequently we
deduce (5.58) and (5.59). O

Proposition 5.8. Forany j #k =0, ..., M the t-functions satisfy the Hirota—Miwa equations

(zj —z21)TO0+ 1,000 + DT(0; — 1,0, — 1,000 +2)
=10+ 1,0 — 1,000 +2)T(0; — 1,000 + 1)

—1(@+1,0; — 1,000 + 2)T(6k — 1,600 + 1), (5.60)
and
(60 + 1,600 + DT(6; — 1.6+ 1)
=-—zt@+ 1,0+ D10 — 1,00+ 1)
+1(+ 1,000 + D16+ 1,0; — 1), (5.61)
and
(zj —z2)Tt0t@ +1,0; — 1,0 — 1,000 + 1)
= 2,70 — 1,000+ D700 + 1,6 — 1)
=2kt O+ 1,0; — D1 (6 — 1,000 + 1), (5.62)
and

t0T@ +1,6; — 1,6 41,6000 — 1)
=2;10; — 1,000 — D@0+ 1,6+ 1) + 700+ 1,0; — DTG + 1,600 — 1). (5.63)

These constitute all of the independent equations involving two generic exponents 0, 0y.

Proof. Eq. (5.60) is derived by combining the expression for the double shift p; = p;+1, px
Pk + 1 given in (5.15) with the single shifts p; x +— p; x + 1 asin (5.6) and this results in

i+, k+ i+ j+ j+k+ i+ i+
I"+1I'{ I:Ir]:—t2lr{+l - Ir{+21r]zcil] = In+21r{+1 [Ir]fillr{ - Ir{+117]l<+:| : (5.64)

This can rewritten as a perfect difference equation and solved, yielding

J+ pk+ k4 i+ _ Jj+.k+
I In+1 =1 In+1 = (z; = 2 1 Iy :

A similar method applies when deriving the other equations and we confine ourselves to
recording the respective intermediate steps, namely

LI - = Lt
and

LTI — g T I = @ — L
and

*j+ rk— *j+ rk— *j+.k—
L L L+ LT =L O
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