
Operations Research Perspectives 2 (2015) 97–105
Contents lists available at ScienceDirect

Operations Research Perspectives

journal homepage: www.elsevier.com/locate/orp

A critical analysis of the harmony search algorithm—How not to solve
sudoku

Dennis Weyland ∗

Università della Svizzera italiana, Lugano, Switzerland
Department of Economics and Management, University of Brescia, Italy

a r t i c l e i n f o

Article history:
Available online 30 April 2015

Keywords:
Heuristics
Metaheuristics
Harmony search
Evolution strategies

a b s t r a c t

This article presents a critical analysis of the harmony searchmetaheuristic framework.We formally prove
that the harmony search algorithm is a special case of evolution strategies. First, this implies that the
harmony search algorithm itself does not offer any novelty, apart from using a different terminology.
Second, the performance of the best harmony search algorithm is always bounded by the performance
that can be obtained by evolution strategies. Additionally, more than a decade of research about harmony
search has not revealed any other sort of novelty or has led to any new insights or significant contributions
in the field of heuristics. In short, there is no reason for harmony search to exist as a separatemetaheuristic
framework.

Based on these findings, we carefully examine the results found in the paperHarmony search algorithm
for solving sudoku. A theoretical investigation and a reimplementation of the harmony search algorithm
both reveal that these results are fundamentally flawed.

© 2015 The Author. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
l

1. Introduction

In recent years a huge number of novel metaheuristics were
proposed. These metaheuristics are usually based on metaphors
describing natural processes or social phenomena. The metaphors
used to derive the workingmechanisms of such novel metaheuris-
tics are getting increasingly absurd and the connection between
themetaphors on the one hand and optimization on the other hand
is getting increasingly vague. It is not really clear what the flow of
water [1], the leaps of frogs [2] or a salmon run [3] have to do with
optimization. Additionally, it seems that the underlying working
mechanisms of these methods are very similar, and in some cases
even identical, to those ofwell-established heuristics. For example,
the differences between the particle swarm optimization meta-
heuristic [4] and ‘‘novel’’ metaheuristics like the firefly algorithm
[5], the fruit fly optimization algorithm [6], the fish swarm opti-
mization algorithm [7] or the cat swarm optimization algorithm
[8] seem negligible. Nevertheless, the literature is full of results
which certify exceptional performance to these ‘‘novel’’ methods.
Obviously, there is something going wrong. This whole develop-
ment had been ignored for quite a while, but recently open crit-
icism has emerged. In [9,10] the harmony search algorithm, one

∗ Correspondence to: Università della Svizzera italiana, Lugano, Switzerland.
E-mail address: dennisweyland@gmail.com.

http://dx.doi.org/10.1016/j.orp.2015.04.001
2214-7160/© 2015 The Author. Published by Elsevier Ltd. This is an open access artic
0/).
of those ‘‘novel’’ metaheuristics, was identified as a special case of
evolution strategies [11], while general criticism to this question-
able development was raised in [12].

In this work we once again focus on the harmony search algo-
rithm. It is not really fair to single out this specific method, but it
serves very well as a representative for the whole set of recently
proposedmetaphor-basedmetaheuristics and it is a perfect exam-
ple of what is exactly going wrong. The harmony search algorithm
has been proposed in 2001 by Geem [13]. In its basic version, this
algorithm is a heuristic method for solving discrete combinatorial
optimization problems. Theworkingmechanisms of this algorithm
were designed in analogy to jazz music. Here the author has iden-
tified jazz music as an optimization process, where the different
musicians that are playing together are optimizing harmonies over
time. The number of publications about harmony search is grow-
ing in an enormous speed. In 2010 a google scholar search for ‘‘har-
mony search’’ (including the quotationmarks) showed around 500
results [9]. Two years later, in 2012, the same search showed al-
ready 3000 results [12] and while writing this article, at the end of
2014, the number of results exceeded 9000. The majority of pub-
lications deals with applications of harmony search in different
areas, such as power flow control [14], flow shop problems [15],
optimization of truss structures [16], design of water distribution
networks [17], orienteering problems [18], scheduling of dam sys-
tems [19], solving sudoku [20], design of steel sway frames [21],
design of geodesic domes [22], andmanymore. Other publications

e under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.

http://dx.doi.org/10.1016/j.orp.2015.04.001
http://www.elsevier.com/locate/orp
http://www.elsevier.com/locate/orp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orp.2015.04.001&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:dennisweyland@gmail.com
http://dx.doi.org/10.1016/j.orp.2015.04.001
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


98 D. Weyland / Operations Research Perspectives 2 (2015) 97–105
focus on enhancements over the algorithm’s basic version [23,24,
14,25,26], on hybridizations with other metaheuristics [27,28,15,
16,29] and on theoretical results regarding the harmony search al-
gorithm [30]. Even a few textbooks on harmony search have been
published in recent years [31–34]. At a first glance, harmony search
seems to be a novel and extremely successful metaheuristic, but
looking at it more carefully, several doubts have to be raised.

Such doubts about harmony search were first formalized in an
article in 2010 [9]. In that article harmony searchwas identified as a
special case of evolution strategies [11], a heuristic that had existed
already for many decades before the harmony search algorithm
was proposed. It is interesting to note, that the same results were
independently shown for a special case of the harmony search
algorithm two years later in [10]. Some conceptual problems
with empirical investigations of the harmony search algorithm for
solving the design of water distribution networks were revealed
in [35] and it seems that these issues generalize to many of the
other applications of the harmony search algorithm. As a response
to [9], the founder of the harmony search algorithm published a
research commentary [36]. This research commentary was called
‘‘less than fully convincing’’ in [12]. One of the main issues raised
in the research commentary is that the results in [9] had not been
formally proven. Therefore, we present a formal proof of those
results in full detail and with full rigor in Section 2. Based on
these findings, we then carefully examine the results reported in
the publication Harmony search algorithm for solving sudoku [20]
in Section 3. This includes a reimplementation of the algorithm
followed by empirical studies, as well as a theoretical analysis of
the algorithm. These investigations reveal that the results reported
in [20] are fundamentally flawed. Finally, Section 4 concludes
the paper with a thorough discussion of the results and their
implications.

2. Harmony search really is a special case of evolution strate-
gies

In the 2010 article [9] the harmony search algorithm was
identified as a special case of evolution strategies, without doubt
one of the most classic search heuristics. Already in the same
year the founder of the harmony search algorithm published a
research commentary [36] as a reaction to these results. Due to
the issues raised in the research commentary and due to the
growing number of publications in harmony search, it is obvious
thatmany researchers are not aware of the results presented in [9],
ignore them or just do not accept them. One reason for this issue
could be the informal presentation of the results in [9], which
was also criticized in the research commentary. Therefore, we will
derive these results in a strictly formal way, following the precise
mathematical structure of theorem and proof.

In the remainder of this section we will derive the results for
certain discrete combinatorial optimization problems, but it will
be clear that the same arguments can be used for obtaining an
identical result in a more general context or for the continuous
case. We have given an n-dimensional search space X = X1 ×

X2 ×· · ·×Xn and an objective function f : X → R. Here the sets
Xi, 1 ≤ i ≤ n, are intervals of integers with smallest elements
li ∈ N and largest elements ui ∈ N. The goal is to find some
x ∈ X such that f (x) ≤ f (x′) holds for every x′

∈ X. Such an
element is called a global optimum or just an optimal solution. We
will now discuss how the harmony search algorithm and evolution
strategies tackle this kind of optimization problems.

2.1. The harmony search algorithm

The basic version of the harmony search algorithm for discrete
optimization problems has three parameters, the harmony mem-
ory size HMS, the harmony memory consideration rate HMCR and
the pitch adjustment rate PAR. Additionally, a maximum num-
ber of iterations is given. In the first step, HMS many solutions
x(1), x(2), . . . , x(HMS) are created uniformly at random. Then iter-
atively new solutions are generated until the maximum num-
ber of iterations has been reached. The solutions are generated
in the following way. Here the same process is applied indepen-
dently to each of the n decision variables. With a probability of
HMCR a step called memory consideration is performed. The value
for a decision variable is taken uniformly at random from the
corresponding values of the solutions stored in the harmonymem-
ory. A memory consideration step is followed by a pitch adjust-
ment step with a probability of PAR. With a probability of 1/2
the pitch adjustment increments the decision variable by 1, other-
wise it decrements the decision variable by 1. In case the interval
bounds are crossed, the decision variable keeps its previous value.
In case no memory consideration step is performed, that means
with a probability of 1 − HMCR, a random selection step is per-
formed instead. This step just assigns to the decision variable a
value uniformly at random. After generating the new solution, it
is evaluated by the given objective function. If it is better than the
worst solution in the harmony memory, the worst solution is re-
placed by the new one. After the maximum number of iterations
has been performed, the best solution from the harmony mem-
ory is returned. The pseudo code for this algorithm is shown in
Algorithm 1.

Algorithm 1 The harmony search algorithm
1: initialize the harmonymemory with HMS randomly generated

solutions
2: repeat
3: create a new solution in the following way
4: for all decision variables do
5: with probability HMCR use a value of one of the solutions

in the harmony memory (selected uniformly at random)
and additionally change this value slightlywith probability
PAR

6: otherwise (with probability 1 - HMCR) use a random value
for this decision variable

7: end for
8: if the new solution is better than the worst solution in the

harmony memory then
9: replace the worst solution by the new one

10: end if
11: until the maximum number of iterations has been reached
12: return the best solution in the harmony memory

2.2. Evolution strategies

At this point we will not discuss evolution strategies in general,
but focus on the specific variant which will be used in the
analysis, the so called (µ + 1) evolution strategy [11]. During
the initialization µ individuals are created uniformly at random.
Then, iteratively new solutions are generated until the maximum
number of iterations has been reached. The new solutions are
created by using so called recombination and mutation operators.
If the newly generated solution is better than the worst solution
in the population, the worst solution is replaced by the new one.
When the maximum number of iterations has been reached, the
best solution from the population is returned. The pseudo code for
this algorithm is shown in Algorithm 2.

This is a very generic method and we still have to specify
the recombination and mutation operators that are used. For our
analysis we selected the global discrete recombination operator



D. Weyland / Operations Research Perspectives 2 (2015) 97–105 99
Algorithm 2 (µ + 1) evolution strategy
1: initialize the population with µ randomly generated solutions
2: repeat
3: create a new solution using recombination and mutation

operators
4: if the new solution is better than the worst solution in the

population then
5: replace the worst solution by the new one
6: end if
7: until the maximum number of iterations has been reached
8: return the best solution in the harmony memory

[37–39]. Here each decision variable of the new solution uses the
value of the corresponding decision variable of a randomly selected
solution in the current population. This operator is always applied.
On top of that, two mutation operators are applied. The first one
is applied to each decision variable independently with a probabil-
ity of p1. With a probability of 1/2 this operator increases the value
of the decision variable by 1, otherwise it decreases the value of
the decision variable by 1. If the interval borders are crossed, the
variable is set to its previous value. The second mutation operator
is applied to each decision variable independently with a proba-
bility of p2. This operator just sets the decision variable to a value
uniformly at random within the given interval. Both operators are
very common mutation operators [11,40–42,37,43]. The resulting
algorithm is shown in Algorithm 3.

Algorithm 3 (µ + 1) evolution strategy with details about the
recombination and mutation operators
1: initialize the population with µ randomly generated solutions
2: repeat
3: create a new solution in the following way
4: for all decision variables do
5: select a solution from the population uniformly at random

and set the decision variable to the corresponding value of
the selected solution

6: with probability p1 change the value slightly
7: with probability p2 change the value to a random one
8: end for
9: if the new solution is better than the worst solution in the

population then
10: replace the worst solution by the new one
11: end if
12: until the maximum number of iterations has been reached
13: return the best solution in the harmony memory

2.3. A formal proof

Now it remains to formally proof that the harmony search
algorithm is a special case of evolution strategies. For this purpose
we will follow the slightly informal argumentation of the 2010
article [9], but this time with the full rigor of a formal proof.

Theorem 1. The harmony search algorithm is a special case of evolu-
tion strategies. Moreover, the recombination and mutation operators
used in this proof are common choices for such operators.

Proof. What we will show here is that the harmony search
algorithm as depicted in Algorithm 1 is a special case of the (µ+1)
evolution strategy as depicted in Algorithm 3. One could say that
this relationship is obvious by looking at the pseudo codes of
these two algorithms, one could also say that the slightly informal
argumentation of [9] is sufficient, but we better be careful not to
get deceived by jumping to conclusions.1

What remains to do, is to show that for each parameter
setting (HMS, HMCR, PAR) for the harmony search algorithm,
we can give a parameter setting (µ, p1, p2) for the (µ + 1)
evolution strategy, such that the resulting two algorithms are
equivalent. Here equivalentmeans that theprobability distribution
over the solutions returned by the two algorithms are identical.
This is a very result oriented definition of equivalence among
search heuristics. There a certainly other possible definitions of
equivalence, but for our purposes this result oriented definition
seems the most appropriate.

By setting µ = HMS we immediately see that the initialization
phases of the two algorithms (apart from differences in termi-
nology) are identical. Both algorithms create a pool of possible
solutions and the probability distributions over these pools are
identical for both algorithms. They then maintain this pool
throughout their whole running time and never alter its size. They
both execute a loop for the same number of iterations and finally
return the best solution of their solution pool. If there is a differ-
ence between the two methods, it has to be within the main loop
(steps 2 until 11 in Algorithm1 and steps 2 until 12 in Algorithm3).
We can now use the solution pool as a kind of invariance property
for our analysis.Wewill show that, given a probability distribution
over possible solution pools of size µ = HMS, one iteration of the
main loop of both algorithms leads to the same probability distri-
bution over solution pools. Using induction and the fact that the
probability distributions are the same after the initialization step,
we are done.

So let x(1), x(2), . . . , x(µ) be random variables for the solutions
in the pool at the beginning of an iteration. Since the selection step
is the same for both algorithms, it is in fact sufficient to show that
the newly generated solutions are drawn from identical probabil-
ity distributions for both algorithms. Since the decision variables
of these solutions are handled separately, it is already sufficient to
show that for a given decision variable the probability distribution
over the values in the newly generated solution are identical for
both algorithms.

So let us focus on the decision variable with index i. We use
PHS(x′

i = j) and PES(x′

i = j) to denote the probability that the
decision variable with index i of the newly generated solution has
the value j for the harmony search algorithm and the (µ + 1) evo-
lution strategy, respectively. We have to be a bit careful in the case
where j coincides with one of the interval borders, but wewill skip
the corresponding details at this point.

PHS

x′

i = j


=

µ
k=1

1/µ · HMCR · PAR · 1/2 · P

x(k)

= j − 1


+

µ
k=1

1/µ · HMCR · PAR · 1/2 · P

x(k)

= j + 1


+

µ
k=1

1/µ · HMCR · (1 − PAR) · P

x(k)

= j


+ (1 − HMCR) ·
1

ui − li + 1

PES

x′

i = j


=

µ
k=1

1/µ · p1 · (1 − p2) · 1/2 · P

x(k)

= j − 1


+

µ
k=1

1/µ · p1 · (1 − p2) · 1/2 · P

x(k)

= j + 1


1 At this point we feel obliged to apologize for the fact that we could not find an
appropriate way for highlighting ironic passages. In any case, these passages should
not be too difficult to identify.



100 D. Weyland / Operations Research Perspectives 2 (2015) 97–105
(a) The sudoku puzzle from [20]. (b) The unique solution to the sudoku puzzle.

Fig. 1. An example of a sudoku puzzle and its unique solution.
+

µ
k=1

1/µ · (1 − p1) · (1 − p2) · P

x(k)

= j


+ p2 ·
1

ui − li + 1
.

For p1 = PAR and p2 = 1 − HMCR we have

PHS

x′

i = j


= PES

x′

i = j

.

Since i and j have been arbitrary, this finally concludes our
proof. �

To avoid misunderstandings as in the research commen-
tary [36], we would like to briefly comment this result. Theorem 1
states that the harmony search algorithm is a special case of evolu-
tion strategies. Just to make it clear, this does not mean that these
two methods are equivalent. Instead, the theorem states that for
each harmony search algorithm, there exists an evolution strat-
egy which produces the same results. This means that evolution
strategies are a superset of the harmony search algorithm. In fact,
it is easy to see that this is a proper inclusion, which implies that
there are evolution strategies for which no equivalent harmony
search algorithmexists. Therefore, the only novelty of the harmony
search algorithm is its metaphor, which can hardly be seen as an
argument for more than 9000 publications. Apart from that, The-
orem 1 has also implications about the performance of harmony
search. Since harmony search is a special case of evolution strate-
gies, the best harmony search algorithm can never outperform the
best evolution strategy. Therefore, it is only possible to conclude
that the many publications about successful applications of har-
mony search contain serious flaws from a conceptual point of view.

3. How not to solve sudoku

This section contains a detailed investigation of one selected
harmony search publication. The idea behind this investigation
was basically to reproduce the results reported in some of the nu-
merous harmony search publications. At the end, thework selected
for this sectionwas the 2007 publicationHarmony search algorithm
for solving sudoku [20] by Geem, the founder of the harmony search
algorithm. This particular publication was selected due to the sim-
plicity of the problem under investigation and due to low imple-
mentation efforts for repeating the experiments.

In the above mentioned publication, the harmony search
algorithm is applied to solve the famous sudoku puzzle [44]. We
have given a square of size 9 × 9, whose cells are either empty
or contain numbers in the range between 1 and 9. The goal is to
fill the empty cells using the numbers between 1 and 9, such that
each of these numbers are used exactly once in each of the 9 rows,
in each of the 9 columns and in each of the 9 squares of size 3×3 (in
which the original square can be uniquely partitioned). The initial
numbers are usually set in a way such that there exists a unique
solution to the problem. An example of such an instance of the
sudoku puzzle together with its unique solution is given in Fig. 1.
In fact, this is the instance which was used in the experiments of
[20] and which will be used throughout this section as well.

Before we continue with our investigation, we would like to
mention that such puzzles can usually be solved within a fraction
of a second using problem specific algorithms [44]. It is therefore
highly questionable, why a heuristic should be applied to this
problem at all. Although this seems to be a major conceptual
issue, we will not go further into detail here. In fact, the following
subsections will reveal shocking facts which overshadow this
conceptual issue by far.

3.1. The objective function

It is clear that a potential solution for the sudoku puzzle can be
represented by a 9 × 9 matrix x ∈ {1, 2, . . . , 9}9×9. For 1 ≤ i ≤ 9
and 1 ≤ j ≤ 9 let xi,j denote the value at row i and column j of x.
For a solution to be valid, we additionally require that the values
coincide with the initial values at their corresponding locations.
In [20] the following objective function for the sudoku puzzle has
been proposed.

f (x) =

9
i=1

 9
j=1

xi,j − 45

 +

9
j=1

 9
i=1

xi,j − 45


+

9
k=1

 
(i,j)∈Bk

xi,j − 45

 .
Here the sets Bk, 1 ≤ k ≤ 9 contain the coordinates of the cells

for the subsquares of size 3 × 3. In words, we sum the absolute
differences of 45 and the sums of values in each row, in each col-
umn and in each subsquare. Since the sum of the values 1, 2, . . . , 9
is 45, it is clear that the unique solution to the sudoku puzzle has
an objective value of 0 and is therefore an optimal solution with
respect to the given objective function. Unfortunately, it is not ob-
vious whether there are other optimal solutions with respect to
the given objective function or not. In [20] the author states the
following regarding this issue:

‘‘It should be noted that, although the sum of each row, each
column, or each block equals 45, it does not guarantee that
the numbers 1 through 9 are used exactly once. However, any
violation of the uniqueness affects other row, column, or block
which contains the wrong value jointly’’.



D. Weyland / Operations Research Perspectives 2 (2015) 97–105 101
(a) The unique solution to the sudoku puzzle. (b) A solution with optimal objective value.

(c) A solution with optimal objective value. (d) A solution with optimal objective value.

Fig. 2. The unique solution to the given sudoku puzzle and three alternative solutions, which also obtain the optimal objective value of 0. Cells in the alternative solutions
which differ from the unique solution to the sudoku puzzle are highlighted.
This statement itself is true, but does it really explain that there
is only one optimal solution with respect to the given objective
function? It turns out that this is not true in general. In fact, lets
look at the entries x1,1, x1,3, x2,1 and x2,3. The corresponding values
of the unique solution to the sudoku puzzle are x1,1 = 2, x1,3 = 4,
x2,1 = 7 and x2,3 = 3. By increasing the values of x1,1 and x2,3
by 1 and decreasing the values of x1,3 and x2,1 by 1 we obtain
another optimal solution with an objective value of 0, which is
not the unique solution to the sudoku puzzle. This step can even
be repeated two more times. The unique solution to the sudoku
puzzle is shown in Fig. 2 togetherwith the additional three optimal
solutions that have been just generated. Apart from that, there are
many more possibilities to derive other optimal solutions from
a given optimal solution. Therefore, we cannot assume that the
unique solution to the given sudoku puzzle is the only optimal
solution with respect to the given objective function. Quite the
contrary, it seems that in general there exists a huge number of
optimal solutions. But this also implies that an optimal solution
returned by some heuristic is not necessarily the unique solution
of the given sudoku puzzle.

It seems very likely that the author if [20] was not aware of
this issue. He often uses terms as ‘‘the optimal solution’’ or ‘‘the
global optimum’’, which both imply uniqueness of the solution
with respect to the given objective function. It is therefore also not
clear if the results reported in [20] are with respect to finding the
unique solution of the sudoku puzzle or with respect to finding
any of the optimal solutions. At least in the illustrative example,
the author shows the evolution of the best solution found by the
harmony search algorithm, which finishes by reaching the unique
solution of the sudoku puzzle. In any case, these findings regarding
the objective function stronglymotivate an independent repetition
of the experiments. But before we turn to this issue, we would like
to investigate the results reported in [20] from a more theoretical
point of view.

3.2. Theoretical investigations

In this section we would like to investigate the behavior of the
proposed harmony search algorithm for the sudoku puzzle from
a more theoretical point of view. More in detail, we will derive
bounds for the probability that the harmony search algorithm finds
the unique solution to the sudoku puzzle within a given number
of iterations. For this purpose we first bound the probability that
the unique solution to the sudoku puzzle is obtained during the
initialization process. After that, we bound the probability that the
unique solution to the sudoku puzzle is obtained in one iteration
of the proposed harmony search algorithm. Here we make use of
the facts that solutions are generated in a stochastic process and
that the amount of randomness for any newly generated solution
is quite substantial.

During the initialization process, a certain number of solutions
is generated uniformly at random and stored in the harmony
memory. The exact number of generated solutions is specified by
the harmony memory size. The sudoku puzzle under investigation
contains 41 empty cells, and therefore the probability to generate
the unique solution equals (1/9)41. Let HMS denote the harmony
memory size. The probability that at least one of the initially
generated solutions is in fact the unique solution to the sudoku
puzzle is then 1−[1−(1/9)41]HMS. For all the different HMS values
of 1, 2, 10 and 50, this term can be bounded from above by 10−37.



102 D. Weyland / Operations Research Perspectives 2 (2015) 97–105
That means it is quite unlikely to obtain the unique solution to the
sudoku puzzle already during the initialization.

Let us now focus on the probability to generate the unique
solution in one iteration of the harmony search algorithm. To
obtain some useful bounds here, it is crucial to observe that any
newly generated solution is substantially random. This is due to the
two mechanisms called random selection and pitch adjustment,
combined with the fact that the values are generated separately
for each of the decision variables. In the case of random selection,
the value of a decision variable is set uniformly at random to a
value between 1 and 9. This mechanism is used with a probability
of 1−HMCR. Otherwise, that means with a probability of HMCR, a
value is taken from theharmonymemory. This value is then further
modified by pitch adjustment, which is used with a probability of
PAR. The pitch adjustments change the value with a probability
of 1/2 to one of the two neighbor values (or in case where only
1 neighbor value exists, it remains unchanged with probability
1/2 and is changed to the unique neighbor value otherwise). The
probability to generate the correct value for one decision variable
can therefore be bounded from above by

(1 − HMCR) · 1/9 + HMCR · (1 − PAR) + HMCR · PAR · 1/2.

The first term corresponds to the probability of obtaining the
correct value by random selection. The second term corresponds to
memory considerationwithout pitch adjustment,wherewe gener-
ously assume to select the correct value. The last term corresponds
tomemory consideration, followed by pitch adjustment, wherewe
generate the correct value with a probability of at most 1/2. Please
note, that this probability is independent of the solutions stored in
the harmony memory.

To get the probability that all the decision variables of the newly
generated solution coincidewith the unique solution to the sudoku
puzzle, we have to further exponentiate the whole term with the
number of decision variables, which is 41 in this case. The success
probability for a single iteration can therefore be written as

p1 ≤ ((1 − HMCR) · 1/9 + HMCR · (1 − PAR)

+HMCR · PAR · 1/2)41.

Using this value, we can now derive an upper bound for the
success probability for a given number of i iterations.

pi = 1 − [1 − p1]i

≤ 1 −

1 − ((1 − HMCR) · 1/9 + HMCR · (1 − PAR)

+HMCR · PAR · 1/2)41
i
.

Combining this bound with the probability that we obtain the
unique solution during the initialization and setting the maximum
number of iterations to 104, we get the following upper bound for
the success probability of the harmony search algorithm proposed
in [20].

10−37
+ 1 −


1 − ((1 − HMCR) · 1/9 + HMCR · (1 − PAR)

+HMCR · PAR · 1/2)41
10000

.

Table 1 shows the upper bounds for the success probabilities of
the experiments conducted in [20]. Please note that these bounds
are the same for all the different values of the harmony memory
size used in the experiments. Although this bound is far from
being tight, the success probabilities are extremely low for most of
the parameter settings. The success probability is smaller for low
values of HMCR and high values of PAR. In fact, for a HMCR value
of 0.9 combined with a PAR value of 0.01 and 0.1 we could not get
any useful bound with this approach. Ironically, in [20] the worst
results are reported for these parameter settings.

Looking more in detail at the results of [20], we can see that all
the 12 runswith a HMCR parameter of 0.5were successful and that
Table 1
Upper bounds for the probability that the harmony
search algorithm finds the unique solution to the
sudoku puzzle within 104 iterations.

HMCR PAR Success probability
(upper bound)

0.01 2.84210−7

0.5 0.1 5.17610−8

0.5 9.89110−12

0.01 2.43710−2

0.7 0.1 4.03410−3

0.5 4.19510−7

0.01 1.000
0.9 0.1 1.000

0.5 1.95810−3

the number of iterations until the solution was found is rather low
for all of these runs. Using our bounds for the success probability,
we can bound the probability that all of these 12 runs are successful
within the maximum number of iterations by
2.84210−74

·

5.17610−84

·

9.89110−124

≤ 4.8310−100,

an astronomically small probability. To get a feeling for how small
this probability really is, we would like to refer to the number of
atoms in the visible universe, which is commonly estimated to be
around 1080. This furthermotivates a repetition of the experiments
of [20].

3.3. Empirical investigations

As we said before, the issues about the objective function and
the results of our theoretical investigations strongly motivate a
repetition of the experiments performed in [20]. For this purpose,
we reimplemented the corresponding algorithm. The experiments
are performed using the same parameters as in [20]. More in
detail, the parameters are all combinations of the four values 1,
2, 10 and 50 for the harmony memory size, the three values 0.5,
0.7 and 0.9 for the harmony memory consideration rate and the
three values 0.01, 0.1 and 0.5 for the pitch adjustment rate. This
gives a total of 36 different parameter settings. For each parameter
settings we perform 20 independent runs, which gives a total of
720 runs. The maximum number of iterations is set to 106 (instead
of the 104 used in [20]). We then measure the number of optimal
solutions foundwithin 104, 105 and 106 iterations and additionally
check if these solutions correspond to the unique solution of the
sudoku puzzle. The complete source code of the algorithm and the
experiments, as well as the results of the experiments are available
at the author’s website [45].

The results of our experiments are summarized in Table 2.
They are shocking and they are in stark contrast to the results
reported in [20]. None of the 720 runs could find the unique
solution of the sudoku puzzle within the maximum number of 106

iterations. Please note that these are 100 times more iterations
than used in [20]. Additionally, there is not a single run in which
any of the optimal solutions was found within 104 iterations,
the maximum number of iterations used in [20]. Moreover (and
not shown in Table 2), in only 29 runs an optimal solution (not
the unique solution to the sudoku puzzle) was found within
105 iterations and in only 96 runs an optimal solution (not the
unique solution to the sudoku puzzle) could be found within the
maximumnumber of 106 iterations. Onlywith a harmonymemory
consideration rate of 0.9 combined with a pitch adjustment rate
of 0.01 or 0.1 optimal solutions could be found. According to
our theoretical investigations, these are the least destructive
parameter combinations.

Before we continue with a discussion of our results, we would
like to point out another inconsistency. While the computational



D. Weyland / Operations Research Perspectives 2 (2015) 97–105 103
Table 2
The results of the empirical investigations. Reported are for each parameter setting the number of runs (out of 20) which lead to the
unique solution of the sudoku puzzlewithin 106 iterations and any optimal solutionwithin 104 iterations. Additionally, the number
of iterations for obtaining the optimal solution according to [20] is given. Please note that the maximum number of iterations used
in the original experiments was 104 .

HMS HMCR PAR Runs finding the Runs finding an Iterations to
unique solution in optimal solution in obtain the optimal
106 iterations 104 iterations solution in [20]

0.01 0 0 66
0.5 0.1 0 0 337

0.5 0 0 422

0.01 0 0 287
1 0.7 0.1 0 0 3413

0.5 0 0 56

0.01 0 0 260
0.9 0.1 0 0 not found

0.5 0 0 1003

0.01 0 0 31
0.5 0.1 0 0 94

0.5 0 0 175

0.01 0 0 102
2 0.7 0.1 0 0 77

0.5 0 0 99

0.01 0 0 not found
0.9 0.1 0 0 not found

0.5 0 0 1325

0.01 0 0 49
0.5 0.1 0 0 280

0.5 0 0 188

0.01 0 0 56
10 0.7 0.1 0 0 146

0.5 0 0 259

0.01 0 0 180
0.9 0.1 0 0 217

0.5 0 0 350

0.01 0 0 147
0.5 0.1 0 0 372

0.5 0 0 649

0.01 0 0 165
50 0.7 0.1 0 0 285

0.5 0 0 453

0.01 0 0 87
0.9 0.1 0 0 329

0.5 0 0 352
time for a run with 104 iterations of our algorithm on a customary
laptop was just 0.02 s, the computational times reported in [20]
are all several seconds. It is not really clear why 66 iterations of
the harmony search algorithm applied to the sudoku puzzle should
require a computational time of 5 s or why 104 iterations should
require a computational time of almost 2 min.

3.4. Conclusions

In this section we performed a detailed investigation of the
publication Harmony search algorithm for solving sudoku [20]
by Geem, the founder of the harmony search algorithm. Our
investigations show that this publication contains fundamental
inconsistencies: (1) It is highly questionable, why a heuristic
should be applied for solving the sudoku puzzle. This is a huge
conceptual issue. (2) The proposed objective function is not
appropriate for the sudoku problem. As we have seen, there are
in general many optimal solutions (with respect to the objective
function), whereas there is only a single solution for the original
sudoku puzzle. It seems that the author of [20] was not aware of
this fact. Additionally, this issue makes it difficult to interpret the
results of [20]. What is actually reported in that publication, the
number of iterations until an optimal solution has been found or
the number of iterations until the unique solution to the sudoku
puzzle has been obtained? (3) Our theoretical investigation shows
that the success probability of the proposed algorithm is extremely
small for many of the parameter settings. It is therefore very
surprising that so many successful runs are reported in [20]. In
fact, the likelihood for the reported results are astronomically
small. (4) The previous issues necessitated a repetition of the
experiments conducted in [20]. Our results differ completely from
those reported in [20]. While the original results were mainly
positive, we could not obtain the unique solution to the sudoku
puzzle in any of our runs. Even obtaining one of the many
other optimal solutions with respect to the objective function
turned out to be a difficult task, which could only be tackled by
running the algorithm formanymore iterations under very specific
parameter settings. (5) The computational times reported in [20]
do not seem plausible for such a simple algorithm. In fact, our
reimplementation was around 4 orders of magnitude faster.

4. Discussion and conclusions

In this article we gave a formal proof for the fact that
the harmony search algorithm is a special case of evolution
strategies. The twomain implications are that the harmony search



104 D. Weyland / Operations Research Perspectives 2 (2015) 97–105
algorithm offers no novelty, apart from its metaphor, and that the
performance of the harmony search algorithm is always limited
by the performance of evolution strategies. This confirms and
strengthens the conclusions drawn in the 2010 article [9], namely
that ‘‘research in harmony search is fundamentally misguided’’
and that ‘‘future research effort could better be devoted to more
promising areas’’.

Additionally, we investigated the publication Harmony search
algorithm for solving sudoku [20] by Geem, the founder of the
harmony search algorithm, more in detail. The results of our
detailed analysis of the objective function, of our theoretical
investigation of the algorithm’s success probability and of our
empirical investigations raise doubts about the conclusions drawn
in that publication. Considering the huge disparity between our
results and the results reported in [20], it is of great importance
to resolve this discrepancy. Our analysis of the objective function
and our theoretical analysis of the algorithm’s success probability
are self-contained and regarding the empirical investigations all
algorithms and their source codes are publicly available. To be
able to resolve this issue, it would therefore be very helpful if
the algorithms and the corresponding source codes of [20] would
become publicly available.

We would like to outline three directions for further research,
which all have the potential to contribute in improving the current
situation in research and especially in the fields of optimization
and heuristics. The first direction is about establishing standards
for assessing and comparing the performance of heuristics. Many
publications contain serious conceptual flaws which makes it
extremely difficult or even impossible to draw conclusions based
on the experimental results. A transparent systemwhich allows to
perform meaningful research by following a few guidelines is of
uttermost importance and urgency. Additionally, the community
has to actively enforce that conclusions drawn from empirical
investigations are correct and sound. The second direction deals
with a classification of search heuristics, considering their history,
their relations among each other, their similarities and differences
and their advantages and disadvantages. In this context an
emphasis on the contributions of ‘‘novel’’ search heuristics would
be of great interest. The last direction targets an improvement of
the research system. It is obvious that the current system gives
flawed incentives to researchers and other involved parties. Of
course, this is a broad subject and we cannot expect any rapid
changes and improvements, especially considering the current
situation with all the interweaved structures combinedwithmany
financial interests. But it is clear that nothing will change and
nothing will improve as long as we continue with our attitude of
passiveness.

Acknowledgments

We would like to thank the reviewers for their helpful com-
ments and suggestions. This research has been supported by
the Swiss National Science Foundation as part of the Early Post-
doc.Mobility grant 152293.

References

[1] Tran TH, Ng KM. Awater-flow algorithm for flexible flow shop schedulingwith
intermediate buffers. J Sched 2011;14(5):483–500.

[2] Eusuff M, Lansey K, Pasha F. Shuffled frog-leaping algorithm: amemetic meta-
heuristic for discrete optimization. Eng Optim 2006;38(2):129–54.

[3] Mozaffari A, Fathi A, Behzadipour S. The great salmon run: a novel bio-inspired
algorithm for artificial system design and optimisation. Int J Bio-inspired
Comput 2012;4(5):286–301.

[4] Eberhart R, Kennedy J. A new optimizer using particle swarm theory.
In: Proceedings of the sixth international symposium on micro machine and
human science. IEEE; 1995. p. 39–43.
[5] Yang XS. Firefly algorithm, levy flights and global optimization. In: Research
and development in intelligent systems XXVI. Springer; 2010. p. 209–18.

[6] Pan WT. A new fruit fly optimization algorithm: taking the financial distress
model as an example. Knowl -Based Syst 2012;26:69–74.

[7] Li XL, Qian JX. Studies on artificial fish swarm optimization algorithm based
on decomposition and coordination techniques. J Circuits Syst 2003;1(1–6).

[8] Chu SC, Tsai PW, Pan JS. Cat swarm optimization. In: PRICAI 2006: Trends in
artificial intelligence. Springer; 2006. p. 854–8.

[9] Weyland Dennis. A rigorous analysis of the harmony search algorithm: How
the research community can be misled by a ‘‘novel’’ methodology. Int J Appl
Metaheuristic Comput 2010;1(2):50–60.

[10] Padberg M. Harmony search algorithms for binary optimization problems.
In: Operations research proceedings 2011. Springer; 2012. p. 343–8.

[11] Rechenberg I. Evolutionsstrategie: Optimierung technischer systeme nach
prinzipien der biologischen evolution. 1973.

[12] Sörensen K. Metaheuristics—the metaphor exposed. Int Trans Oper Res 2013.
[13] Geem ZW, Kim JH, Loganathan GV. A new heuristic optimization algorithm:

harmony search. Simulation 2001;76(2):60–8.
[14] Sivasubramani S, Swarup KS. Multi-objective harmony search algorithm for

optimal power flow problem. Int J Electr Power Energy Syst 2011;33(3):
745–52.

[15] Wang L, Pan QK, Fatih Tasgetiren M. Minimizing the total flow time in a flow
shop with blocking by using hybrid harmony search algorithms. Expert Syst
Appl 2010;37(12):7929–36.

[16] Kaveh A, Talatahari S. Particle swarm optimizer, ant colony strategy and
harmony search scheme hybridized for optimization of truss structures.
Comput Struct 2009;87(5):267–83.

[17] Geem ZW. Optimal design of water distribution networks using harmony
search (Ph.D. thesis), Korea University; 2000.

[18] Geem ZW, Tseng CL, Park Y. Harmony search for generalized orienteering
problem: best touring in china. In: Advances in natural computation. Springer;
2005. p. 741–50.

[19] Geem ZW. Optimal scheduling of multiple dam system using harmony
search algorithm. In: Computational and ambient intelligence. Springer; 2007.
p. 316–23.

[20] Geem ZW. Harmony search algorithm for solving sudoku. In: Knowledge-
Based Intelligent Information and Engineering Systems. Springer; 2007.
p. 371–8.

[21] Saka MP. Optimum design of steel sway frames to bs5950 using harmony
search algorithm. J Construct Steel Res 2009;65(1):36–43.

[22] SakaMP. Optimum geometry design of geodesic domes using harmony search
algorithm. Adv Struct Eng 2007;10(6):595–606.

[23] Wang CM, Huang YF. Self-adaptive harmony search algorithm for optimiza-
tion. Expert Syst Appl 2010;37(4):2826–37.

[24] Mahdavi M, Fesanghary M, Damangir E. An improved harmony search
algorithm for solving optimization problems. ApplMath Comput 2007;188(2):
1567–79.

[25] Omran MGH, Mahdavi M. Global-best harmony search. Appl Math Comput
2008;198(2):643–56.

[26] Geem ZW. Improved harmony search from ensemble of music players. Lect
Notes Comput Sci 2006;4251(86).

[27] Fesanghary M, Mahdavi M, Minary-Jolandan M, Alizadeh Y. Hybridizing
harmony search algorithm with sequential quadratic programming for
engineering optimization problems. ComputMethods Appl Mech Engrg 2008;
197(33):3080–91.

[28] Yildiz AR. Hybrid taguchi-harmony search algorithm for solving engineering
optimization problems. Int J Ind Eng Theory Appl Pract 2008;15(3):286–93.

[29] Li HQ, Li L. A novel hybrid particle swarm optimization algorithm combined
with harmony search for high dimensional optimization problems. In: Intel-
ligent pervasive computing, 2007. IPC. The 2007 international conference on.
IEEE; 2007. p. 94–7.

[30] Mukhopadhyay A, Roy A, Das S, Das S, Abraham A. Population-variance
and explorative power of harmony search: an analysis. In: Second national
conference on mathematical techniques: Emerging paradigms for electronics
and IT Industries (MATEIT 2008), New Delhi, India. 2008.

[31] Panchal A. Harmony search optimization for HDR prostate brachytherapy.
ProQuest; 2008.

[32] Geem ZW. Music-inspired harmony search algorithm: theory and applica-
tions, vol. 191. Springer Verlag; 2009.

[33] Geem ZW. Harmony search algorithms for structural design optimization,
vol. 239. Springer-Verlag New York Incorporated; 2009.

[34] Geem ZW. Recent advances in harmony search algorithm, vol. 270. Springer
Verlag; 2010.

[35] DeCorteA, SörensenK.Optimisation of gravity-fedwater distributionnetwork
design: A critical review. European J Oper Res 2013;228(1):1–10.

[36] Geem ZW. Research commentary: Survival of the fittest algorithm or the
novelest algorithm?. Int J Appl Metaheuristic Comput 2010;1(4):75–9.

[37] Bäck T, Schwefel HP. An overview of evolutionary algorithms for parameter
optimization. Evol Comput 1993;1(1):1–23.

[38] Bäck T, Rudolph G, Schwefel HP. Evolutionary programming and evolution
strategies: Similarities and differences. In: Proceedings of the second annual
conference on evolutionary programming. Citeseer; 1993. p. 11–22.

[39] Bäck T., Hoffmeister F., Schwefel H.. A survey of evolution strategies. In:
Proceedings of the fourth international conference on genetic algorithms,
1991.

http://refhub.elsevier.com/S2214-7160(15)00010-X/sbref1
http://refhub.elsevier.com/S2214-7160(15)00010-X/sbref2
http://refhub.elsevier.com/S2214-7160(15)00010-X/sbref3
http://refhub.elsevier.com/S2214-7160(15)00010-X/sbref4
http://refhub.elsevier.com/S2214-7160(15)00010-X/sbref5
http://refhub.elsevier.com/S2214-7160(15)00010-X/sbref6
http://refhub.elsevier.com/S2214-7160(15)00010-X/sbref7
http://refhub.elsevier.com/S2214-7160(15)00010-X/sbref8
http://refhub.elsevier.com/S2214-7160(15)00010-X/sbref9
http://refhub.elsevier.com/S2214-7160(15)00010-X/sbref10
http://refhub.elsevier.com/S2214-7160(15)00010-X/sbref11
http://refhub.elsevier.com/S2214-7160(15)00010-X/sbref12
http://refhub.elsevier.com/S2214-7160(15)00010-X/sbref13
http://refhub.elsevier.com/S2214-7160(15)00010-X/sbref14
http://refhub.elsevier.com/S2214-7160(15)00010-X/sbref15
http://refhub.elsevier.com/S2214-7160(15)00010-X/sbref16
http://refhub.elsevier.com/S2214-7160(15)00010-X/sbref17
http://refhub.elsevier.com/S2214-7160(15)00010-X/sbref18
http://refhub.elsevier.com/S2214-7160(15)00010-X/sbref19
http://refhub.elsevier.com/S2214-7160(15)00010-X/sbref20
http://refhub.elsevier.com/S2214-7160(15)00010-X/sbref21
http://refhub.elsevier.com/S2214-7160(15)00010-X/sbref22
http://refhub.elsevier.com/S2214-7160(15)00010-X/sbref23
http://refhub.elsevier.com/S2214-7160(15)00010-X/sbref24
http://refhub.elsevier.com/S2214-7160(15)00010-X/sbref25
http://refhub.elsevier.com/S2214-7160(15)00010-X/sbref26
http://refhub.elsevier.com/S2214-7160(15)00010-X/sbref27
http://refhub.elsevier.com/S2214-7160(15)00010-X/sbref28
http://refhub.elsevier.com/S2214-7160(15)00010-X/sbref29
http://refhub.elsevier.com/S2214-7160(15)00010-X/sbref30
http://refhub.elsevier.com/S2214-7160(15)00010-X/sbref31
http://refhub.elsevier.com/S2214-7160(15)00010-X/sbref32
http://refhub.elsevier.com/S2214-7160(15)00010-X/sbref33
http://refhub.elsevier.com/S2214-7160(15)00010-X/sbref34
http://refhub.elsevier.com/S2214-7160(15)00010-X/sbref35
http://refhub.elsevier.com/S2214-7160(15)00010-X/sbref36
http://refhub.elsevier.com/S2214-7160(15)00010-X/sbref37
http://refhub.elsevier.com/S2214-7160(15)00010-X/sbref38


D. Weyland / Operations Research Perspectives 2 (2015) 97–105 105
[40] SchwefelHP. Numerical optimization of computermodels. NewYork, NY, USA:
John Wiley & Sons, Inc.; 1981.

[41] Fogel DB, Atmar JW. Comparing genetic operators with Gaussian mutations
in simulated evolutionary processes using linear systems. Biol Cybern 1990;
63(2):111–4.

[42] Michalewicz Z, Janikow CZ, Krawczyk JB. A modified genetic algorithm for
optimal control problems. Comput Math Appl 1992;23(12):83–94.
[43] Michalewicz Z. Genetic algorithms + data structures = evolution programs.
Springer; 1996.

[44] Sudoku solutions: Sudoku solver. http://www.sudoku-solutions.com. Ac-
cessed: 26.07.2014.

[45] Additional material. http://www.dennisweyland.net – The documents are
accessible from the publications page, they are listed in the corresponding
entry for this article.

http://refhub.elsevier.com/S2214-7160(15)00010-X/sbref40
http://refhub.elsevier.com/S2214-7160(15)00010-X/sbref41
http://refhub.elsevier.com/S2214-7160(15)00010-X/sbref42
http://refhub.elsevier.com/S2214-7160(15)00010-X/sbref43
http://www.sudoku-solutions.com
http://www.dennisweyland.net

	A critical analysis of the harmony search algorithm---How not to solve sudoku
	Introduction
	Harmony search really is a special case of evolution strategies
	The harmony search algorithm
	Evolution strategies
	A formal proof

	How not to solve sudoku
	The objective function
	Theoretical investigations
	Empirical investigations
	Conclusions

	Discussion and conclusions
	Acknowledgments
	References


