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Abstract

Vacuum expectation values for one Wegner—Wilson loop representing a moving quark—antiquark pair are calculated in four-
dimensional Euclidean and Minkowski space—time. The calculation uses gluon field strength correlators with perturbative gluon
exchange and non-perturbative correlations from the stochastic vacuum model. The expectation value of a Wegner—Wilson
loop forming a hyperbolic angle in Minkowski space—time is connected by an analytical continuation to the expectation value
of the Wegner—Wilson loop in Euclidean four-space. The obtained result shows how confinement enters into the light-cone
Hamiltonian for valence quarks independently of the chosen model.

0 2004 Elsevier B.VOpen access under CC BY license.

1. Introduction

One of the challenges in quantum chromodynamics (QCD) is the relativistic bound state problem. In the
light-cone Hamiltonian approadi] light-cone wave functions can be constructed in a boost invariant way. It
is necessary to have reliable light-cone wave functions if one wants to calculate high energy scattering, especially
exclusive reactions. Many paramettioas assume separability of the dedence on the longitlinal momentum
fraction and transverse momentum which is very unlikely since the two momenta are coupled in the kinetic energy
operator. Various approaches have been tried to compute such wave functions. One can use the usual equal time
Hamiltonian[2] and transform the resulting wave functions into light-cone form with the help of kinematical on-
shell equations. The light-cone Hamiltonian in a string picture is formulated in[BefMore ambitious is the
construction of an effective Hamiltonian including the gauge degrees of freedom explicitly and then solving the
bound state problem. For mesons this apprdddsi still needs many parameters to be fixed. Attempts have been
made to solve the valence quark wave function for mesons in a simple Hamiltonian with a two-body pf@kntial
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A necessary input is an adequate potential for the gginte Hamiltonian. For the equal time Hamiltonian and
heavy quarks the calculation of Wegner—Wilson loops gives the form of the non-perturbative potential for long
distances. The correlator mod@] allows to calculate vacuum expectation values of gauge invariant Wegner—
Wilson loops using perturbative and non-perturbative field strength correlation functions as input. One computes
the loop expectation valugV, [C]) in terms of a gauge invariant bilocal gluon field strength correlator integrated
over minimal surfaces by using non-Abelian Stokes’ theorehen the matrix cumulant expansion in the Gaussian
approximation is applied.

The basic object of the correlator model is the gauge invariant bilocal gluon field strength correlator
Fivpo (X1, X2, O; Cyy0. Crypo). The stringsCy,,, Cx,o cONNect the coordinates;, X, in the correlation function
of the two-field strengths to a common reference péintVe define

g2

42

The gluon field correlator has a perturbative (P) and a non-perturbative (NP) component. The stochastic vacuum
model is used for the non-perturbative low frequencyigacund field and the perturbative gluon exchange for the
additional high frequency contributionBhe most general form of the correlator respecting translational, Lorentz
and parity invarianceeads in Euclidean spagg]

1
Z(SabFﬂvpa (X1, X2, O; Cxlo» szo) = < [GZU(Ov X1; C.X'lO)Gi))o'(O? X2; szo)]> . (1)

G

FNP (2)=FN* (Z) + F)\(Z)
1

2
- mcz{x(aupaw — 8,408up) D(22)

1 d 0
+ (1 - K)E [E(ZG(SW - Zp(slur) + E(zpava - Za(svp)] Dl(Zz)} (2)

with G, = (%GI“W(O)G‘;W(O)) as the gluon condensate. The term proportionali®the non-Abelian confining

part FNPe of the correlator, in contrast, the tensor structff”c is characteristic for Adean gauge theories and
does not lead to confinement. The correlationctions are a simple exponential of range

D(z?) = Dy(Z%) = 14V, ®3)

The calculation of a Wegner—Wilson loop along the inmagy time directions gives the heavy quark—antiquark
potential with color-Coulomb behavior for small and confining linear rise for large source sepaféali@iace the
computation of the VEV for one Wegner—Wilson loop can be done completely analytically, also other orientations
of the loop can be chosen, e.g., a loop where the quark—antiquark pair moves algutiretion. By transforming
to Minkowski space—time the dependence of the interagiimtential on longitudinal and transverse separation of
the pair can be obtained this way.$ection 2ve describe the calculatian Euclidean space—time, Bection 3n
Minkowski space—time and i8ection 4we derive the potential in a light-cone Hamiltonian for valence quarks.

2. Vacuum expectation value for atilted Wegner—Wilson loop in Euclidean space-time

The vacuum expectation value (VEV) of a tilted Wegner—Wilson loop represents a moving quark—antiquark pair
W[C]=TrP exp(—ig 7§ dZ, GZ(Z)[”). (4)
C

The group generator§ are in the fundamental representatiorof(3), g is the strong coupling constant afid
symbolizes path ordering of the closed pétlin space—time. The loog@ with spatial extensiomRg and temporal
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X4

Fig. 1. Configuration of the Wegner—Wilson loop in Euclidean space—time.

extension?” has the following parametrization four-dimensional Euclidean space—tinkég( 1)
C=Ch4UCpUCcUCp,
where
Ca={uty, ue[-T/2,T/2]},  Cp={T/2, +vRory, ve[0,1]},
Cc ={—ut, + Rory, ue[-T/2,T/2]}, Cp={-T/2t, + (L—v)Rory, v €[0,1]}, (5)
and the parametrization of the surface

X, =ut,+vRory, uecl[-T/2,T/2], vel0,1], (6)
where
sing 0
0 0
"= cosp |’ =1 sino | (7)
0 cosh

The expression for the Wegner—Wilson loop simplifies with the help of the Casimir operator in the fundamental
representatiod»(3) = 12 = 4/3

C2(3)
(wrel), = exp[— 5 ] (8)
wherey;; is the double area integral of the correlation function over the surface
2
Xss = Zfdauv(xl)/dapa(XZ) Fuvpo(le X2, 0; CXlOv szo)- 9

S
The lengthy calculation of;s is standard and follows the lines of R¢T], we will give here only these parts
which are relevant to understand the calculation oftifled loops. One gets fahe non-perturbi@ve confinement
component

1 T/2 7/2
T G2K
Xsl\iPc 3(N2 )fdvlfdvz / duq f duz -r —(t r)] ( ) (10)
0 -T2 ~T/2
1 1 T/2 T/2
%G

3(7TN2 ZK)RO(l COSz(ﬁSInzG /dvlfdvz duq / duzD(Zz). (11)

0 0 -T/2  -T)2
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Correlated points on the surface have the distance (u1 — uz)t + (v1 — v2) Ror. The geometry of the loop
orientation enters via the factar

a?>=1-cog ¢sirnfe. (12)
The confiningy,, has the following final form:

Roo

0
= lim m dp (Roa — p) - ZpKl(E). (13)
0

Xss

At large distance®o« > 2a one recognizes that the confining interaction leads to a VEV of the tilted Wilson loop
which is consistent with the area lakg

(WiC]) = e RoT (14)
3 2
o= 22E (i;“ £ (15)

whereo is the string tensiofi’] and the area is obtained from

Y dX, \%(dX,\° [(dX,dX,\?
Area= T Ro / du / dv K 2) - e (16)
du dv du dv
2 0

= T Roo. (17)

The non-confiningyss functions give the short range attractive guaantiquark interaction from massive
correlator and gluon exchange

2
2¢°T exp(—m ¢ Roc)

T— o0 47 Roo '
In the limit of straight loops{ = 0) all results agree with previous calculatididf.

(19)

3. Vacuum expectation value for one Wegner—Wilson loop in Minkowskian space-time near the light-cone

In this section the vacuum expectation value (VEV) of one Wegner—Wilson loop near the light-cone is computed
in Minkowskian space—time. As before we use the datog model for the non-perturbative low frequency
background field and perturbative gluon exchange foathditional high frequencyantribution. The path of the
color dipole in four-dimensional Elidean space—time is represented by a light-like QCD Wegner—Wilson loop: to
accomplish the transition from Euclidean to Minkowski space—time we have to make the following replacements:

X4 — ixP, X; —> x'. (20)

Here X = (f(, X4) is the Euclidean space—time point ang= (x°, ¥) the Minkowskian vector. Of course, also
the Euclidean correlation functions of the field strengths have to be changed to the Minkowskian correlation
functions[8].

The loopC with spatial extentRg and temporal extensiofi is now placed in four-dimensional Minkowski
space—time. The quark—antiquark pair is moving with velogity

_ sinhy)

P= coshy)

(21)
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Fig. 2. Configuration of the Wegner—Wilson loop in Minkowski space—time.

and the hyperbolic angh¢ defines the boosHg. 2).
The loop has the same parametrization as before but with Minkowskian vettarsls*

0 coshyr
w_ | sing w_ 0
r = 0 s "= 0 . (22)
cos¢p sinhyr
For the Wegner—Wilson loop in Minkowski space—time we definen the same way as in RgB]
.C2(3)
<W[C])G = exp[—z Xss]- (23)
The phase factoy,, is given as the double area integral over the surface
. 7T2 v o
Xss = —1 Z /dUM (xl)/dop (x2) Fvpo (x1, X2, O; Cxy0, Cipo)- (24)
S S

The expression for the Wegner—Wilson loop is the same as b&grg8) and Eq. (9) We use the above
convention in order to be consistent with the notation of [&3f.In the course of the calculation we find

NPc w?Gax

Xss :_m/do'/w(xl)fdUpU(XZ)iD(ZZ/az){gupgva — &guo&vpls (25)
S S

where the changed metric tensor in Minkowski spacee® from replacing the Euclidean metric tensor by the
Minkowski tensor in the correlation function. Using the Minkowskian vectorswith the following properties

?=cosfy —sinfPy =1,  r2=rt=—1,
(t-r)?=(t") - ("'r)) =coggsintty, 1212 —(1-r)?=—(1+cod psinty)
one obtains

5 Roa
. 27°GokT
NPc _ 3 (2
= lim ——— dp (R — D .
Ko =M SNz p (Roay — p)i D (p?)
0
The three-dimensional correlation functiai® (p2) in Minkowski space is obtained by analytical continuation
of the Euclidean function. Since the argument of the function is given by the magnitude of a three-vector the
analytic continuation leads to the same modified Befssestion which was obtained in Euclidean space, cf. also



384 H.J. Pirner, N. Nurpeissov / Physics Letters B 595 (2004) 379-386

Appendix B of Ref[8]. The resultingy,; is real. The geometry enters via the factor
a2, =1+ cog¢sintt iy, (26)

which is consistent with the analytical continuation of the Euclidean expressienl — cog ¢ sirf6 into
Minkowski space by transforming the angle— ivy. This analytical continuation is similar to the analytical
continuation used in high energy scatter[8g11] where the angle between two Wilson loops transforms in the
same way.

The different contributions tg,, read:

5 2 Rooy
. . GokT 0
NPe _ i 22250 s (Roas — p) - 20K ( 2
Xss I 3(NZ— 1) p (Roay — p) - 2pK1 2
0
. 2n2G2(1—K)aT Roa s
NPrc 2.2
=— lm —————— R -K 27
Xss T T 3(NZ—1) 0% 2( ) @
_ 2¢°Texp(—mgR
2 =— lim g p(—mg oaM)‘ (28)

T—o0 47 Rooe g

We remark that the same calculation with a time-like vector= 0 and a quark separatiofi oriented orthogonally

tor, i.e.,r -t = 0 gives the well-known result that the expectation value of the loop equals unity as has been shown
in the original references on high energy scattering. In the formulation of high energy scaf8rinih the
correlation function summed to all orders in the S-matrix the respective phase factors from single loops totally
cancel. So the here obtained expectation value does not change the results of the previous calculations even if one
goes away from the light-cone.

4. Using the VEV of thelight-like Wilson loop to derive the quar k—antiquark potential in thelight-cone
Hamiltonian

The exponent giving the expectation value of the Wilkmp acquires a new meamjfior a tilted bop. In order
to interprete the result of the precedisection one must define the four-vetgof the particles described by the
tilted loop

up = (y,01,yB). (29)
With the help of the four-velocity we can rewrite the loop as:
o—ig At Atuy _ —ig [dt (onfyﬁA3)' (30)

The line integral of the gauge potential acts as a phase factor on a Dirac wave fugictidmnch splits up
into a leading dynamical componett. and a dependent componefat. For very fast quarks the mass term
and transverse momenta are negligible compared with the energy and longitudinal momentum. In this eikonal
approximation the Dirac equation of the leaglitomponent decouples from the small component:

i0-vy = Pou(A7) ¥ (31)

=gA V4. (32)

With g ~ 1 the phase factor in the tilted Wilson loop integrates and leads to a VEV for the loop containing
Poor= 75 (P~ P¥)|pot

(W [C]) = &7 (FO=Ppotl (33)
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The light-cone potential energy arising from the confining part of the correlation function has a term of order
0(1/Pt)=0(1/y), wherePt = \/iE(P0 + P3) is the light-cone momentum

Poot= % (o Ro\/ cog¢)? + sin(¢)?/y?). (34)
Terms involving transverse momenta and masses of the same@(tieP+) are not included in the loop as it has

been calculated. Two of these terms give the standard kinetic energy term of free particles, which contributes to the
total light-cone energy. Terms with spin cannot be obtained from the straight Wilson loop and are not discussed
here. We introduce the relative momentumk™ and transverse momentum for the quarks with masg. By

adding the above “potential” term to the kinetic term of relative motion of the two particles we complete our
approximate derivation of the light-cone enemy

__ @PHEHPY 1 \/ﬁ
P = — 2, 35
20/ap72 — i) T oV Ty (35)
To derive the light-cone Hamiltonian we multiplp~ with the plus component of the light-cone momentum
Pt = \/LE(PO + P3) and use thaPt/M = /2y to eliminate the boost variable from the Hamiltonian. Further

we follow the notation of Ref[12] and introduce the fractiof = k*/ P+ with |£| < 1/2 and its conjugate the
scaled longitudinal space coordinat®p = P*x3 as dynamical variables. For our configuration the relative time
of the quark and antiquark is zero

2 2
+k
M2=2ptp~ = (f/47_;2)+20,/p2+MC2xi. (36)

We have obtained the light-cone HamiItoniMf from the confining interaction in a Lorentz invariant manner,
because the variables p, k; andx; are invariant under boosts. The vate quark light-one Hamiltonian

has a simple confining potential. The magnitude of the confining potential is set by the string tendiba
effective “distance” of the quarks is given by scale-free light-cone longitudinal distance and the transverse distance
multiplied by the bound state mass. The above equatiogeagn the limit of one-dimnsional motion with the
equation for the yo—yo string derived in R§E2]. If there is only transverse motiag = 0), the confinement has

the usual form which is seen by using~ 2. To solve theM? operator one can go over g2, Minimizing M2

with respect toas one can replace the square root operator. Fialhlconsistency must be reached with a guessed
mass eigenvalug/o

2 2 2 2.2
k 1 + M§5x
(= +k7) (1 Y4 0J_+S).

R R

ST 1/4— g2 +3

The other non-confining potentials from the Abelian correlator and the perturbative gluon exchange can be worked
out similarly and one gets for the complete valence Hamiltonian

_mgr
(12 +k3) 2oy — 4 2g2M?e= w B 20(1 —K)r? X r
1/4— g2 3 4y kMar Ma

with the dimensionless variable

r:,/p2+M2Xi. (39)

The relative weight of non-perturbative non-Abelian and Abelian contribution is fixed by 0.7 in the
parametrization of the correlation functi¢®]. We have used to parametrize also the Abelian non-confining
potential, instead of giving the full expression with the gluon condensate. Of course, the Abelian part of the
potential does not confine. The best way to find the two-body wave function is to&éepghe momentum

(37)

N

M? =

(38)
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representation and the transverse direction in configuration spadeis to be expected that in this approximation
the pion mass is not described correctly. Firstly, the spin structure of the meson is not reflected in the spin
independent expression above. Secondly, one expects quark self energy corfesjiortse typical mass scale of

a meson estimated from a trial solution with a wave functi@g, x; ) = A cos(Sn)e*xi/xg comesouttobe 1 GeV.
The problem of the pion has to be addressed separately, since on the light-cone the mechanism of chiral symmetry
breaking needs special care and is of particular interest. In the approach above confinement plays an important
role in contrast to Nambu—Jona-Lasinio effective models which give an adequate description of spontaneous chiral
symmetry breaking but do not include confinement.

The confining interaction in the light-cone Hamiltonian was derived in the specific model of the stochastic
vacuum. But it also can be inferred from the simple Lozdransformation properties of the phase in the Wilson
loop and a lattice determination of the tilted Wilson expectation values. In this respect the final Hamiltonian is
model independent.

The inclusion of confining forces in the initial and final state wave functions can put all scattering cross
sections calculated with the stochastic vacuum modelmueh safer base since wave functions and cross section
are derived consistently. For lo@? the long distance part of the photon wave function matters strongly and
confinement is important cf14]. Especially the diffractive cross seatitvas a sizeable contribution from large
dipole sizes and a correct behaviour can only be expected when the problem of the large dipole wave function is
treated adequately. A very useful extension of the above calculation is the coupling of the ingiate to higher
Fock stateg g g with gluons or fragmentation of the origingd state intaggqg states which can also be estimated
from Wilson loops near the light-cone in Minkowskiage. On the problem of fragmentation the Lund mddi]
has been very successful and it is interesting to seethe above model calculation fares in comparison.

Acknowledgements

We thank A. Hebecker for bringing this problem again to our attention and our colleague H.G. Dosch for a
helpful discussion.

References

[1] S.J. Brodsky, H.C. Pauli, S.S. Pinsky, Phys. Rep. 301 (1998) 299, hep-ph/9705477.
[2] S. Simula, Phys. Rev. C 66 (2002) 035201, nucl-th/0204015.
[3] V.L. Morgunov, V.I. Shevchenko, Y.A. Simonov, Phys. Lett. B 416 (1998) 433.
[4] M. Burkardt, S. Dalley, Prog. Pa Nucl. Phys. 48 (2002) 317, hep-ph/0112007.
[5] S. Dalley, B. van de Sande, Phys. Rev. D 67 (2003) 114507, hep-ph/0212086.
[6] T. Frederico, H.C. Pauli, S.G. Zhou, Phys. Rev. D 66 (2002) 116011, hep-ph/0210234.
[7] A.l. Shoshi, F.D. Steffen, H.G. Dosch, H.J. Pirner, Phys. Rev. D 68 (2003) 074004.
[8] A.l. Shoshi, F.D. Steffen, H.J. Pirner, Nucl. Phys. A 709 (2002) 131.
[9] E. Meggiolaro, Z. Phys. C 76 (1997) 523, hep-th/9602104.
[10] E. Meggiolaro, Nucl. Phys. B 625 (2002) 312, hep-ph/0110069.
[11] A. Hebecker, E. Meggiolaro, O. Nachann, Nucl. Phys. B 571 (2000) 26, hep-ph/9909381.
[12] W.A. Bardeen, I. Bars, A.J. Hanson, R.D. Peccei, Phys. Rev. D 13 (1976) 2364.
[13] Y.A. Simonov, Phys. Lett. B 515 (2001) 137, hep-ph/0105141.
[14] H.G. Dosch, T. Gousset, H.J. Pirner, Phys. Rev. D 57 (1998) 1666, hep-ph/9707264.
[15] B. Andersson, in: Cambridge Monogfas on Particle Physics, Nuclear Physicsd &osmology, vol. 7, Cambridge Univ. Press,
Cambridge, 1998.



	Vacuum expectation value of a Wegner-Wilson loop  near the light-cone
	Introduction
	Vacuum expectation value for a tilted Wegner-Wilson loop in Euclidean space-time
	Vacuum expectation value for one Wegner-Wilson loop in Minkowskian space-time near the light-cone
	Using the VEV of the light-like Wilson loop to derive the quark-antiquark potential in the light-cone Hamiltonian
	Acknowledgements
	References


