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Abstract

Vacuum expectation values for one Wegner–Wilson loop representing a moving quark–antiquark pair are calculate
dimensional Euclidean and Minkowski space–time. The calculation uses gluon field strength correlators with perturbat
exchange and non-perturbative correlations from the stochastic vacuum model. The expectation value of a Wegne
loop forming a hyperbolic angle in Minkowski space–time is connected by an analytical continuation to the expectatio
of the Wegner–Wilson loop in Euclidean four-space. The obtained result shows how confinement enters into the li
Hamiltonian for valence quarks independently of the chosen model.
 2004 Elsevier B.V.

1. Introduction

One of the challenges in quantum chromodynamics (QCD) is the relativistic bound state problem.
light-cone Hamiltonian approach[1] light-cone wave functions can be constructed in a boost invariant wa
is necessary to have reliable light-cone wave functions if one wants to calculate high energy scattering, e
exclusive reactions. Many parametrizations assume separability of the dependence on the longitudinal momentum
fraction and transverse momentum which is very unlikely since the two momenta are coupled in the kinetic
operator. Various approaches have been tried to compute such wave functions. One can use the usual e
Hamiltonian[2] and transform the resulting wave functions into light-cone form with the help of kinematica
shell equations. The light-cone Hamiltonian in a string picture is formulated in Ref.[3]. More ambitious is the
construction of an effective Hamiltonian including the gauge degrees of freedom explicitly and then solv
bound state problem. For mesons this approach[4,5] still needs many parameters to be fixed. Attempts have b
made to solve the valence quark wave function for mesons in a simple Hamiltonian with a two-body poten[6].
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A necessary input is an adequate potential for the light-cone Hamiltonian. For the equal time Hamiltonian a
heavy quarks the calculation of Wegner–Wilson loops gives the form of the non-perturbative potential f
distances. The correlator model[7] allows to calculate vacuum expectation values of gauge invariant Weg
Wilson loops using perturbative and non-perturbative field strength correlation functions as input. One co
the loop expectation value〈Wr [C]〉 in terms of a gauge invariant bilocal gluon field strength correlator integr
over minimal surfaces by using non-Abelian Stokes’ theorem. Then the matrix cumulant expansion in the Gaus
approximation is applied.

The basic object of the correlator model is the gauge invariant bilocal gluon field strength cor
Fµνρσ (X1,X2,O;Cx1o,Cx2o). The stringsCx1o, Cx2o connect the coordinatesX1, X2 in the correlation function
of the two-field strengths to a common reference pointO . We define

(1)
1

4
δabFµνρσ (X1,X2,O;Cx1o,Cx2o) :=

〈
g2

4π2

[
Ga

µν(O,X1;Cx1o)G
b
ρσ (O,X2;Cx2o)

]〉
G

.

The gluon field correlator has a perturbative (P) and a non-perturbative (NP) component. The stochastic
model is used for the non-perturbative low frequency background field and the perturbative gluon exchange for
additional high frequency contributions. The most general form of the correlator respecting translational, Lo
and parity invariancereads in Euclidean space[7]

F NP
µνρσ (Z) = F NPc

µνρσ (Z) + F NPnc
µνρσ (Z)

= 1

3(N2
c − 1)

G2

{
κ(δµρδνσ − δµσ δνρ)D

(
Z2)

(2)+ (1− κ)
1

2

[
∂

∂Zν

(Zσ δµρ − Zρδµσ ) + ∂

∂Zµ

(Zρδνσ − Zσ δνρ)

]
D1

(
Z2)}

with G2 = 〈 g2

4π2 Ga
µν(O)Ga

µν(O)〉 as the gluon condensate. The term proportional toκ is the non-Abelian confining

partF NPc of the correlator, in contrast, the tensor structureF NPnc
µνρσ is characteristic for Abelian gauge theories an

does not lead to confinement. The correlation functions are a simple exponential of rangea:

(3)D
(
Z2) = D1

(
Z2) = e−|Z|/a.

The calculation of a Wegner–Wilson loop along the imaginary time directions gives the heavy quark–antiqu
potential with color-Coulomb behavior for small and confining linear rise for large source separations[7]. Since the
computation of the VEV for one Wegner–Wilson loop can be done completely analytically, also other orien
of the loop can be chosen, e.g., a loop where the quark–antiquark pair moves along thez-direction. By transforming
to Minkowski space–time the dependence of the interaction potential on longitudinal and transverse separatio
the pair can be obtained this way. InSection 2we describe the calculation in Euclidean space–time, inSection 3in
Minkowski space–time and inSection 4we derive the potential in a light-cone Hamiltonian for valence quark

2. Vacuum expectation value for a tilted Wegner–Wilson loop in Euclidean space–time

The vacuum expectation value (VEV) of a tilted Wegner–Wilson loop represents a moving quark–antiqu

(4)W [C] = TrP exp

(
−ig

∮
C

dZµ Ga
µ(Z)ta

)
.

The group generatorsta are in the fundamental representation ofSU(3), g is the strong coupling constant andP
symbolizes path ordering of the closed pathC in space–time. The loopC with spatial extensionR0 and tempora
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Fig. 1. Configuration of the Wegner–Wilson loop in Euclidean space–time.

extensionT has the following parametrization in four-dimensional Euclidean space–time (Fig. 1)

C = CA ∪ CB ∪ CC ∪ CD,

where

CA = {
utµ, u ∈ [−T/2, T /2]}, CB = {

T/2tµ + vR0rµ, v ∈ [0,1]},
(5)CC = {−utµ + R0rµ, u ∈ [−T/2, T /2]}, CD = {−T/2tµ + (1− v)R0rµ, v ∈ [0,1]},

and the parametrization of the surface

(6)Xµ = utµ + vR0rµ, u ∈ [−T/2, T /2], v ∈ [0,1],
where

(7)r =



sinφ

0
cosφ

0


 , t =




0
0

sinθ

cosθ


 .

The expression for the Wegner–Wilson loop simplifies with the help of the Casimir operator in the funda
representationC2(3) = t2 = 4/3

(8)
〈
W [C]〉

G
= exp

[
−C2(3)

2
χss

]
,

whereχss is the double area integral of the correlation function over the surface

(9)χss := π2

4

∫
S

dσµν(X1)

∫
S

dσρσ (X2)Fµνρσ (X1,X2,O;Cx1o,Cx2o).

The lengthy calculation ofχss is standard and follows the lines of Ref.[7], we will give here only these par
which are relevant to understand the calculation of thetilted loops. One gets for the non-perturbative confinement
component

(10)χNPc
ss = π2G2κ

3(N2
c − 1)

1∫
0

dv1

1∫
0

dv2

T/2∫
−T/2

du1

T/2∫
−T/2

du2
[
t2 · r2 − (t · r)2]D(

Z2)

(11)= π2G2κ

3(N2
c − 1)

R2
0

(
1− cos2 φ sin2 θ

) 1∫
0

dv1

1∫
0

dv2

T/2∫
−T/2

du1

T/2∫
−T/2

du2 D
(
Z2).
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Correlated points on the surface have the distanceZ = (u1 − u2)t + (v1 − v2)R0r. The geometry of the loo
orientation enters via the factorα

(12)α2 = 1− cos2 φ sin2 θ.

The confiningχss has the following final form:

(13)χNPc
ss = lim

T →∞
2π2G2κT

3(N2
c − 1)

R0α∫
0

dρ (R0α − ρ) · 2ρK1

(
ρ

a

)
.

At large distancesR0α � 2a one recognizes that the confining interaction leads to a VEV of the tilted Wilson
which is consistent with the area lawR0

(14)
〈
W [C]〉 = e−σR0αT ,

(15)σ = π3G2a
2κ

18
,

whereσ is the string tension[7] and the area is obtained from

(16)Area= T R0

1/2∫
−1/2

du

1∫
0

dv

√(
dXµ

du

)2(dXµ

dv

)2

−
(

dXµ

du

dXµ

dv

)2

(17)= T R0α.

The non-confiningχss functions give the short range attractive quark–antiquark interaction from massiv
correlator and gluon exchange

(18)χNPnc
ss = − lim

T →∞
2π2G2(1− κ)aT

3(N2
c − 1)

· R2
0α2 · K2

(
R0α

a

)
,

(19)χP
ss = − lim

T →∞
2g2T exp(−mGR0α)

4πR0α
.

In the limit of straight loops (θ = 0) all results agree with previous calculations[7].

3. Vacuum expectation value for one Wegner–Wilson loop in Minkowskian space–time near the light-cone

In this section the vacuum expectation value (VEV) of one Wegner–Wilson loop near the light-cone is co
in Minkowskian space–time. As before we use the correlator model for the non-perturbative low frequen
background field and perturbative gluon exchange for theadditional high frequency contribution. The path of the
color dipole in four-dimensional Euclidean space–time is represented by a light-like QCD Wegner–Wilson loo
accomplish the transition from Euclidean to Minkowski space–time we have to make the following replace

(20)X4 → ix0, Xi → xi.

HereX = ( �X,X4) is the Euclidean space–time point andx = (x0, �x) the Minkowskian vector. Of course, als
the Euclidean correlation functions of the field strengths have to be changed to the Minkowskian cor
functions[8].

The loopC with spatial extentR0 and temporal extensionT is now placed in four-dimensional Minkows
space–time. The quark–antiquark pair is moving with velocityβ

(21)β = sinh(ψ)

cosh(ψ)
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Fig. 2. Configuration of the Wegner–Wilson loop in Minkowski space–time.

and the hyperbolic angleψ defines the boost (Fig. 2).
The loop has the same parametrization as before but with Minkowskian vectorsrµ andtµ

(22)rµ =



0
sinφ

0
cosφ


 , tµ =




coshψ
0
0

sinhψ


 .

For the Wegner–Wilson loop in Minkowski space–time we defineχss in the same way as in Ref.[8]

(23)
〈
W [C]〉

G
= exp

[
−i

C2(3)

2
χss

]
.

The phase factorχss is given as the double area integral over the surface

(24)χss := −i
π2

4

∫
S

dσµν(x1)

∫
S

dσρσ (x2)Fµνρσ (x1, x2,O;Cx1o,Cx2o).

The expression for the Wegner–Wilson loop is the same as beforeEq. (8) and Eq. (9). We use the abov
convention in order to be consistent with the notation of Ref.[8]. In the course of the calculation we find

(25)χNPc
ss = − π2G2κ

12(N2
c − 1)

∫
S

dσµν(x1)

∫
S

dσρσ (x2) iD
(
z2/a2){gµρgνσ − gµσ gνρ},

where the changed metric tensor in Minkowski space comes from replacing the Euclidean metric tensor by
Minkowski tensor in the correlation function. Using the Minkowskian vectorsr, t with the following properties

t2 = cosh2 ψ − sinh2 ψ = 1, r2 = rµrµ = −1,

(t · r)2 = (
tµrµ

) · (tνrν) = cos2 φ sinh2 ψ, t2 · r2 − (t · r)2 = −(
1+ cos2 φ sinh2 ψ

)
one obtains

χNPc
ss = lim

T →∞
2π2G2κT

3(N2
c − 1)

R0αM∫
0

dρ (R0αM − ρ)iD(3)
(
ρ2).

The three-dimensional correlation functionD(3)(ρ2) in Minkowski space is obtained by analytical continuat
of the Euclidean function. Since the argument of the function is given by the magnitude of a three-vec
analytic continuation leads to the same modified Bessel function which was obtained in Euclidean space, cf. a
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Appendix B of Ref.[8]. The resultingχss is real. The geometry enters via the factor

(26)α2
M = 1+ cos2 φ sinh2 ψ,

which is consistent with the analytical continuation of the Euclidean expressionα = 1 − cos2 φ sin2 θ into
Minkowski space by transforming the angleθ → iψ . This analytical continuation is similar to the analytic
continuation used in high energy scattering[9–11] where the angle between two Wilson loops transforms in
same way.

The different contributions toχss read:

χNPc
ss = lim

T →∞
2π2G2κT

3(N2
c − 1)

R0αM∫
0

dρ (R0αM − ρ) · 2ρK1

(
ρ

a

)
,

(27)χNPnc
ss = − lim

T →∞
2π2G2(1− κ)aT

3(N2
c − 1)

· R2
0α2

M · K2

(
R0αM

a

)
,

(28)χP
ss = − lim

T →∞
2g2T exp(−mGR0αM)

4πR0αM

.

We remark that the same calculation with a time-like vectort · t = 0 and a quark separationrµ oriented orthogonally
to t , i.e.,r · t = 0 gives the well-known result that the expectation value of the loop equals unity as has been
in the original references on high energy scattering. In the formulation of high energy scattering[8] with the
correlation function summed to all orders in the S-matrix the respective phase factors from single loops
cancel. So the here obtained expectation value does not change the results of the previous calculations e
goes away from the light-cone.

4. Using the VEV of the light-like Wilson loop to derive the quark–antiquark potential in the light-cone
Hamiltonian

The exponent giving the expectation value of the Wilsonloop acquires a new meaning for a tilted loop. In order
to interprete the result of the preceding section one must define the four-velocity of the particles described by th
tilted loop

(29)uµ = (γ,0⊥, γβ).

With the help of the four-velocity we can rewrite the loop as:

(30)e−ig
∫

dτ Aµuµ = e−ig
∫

dτ (γA0−γβA3).

The line integral of the gauge potential acts as a phase factor on a Dirac wave functionψ which splits up
into a leading dynamical componentψ+ and a dependent componentψ−. For very fast quarks the mass ter
and transverse momenta are negligible compared with the energy and longitudinal momentum. In this
approximation the Dirac equation of the leading component decouples from the small component:

(31)i∂−ψ+ = P−
pot(A

−)ψ+
(32)= gA−ψ+.

With β ≈ 1 the phase factor in the tilted Wilson loop integratesA− and leads to a VEV for the loop containin
P−

pot = 1√
2
(P 0 − P 3)|pot

(33)
〈
Wr [C]〉 = e−iγ (P 0−P 3)|potT .
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The light-cone potential energy arising from the confining part of the correlation function has a term o
O(1/P+) = O(1/γ ), whereP+ = 1√

2
(P 0 + P 3) is the light-cone momentum

(34)P−
pot =

1√
2

(
σR0

√
cos(φ)2 + sin(φ)2/γ 2

)
.

Terms involving transverse momenta and masses of the same orderO(1/P+) are not included in the loop as it ha
been calculated. Two of these terms give the standard kinetic energy term of free particles, which contribut
total light-cone energy. Terms with spin cannot be obtained from the straight Wilson loop and are not di
here. We introduce the relative+ momentumk+ and transverse momentumk⊥ for the quarks with massµ. By
adding the above “potential” term to the kinetic term of relative motion of the two particles we comple
approximate derivation of the light-cone energyP−

(35)P− = (µ2 + k2⊥)P+

2(1/4P+2 − k+2)
+ 1√

2
σ

√
x2

3 + x2⊥/γ 2.

To derive the light-cone Hamiltonian we multiplyP− with the plus component of the light-cone moment
P+ = 1√

2
(P 0 + P 3) and use thatP+/M = √

2γ to eliminate the boost variable from the Hamiltonian. Furt

we follow the notation of Ref.[12] and introduce the fractionξ = k+/P+ with |ξ | < 1/2 and its conjugate th
scaled longitudinal space coordinate

√
2ρ = P+x3 as dynamical variables. For our configuration the relative t

of the quark and antiquark is zero

(36)M2
c = 2P+P− = (µ2 + k2⊥)

1/4− ξ2 + 2σ

√
ρ2 + M2

c x2⊥.

We have obtained the light-cone HamiltonianM2
c from the confining interaction in a Lorentz invariant mann

because the variablesξ , ρ, k⊥ and x⊥ are invariant under boosts. The valence quark light-cone Hamiltonian
has a simple confining potential. The magnitude of the confining potential is set by the string tensionσ . The
effective “distance” of the quarks is given by scale-free light-cone longitudinal distance and the transverse
multiplied by the bound state mass. The above equation agrees in the limit of one-dimensional motion with the
equation for the yo–yo string derived in Ref.[12]. If there is only transverse motion(ξ = 0), the confinement ha
the usual form which is seen by usingM ≈ 2µ. To solve theM2

c operator one can go over toM2
s . Minimizing M2

s

with respect tos one can replace the square root operator. Final self consistency must be reached with a gues
mass eigenvalueM0

(37)M2
s = (µ2 + k2⊥)

1/4− ξ2 + 1

2

(
4σ 2ρ2 + M2

0x2⊥
s

+ s

)
.

The other non-confining potentials from the Abelian correlator and the perturbative gluon exchange can be
out similarly and one gets for the complete valence Hamiltonian

(38)M2 = (µ2 + k2⊥)

1/4− ξ2 + 2σr − 4

3

(
2g2M2e− mGr

M

4πr

)
− 2

σ(1− κ)r2

κMaπ
K2

(
r

Ma

)
with the dimensionless variable

(39)r =
√

ρ2 + M2x2⊥.

The relative weight of non-perturbative non-Abelian and Abelian contribution is fixed byκ = 0.7 in the
parametrization of the correlation function[8]. We have usedσ to parametrize also the Abelian non-confini
potential, instead of giving the full expression with the gluon condensate. Of course, the Abelian part
potential does not confine. The best way to find the two-body wave function is to keepξ in the momentum
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representation and the transverse direction in configuration spacex⊥. It is to be expected that in this approximati
the pion mass is not described correctly. Firstly, the spin structure of the meson is not reflected in t
independent expression above. Secondly, one expects quark self energy corrections[13]. The typical mass scale o
a meson estimated from a trial solution with a wave functionψ(ξ, x⊥) = Acos(ξπ)e−x2⊥/x2

0 comes out to be 1 GeV
The problem of the pion has to be addressed separately, since on the light-cone the mechanism of chiral s
breaking needs special care and is of particular interest. In the approach above confinement plays an
role in contrast to Nambu–Jona-Lasinio effective models which give an adequate description of spontaneo
symmetry breaking but do not include confinement.

The confining interaction in the light-cone Hamiltonian was derived in the specific model of the stoc
vacuum. But it also can be inferred from the simple Lorentz transformation properties of the phase in the Wils
loop and a lattice determination of the tilted Wilson expectation values. In this respect the final Hamilto
model independent.

The inclusion of confining forces in the initial and final state wave functions can put all scattering
sections calculated with the stochastic vacuum model on amuch safer base since wave functions and cross se
are derived consistently. For lowQ2 the long distance part of the photon wave function matters strongly
confinement is important cf.[14]. Especially the diffractive cross section has a sizeable contribution from lar
dipole sizes and a correct behaviour can only be expected when the problem of the large dipole wave fu
treated adequately. A very useful extension of the above calculation is the coupling of the initialqq̄ state to higher
Fock statesqq̄g with gluons or fragmentation of the originalqq̄ state intoqq̄qq̄ states which can also be estimat
from Wilson loops near the light-cone in Minkowski space. On the problem of fragmentation the Lund model[15]
has been very successful and it is interesting to see how the above model calculation fares in comparison.
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