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SUMMARY

The AMP-activated protein kinase (AMPK) is a meta-
bolic stress-sensing abg heterotrimer responsible
for energy homeostasis. Pharmacological inhibition
of AMPK is regarded as a therapeutic strategy in
some disease settings including obesity and cancer;
however, the broadly used direct AMPK inhibitor
compound C suffers from poor selectivity. We have
discovered a dihydroxyquinoline drug (MT47-100)
withnovelAMPKregulatoryproperties,beingsimulta-
neously a direct activator and inhibitor of AMPK com-
plexes containing the b1 or b2 isoform, respectively.
Allosteric inhibition by MT47-100 was dependent
on the b2 carbohydrate-binding module (CBM) and
determined by three non-conserved CBM residues
(Ile81, Phe91, Ile92), but was independent of b2-
Ser108 phosphorylation. Whereas MT47-100 regula-
tion of total cellular AMPK activity was determined
by b1/b2 expression ratio, MT47-100 augmented
glucose-stimulated insulin secretion from isolated
mouse pancreatic islets via a b2-dependent mecha-
nism. Our findings highlight the therapeutic potential
of isoform-specific AMPK allosteric inhibitors.

INTRODUCTION

The AMP-activated protein kinase (AMPK) is an important regu-

lator of cellular and whole-body energy balance that synchro-

nizes metabolic processes to match energy supply with demand

(Hardie, 2007; Steinberg and Kemp, 2009). AMPK directly

monitors adenylate nucleotide ratios and protects the cell from

events that perturb energy charge (nutrient deprivation, hypoxia,
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exercise) by directing cellular metabolism away from anabolic

processes toward catabolic pathways. It achieves this acutely

by direct phosphorylation of rate-limiting enzymes in major

metabolic pathways, and chronically by phosphorylation of tran-

scription factors that control expression of metabolic genes.

AMPK also integrates an array of hormonal and nutritional sig-

nals in the CNS and periphery to control appetite and body

weight (Kahn et al., 2005; Steinberg and Kemp, 2009).

The AMPK abg heterotrimer consists of an a catalytic subunit

and regulatory b and g subunits that contain a carbohydrate-

binding module (CBM) and allosteric adenylate nucleotide-

binding sites, respectively (Oakhill et al., 2009). Multiple isoforms

of each subunit exist in mammals (a1/2, b1/2, g1/2/3), and iso-

form-specific variations in tissue distribution, regulation, and

function have been demonstrated (Steinberg and Kemp, 2009).

AMPK signaling is initiated by phosphorylation of Thr172

in the a-subunit activation loop by upstream kinases LKB1

or Ca2+/calmodulin-dependent protein kinase kinase b

(CaMKKb). LKB1-mediated phosphorylation is stimulated by

AMP (Oakhill et al., 2010), but whether AMP and ADP also stim-

ulate CaMKKb-mediated phosphorylation remains controversial

(Oakhill et al., 2011; Gowans et al., 2013). AMP allosterically ac-

tivates phosphorylated AMPK, and both AMP and ADP maintain

the active state by suppressing dephosphorylation of phosphor-

ylated Thr172 (Oakhill et al., 2012; Gowans et al., 2013). AMP

also synergizes with the b1-specific activating drug A-769662

(Cool et al., 2006; Scott et al., 2008) to substantially activate

unphosphorylated AMPK (Scott et al., 2014). The A-769662-

binding site is stabilized by phosphorylation of b-CBM Ser108

and is located at the interface of the a-kinase domain small

lobe and b-CBM, as recently revealed by crystal structures of

AMPK drug complexes (Xiao et al., 2013; Calabrese et al., 2014).

Whereas the beneficial effects of AMPK activators are

well documented, the development of AMPK inhibitors is

lacking even though AMPK inhibition plays an important role in

whole-body energy homeostasis (Viollet et al., 2010). The first
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AMPK inhibitor described was compound C (Zhou et al., 2001),

which competes with ATP at the highly conserved kinase active

site (Handa et al., 2011) and displays widely accepted off-target

effects. Here, we describe an A-769662-related compound,

MT47-100, which acts uniquely as a b2-specific allosteric AMPK

inhibitor. This study demonstrates the potential for developing

small-molecule inhibitors with improved selectivity for AMPK.

RESULTS

AMPK b IsoformsMediateOpposing Allosteric Effects of
MT47-100
In the course of investigating small-molecule AMPK regulators,

we found that the compound MT47-100 was a direct activator

of AMPK complexes containing the b1-isoform (AMPKb1) in

cell-free assay (Figures 1A and 1B) (Mercury Therapeutics Inc.

patent WO2009/100130 A1). MT47-100 is structurally similar to

A-769662 but possesses a dihydroxyquinoline core instead of

the thienopyridone core of A-769662. MT47-100 maximally

activated a1b1g1 approximately 2.5-fold with half-maximal acti-

vation Ka = 3.7 ± 0.5 mM, compared with 6.7 ± 0.6 mM for AMP

(Figure 1C), and activated all AMPKb1 complexes regardless of

a or g isoform (Figure 1B). Like A-769662, AMPKb1 sensitivity

to MT47-100 activation was lost following deletion of the b1 sub-

unit N-terminal 145 residues including the CBM (Figure 1D) and

substitution of the phosphorylated residue b-Ser108 to Ala, but

retained following exchange of Ser108 for the phosphomimetic

Glu (Figure 1E). MT47-100 also synergistically activated dephos-

phorylated AMPKb1 in the presence of AMP (Figure S1).

In contrast, MT47-100 directly inhibited AMPKb2 complexes

independently of a or g isoform (Figure 1B). Approximately

93% inhibition of a1b2g1 activity was obtained following incuba-

tion with 200 mM MT47-100, with half-maximal inhibition Ki =

24.8 ± 2.8 mM (Figure 1F). Truncation of the b2 subunit N-terminal

145 residues containing the CBM resulted in loss of MT47-100

inhibition (Figure 1G), but mutation of b2-Ser108 to Ala did

not diminish sensitivity to MT47-100 (Figure 1H). These data

demonstrate that MT47-100 both activates AMPKb1 and inhibits

AMPKb2 through a CBM allosteric site.

Three b-CBM Residues Mediate Isoform-Specific
Allosteric Properties of MT47-100
To identify residues that mediate agonistic/antagonistic proper-

ties of MT47-100, we expressed AMPK containing b-subunit chi-

meras (Figure 2A). Replacement of the C-terminal 158 residues

with the corresponding sequence from the alternative b isoform

(to yield AMPKb1-2 or AMPKb2-1) had no significant effect on

regulation by MT47-100 (Figure 2B). MT47-100 also activated

an AMPKb1-2-1 chimera in which b1 residues 100–112 were

substituted with the corresponding b2 sequence, indicating the

determinants of drug specificity were localized to the N-terminal

100 residues (Figures 2A and 2B).

We next generated individual and combinatorial mutants

in which the eight non-conserved b1 CBM residues between

positions 73 and 99 were exchanged for the corresponding b2

residue (Figure S2A). Double substitution of b1-Phe82 and b1-

Leu93 to Ile (b1(F82I/L93I)) was sufficient to reverse the stimula-

tory effect ofMT47-100, as thismutant was significantly inhibited

(32%) by MT47-100 (Figure 2C). The activity of a triple mutant
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containing the additional substitution Y92F (b1(F82I/Y92F/L93I)

was further suppressed by MT47-100 (79% inhibition) (Fig-

ure 2C). The reciprocal b2 to b1 substitutions (b2(I81F/F91Y/

I92L)) rendered AMPKb2 sensitive to activation by MT47-100

(Figure 2D). In addition, the double mutant I81F/I92L was suffi-

cient to sensitize AMPKb2 to allosteric activation by A-769662

(Figure 2E). Thus b-isoform selectivity displayed by direct

AMPK activators/inhibitors can be mapped to three CBM resi-

dues: Phe82, Tyr92, and Leu93 in b1 (Figure S2B) and the corre-

sponding residues Ile81, Phe91, and Ile92 in b2.

Regulation of AMPK Signaling by MT47-100
To determine whether the b-isoform specificity of MT47-100 dis-

played in vitro was reflected in cellular regulation of AMPK

signaling, we first investigated b-isoform expression profiles in

cultured cell lines. AMPK b1 subunit displays reduced mobility

on SDS-PAGE, whereas b2migration is in accordance with theo-

retical mass. Using N-terminal truncations, we determined that

reduced electrophoretic mobility of b1 is largely due to a non-

conserved sequence between residues 40 and 60 (Figure S3A),

which contains a region of predicted a-helical secondary struc-

ture (Figure S3B). AMPKb1 content was highest in HepG2 cells

(93% b1), whereas HEK293 cells possessed the highest propor-

tion of AMPKb2 (58% b2) (Figure S3C). MT47-100 exposure re-

sulted in dose-dependent increases in phosphorylation of the

AMPK substrate acetyl-CoA carboxylase 1 (ACC1) in hepato-

cytes derived fromwild-type (WT) mice, but notmice with consti-

tutive b1-subunit deletion (b1 knockout [KO]) (Figure 3A). We

attribute these effects to b1-specific activation, since MT47-

100 similarly increased ACC phosphorylation (pACC) in HepG2

cells without significantly increasing the AMP/ATP ratio at con-

centrations below 400 mM (Figures S3D and S3E). Consistent

with its capacity to positively regulate AMPKb1, MT47-100 signif-

icantly inhibited diacylglycerol (Figure 3B) and triacylglycerol

(Figure 3C) synthesis in WT, but not b1KO, hepatocytes.

To assess MT47-100 inhibition of AMPK signaling, we used

hepatocytes derived from AMPK b1KO mice, which we previ-

ously demonstrated exclusively express AMPKb2 (Scott et al.,

2008). Basal levels of pACC in these hepatocytes were undetect-

able (Figure 3D); therefore, we examined the effect of MT47-100

on cells treated with the AMPK-activating agent AICAR. Hepato-

cytes from b1KO mice displayed an increase in AICAR-induced

pACC (Figure 3D) similar to that in WT, indicating that AMPKb2 in

these cells was able to fully compensate for loss of AMPKb1. Pre-

treatment with MT47-100 (R200 mM) abolished the response in

b1KO hepatocytes only (Figure 3D). We previously implicated

AMPKb2 signaling in mediating AICAR-stimulated glucose up-

take inmouse skeletal muscle (Steinberg et al., 2010). Consistent

with this finding, MT47-100 significantly suppressed both basal

and AICAR-stimulated glucose uptake in extensor digitorum lon-

gus (EDL) muscle isolated from WT, but not b2KO, mice (Fig-

ure 3E). Taken together, our results confirm that MT47-100 in-

hibits AMPKb2-dependent signaling in cells and isolated tissue.

MT47-100 Augments Glucose-Stimulated Insulin
Secretion from Isolated Islets via anAMPKb2-Dependent
Mechanism
We investigated the effect of MT47-100 on glucose-stimulated

insulin secretion (GSIS) frompancreatic b cells, which represents
Ltd All rights reserved
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Figure 1. Biochemical Characterization of MT47-100
Data are presented as means ± SEM (n = 3–4). Significant differences between basal and MT47-100 incubated activities are shown (*p < 0.01 for activation,
#p < 0.01 for inhibition).

(A) Structures of AMPK regulators MT47-100 (upper) and A-769662 (lower).

(B)MT47-100 directly activates AMPKb1 and directly inhibits AMPKb2. Activities of purified AMPK complexes weremeasured by SAMS assay ±MT47-100 (20 mM)

or AMP (100 mM).

(C) Dose responses for MT47-100 and AMP allosteric activation of a1b1g1.

(D) MT47-100 activation of AMPKb1 is CBM dependent. Activities of AMPK containing wild-type (WT) or CBM-truncated (D1–145) b1 subunit were measured by

SAMS assay ± MT47-100 (100 mM) or AMP (100 mM).

(E) MT47-100 activation of AMPKb1 is dependent on phosphorylation of b-Ser108. AMPK (WT and b1-Ser108 mutants as indicated) activity was measured

following incubation with MT47-100 (20 mM) or AMP (100 mM).

(F) Dose response for MT47-100 allosteric inhibition of a1b2g1.

(G) MT47-100 inhibition of AMPKb2 is CBM dependent. Activities of AMPK containing WT or CBM-truncated (D1–145) b2 subunit were measured by SAMS

assay ± MT47-100 (20 mM) or AMP (100 mM).

(H) MT47-100 inhibition of AMPKb2 is independent of Ser108 phosphorylation. Activities of AMPK containingWT or S108Amutated b2 subunit were measured by

SAMS assay ± MT47-100 (100 mM) or AMP (100 mM).

Chemistry & Biology 22, 705–711, June 18, 2015 ª2015 Elsevier Ltd All rights reserved 707
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Figure 2. Identification of AMPK b Residues

Mediating Isoform-Specific Allosteric Prop-

erties of MT47-100

Data are presented as means ±SEM (n = 4). Sig-

nificant differences between basal and MT47-100/

A-769662 incubated activities are shown (*p < 0.01

for activation, #p < 0.01 for inhibition).

(A and B) Activities of purified AMPK containing b

chimeras (A) were measured by SAMS assay (B) ±

MT47-100 (20 mM) or AMP (100 mM).

(C–E)ActivitiesofAMPKcontainingWTormutantb1

or b2 as indicated were measured by SAMS assay

(C and D) ± MT47–100 (20 mM) or AMP (100 mM), or

(E) ± A-769662 (10 mM) or AMP (100 mM).
a potential target for therapeutic inhibition of AMPK (Rutter

and Leclerc, 2009). The relative expression level of AMPKb1

and AMPKb2 in mouse islets was measured at 71% and 29%,

respectively, resembling that in human islets (Figure 4A). Despite

this lower relative AMPKb2 abundance, serum insulin in the

fasted state was significantly elevated in constitutive b2KO

mice compared with WT (Figure 4B). Our findings are consistent

with a negative regulatory role for AMPKb2 in insulin secretion (da

Silva Xavier et al., 2000), but contrast with suppressed insulin

release observed in mice with pancreatic b-cell-/RIP.Cre2

neuron-specific deletion of both a1 and a2 isoforms (Sun et al.,

2010). GSIS from isolated mouse islets was increased >1.6-

fold with prior MT47-100 incubation (Figure 4C). To confirm

AMPK dependence, we measured GSIS from islets extracted

from b1KO or b2KO mice. Islets derived from either KO mouse

line displayed normal glucose-stimulated responses in the

absence of MT47-100. Whereas the MT47-100-mediated in-

crease in glucose responsiveness was retained in b1KO islets,
708 Chemistry & Biology 22, 705–711, June 18, 2015 ª2015 Elsevier Ltd All rights reserved
the augmented response was entirely

lost in islets from b2KO mice (Figure 4C).

DISCUSSION

A range of nutrient, hormonal, and cyto-

kine signals contribute to energy homeo-

stasis through AMPK inhibition (Viollet

et al., 2010), and pharmacological inhibi-

tion of AMPK is considered to confer

benefit in a range of disease settings,

e.g. cancer (suppression of tumor

growth), stroke (neuroprotection), obesity

(appetite regulation), and, as recently

demonstrated, Alzheimer’s disease (Ma

et al., 2014). In addition, AMPK inhibition

in pancreatic b cells in response to

elevated serum glucose is regarded as a

requirement for upregulation of insulin

secretion (Rutter and Leclerc, 2009). We

view MT47-100 as the founding member

of a novel class of compounds that act

as AMPK allosteric inhibitors. This repre-

sents a major advance in the develop-

ment of AMPK inhibitors with potentially

higher selectivity than compound C, an
agent used in more than 750 published studies. Compound C

competes with ATP at the highly conserved active site, and suf-

fers from selectivity concerns since it was shown to potently

inhibit a range of kinases in vitro (Bain et al., 2007; updated

at http://www.kinase-screen.mrc.ac.uk/screening-compounds/

341053). Our data indicate that MT47-100 inhibition of AMPKb2

is mediated through an alternative CBM-dependent site.

Whereas MT47-100 likely binds to the recently identified drug

site in AMPKb1 to effect activation, we cannot formally rule out

the possibility that the inhibitory site in AMPKb2 is distinct from

the activator site. However, it seems reasonable that MT47-

100 occupies essentially the same site in AMPKb2 as the b1

agonists do in AMPKb1, but in such a way as to promote an in-

hibited form of the enzyme. This interpretation is consistent

with the mapping of key residues responsible for switching

agonist/antagonist specificity for AMPKb1 (Phe82, Tyr92,

Leu93) and AMPKb2 (Ile81, Phe91, Ile92). While these residues

do not directly contribute to the drug-binding pocket, they stack,

http://www.kinase-screen.mrc.ac.uk/screening-compounds/341053
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Figure 3. MT47-100 Regulation of Cellular

AMPK Signaling

Data are presented as means ± SEM.

(A) MT47-100 promotes ACC1 phosphorylation in

WT, but not b1KO, hepatocytes. Hepatocytes were

harvested after 1 hr of incubation with indicated

concentrations of MT47-100 and lysates immuno-

blotted for ACC1-pSer79. Significant differences in

ACC1 phosphorylation between untreated and

MT47-100 incubated cells are shown (n = 3; **p <

0.01, ****p < 0.0001).

(B) Diacylglycerol (DAG) and (C) triacylglycerol

(TAG) synthesis is inhibited by MT47-100 in WT,

but not b1KO, hepatocytes. Hepatocytes were

harvested after 1 hr of incubation with 100 mM

MT47-100 or 1 mMmetformin as a positive control.

Significant differences in DAG or TAG synthesis

between untreated and incubated cells are shown

(n = 3–7; **p < 0.01, ***p < 0.001, ****p < 0.0001).

(D) MT47-100 attenuates AICAR-induced ACC

phosphorylation in b1KO hepatocytes. Primary

hepatocytes isolated from WT or b1KO mice were

pre-incubated for 1 hr with indicated concentra-

tions of MT47-100, prior to 30 min of incubation

with AICAR (250 mM). Harvested lysates were im-

munoblotted for ACC phosphorylation. Statistical

analyses were performed by one-way ANOVA us-

ing Dunnett’s multiple comparison test. Significant

differences in ACC phosphorylation between un-

treated and AICAR/MT47-100 incubated hepato-

cytes from each mouse line are shown (n = 3; **p <

0.01, ***p < 0.001, ****p < 0.0001).

(E) MT47-100 attenuation of AICAR-induced 2-[14C]

deoxyglucose (2-DG) uptake in skeletal muscle

ex vivo is dependent on AMPKb2-signaling. 2-DG

uptake was measured in EDL muscle isolated from

WT or b2KO mice. Muscles were pre-incubated for

30 min with DMSO or 80 mM MT47-100. Muscles

pre-incubated with DMSO were incubated for a

further 30 min with either DMSO (control) or 150 mM

AICAR (AICAR).Muscles pre-incubated withMT47-100 were incubated for a further 30minwith either 80 mMMT47-100 (MT47-100) or 80 mMMT47-100 + 150 mM

AICAR (MT47-100 + AICAR). Statistical analyseswere performed by non-parametric permutation test. Significant differences in 2-DG uptake between treatments

are shown (n = 5–7; *p < 0.05 versus untreated, ##p < 0.01 versus AICAR-treated).
together with the drug-contacting residue b1-Arg83, to form a

‘‘spine’’ through the CBM core (Figure S2B). This connectivity

may be a key to their importance.

Our observation that MT47-100-induced augmentation of

GSIS from mouse islets occurs via AMPKb2-specific signaling

is in accordance with a previous study showing that inhibition

of AMPKb2 in MIN6 cells by antibody microinjection stimulated

activity of the insulin promoter (da Silva Xavier et al., 2000).

MT47-100 would likely produce a similar response in human

islets given that AMPK b-isoform distribution is comparable

with that of the mouse. Therapeutic use of MT47-100 is limited

by low potency; however, our study provides further proof of

concept regarding the potential health benefits of small com-

pound AMPK inhibitors.
SIGNIFICANCE

As a central mediator of energy homeostasis AMPK is sub-

ject to tight regulatory control, yet thus far most emphasis

has been placed on investigating agonistic mechanisms
Chemistry & Biology 22,
rather than antagonistic ones. We have demonstrated that

drugs can act as allosteric inhibitors of AMPK. Our findings

provide a lead in the development of small compounds to

study the role of AMPK inhibition in multiple diseases

including obesity, cancer, Alzheimer’s disease, and, as

described here, diabetes. In addition, the b-isoform-specific

regulatory properties of MT47-100 highlight the importance

in AMPK drug-screening strategies to employ the full range

of AMPK isoforms.

EXPERIMENTAL PROCEDURES

Reagents and Antibodies

MT47-100 was fromCreaGen and A-769662 was from Tocris. Antibodies were

from Cell Signaling (pan AMPK a [#2793], AMPK a-pThr712 [#2535], pan

AMPK b [#4150], AMPK b1-pSer108 [#4181], ACC1-pSer79 [#3661]). IRDye

680RD/800CW labeled anti-immunoglobulin G antibodies and streptavidin

were from LI-COR Biosciences.

AMPK Production and Activity Assay

All mutants were generated using QuikChange site-directed mutagenesis kits

(Stratagene), and b chimeras were generated by two-step PCR. All constructs
705–711, June 18, 2015 ª2015 Elsevier Ltd All rights reserved 709
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Figure 4. MT47-100 Promotes Glucose-Stimulated Insulin Secretion

in Isolated Mouse Islets

Data are presented as means ± SEM.

(A) AMPK b-isoform content of mouse (WT and b2KO, left) and human (right)

islets. Isolated islets (mouse: 700; human: 300) were immunoblotted with pan

AMPK b antibody against purified, E. coli-expressed AMPKb1 and AMPKb2

standards. Values below indicate expression of each b isoform as a percent-

age of total b.

(B) AMPK b2 deletion is associated with hyperinsulinemia after a 16-hr fast (n =

16–18, combined from two independent experiments; **p < 0.01 versus WT).

(C) Insulin secretion assays were performed on untreated or MT47-100

(200 mM) incubated islets isolated from C57Bl/6 WT, b1KO, or b2KO mice as

indicated. Insulin secretion into the supernatant was analyzed by mouse

insulin ELISA. Significant differences in insulin secretion at 20 mM glucose

between untreated islets and islets incubated with MT47-100 are shown

(n = 6–13, combined from five independent experiments; *p < 0.05, **p < 0.01;

ns, not significant).
were sequence verified. Heterotrimeric human AMPK (GST-a1/b1-Myc/HA-g1

and GST-a1/b2-Myc/HA-g1; WT and mutants, chimeras, and truncations as

indicated) were expressed in COS7 cells as previously described (Oakhill

et al., 2010). AMPK was isolated from COS7 cell lysates on anti-c-Myc affinity

gel (Sigma) prior to assay. AMPK for AMP/MT47-100 synergy analysis was iso-

lated on glutathione Sepharose 4B (GE Life Sciences), dephosphorylated with

l-phosphatase (2mMMnCl2, 2 hr, 22
�C), extensively washed with 50mMTris-

HCl (pH 7.4), 150mMNaCl, 10% glycerol, and 1mMDTT (buffer A), and eluted

with buffer A supplemented with 20 mM glutathione prior to assay. All AMPK

preparations were quantitated as described previously (Scott et al., 2014).

AMPK activity was determined by phosphorylation of the SAMS peptide as

previously described (Scott et al., 2014).

Insulin Secretion Assay

GSIS assays were performed as previously described (Thomas et al., 2002).
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