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Abstract: We present fast methods for the conformal mapping of simply, doubly and multiply connected regions onto 
certain canonical regions in the plane. Our mapping procedure consists of two parts. First we solve an integral 
equation on the boundary of the region we wish to map. The solution of this integral equation is needed to determine 
the boundary correspondence. We have chosen to use the integral equation formulation of Mikhlin. Although it is not 
widely used, this formulation has the advantage that it leads to integral equations of the second kind with unique 
solutions and bounded kernels. The solutions are also periodic, allowing for effective use of the trapezoid rule. Once 
we have solved the integral equation we use a rapid method we have previously developed to determine the mapping 
function in the interior of the region. This method makes use of fast Poisson solvers, and thereby circumvents the 
difficulties associated with computing integrals at points near the boundary of the region, and avoids the expense of 
computing many integrals. We also provide results of numerical experiments. 
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Introduction 

In this paper we describe an efficient method we have implemented for computing the 
conformal mapping of simply and multiply connected regions onto certain canonical regions. In 
particular, we have used the method to map simply connected regions onto discs, to map doubly 
connected regions onto annuli, and to map regions of higher connectivity onto slit discs. 

The mapping procedure consists of two parts. First we solve an integral equation on the 
boundary of the region. The solution of this integral equation provides an analytic formula for 
values of the mapping function on the boundary. The integral equation, due to Mikhlin [lo], is 
not new, but has not been widely used. Once we have solved the integral equation we use a rapid 
method that we have previously developed [9] to find the mapping function in the interior of the 
region. 

The method we use to find the mapping in the interior of the region makes use of fast Poisson 
solvers, and can be used to evaluate the derivatives of the mapping as well as the mapping to 
second order accuracy, even near the boundary of the region. It is particularly attractive since the 
cost of evaluating the mapping is essentially just the cost of applying a fast Poisson solver twice. 

We note that the question of finding the mapping in the interior of the region is often 
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neglected. Many methods for conformal mapping are only methods for deriving and solving an 
integral equation for the boundary correspondence. The problem of finding the mapping 
elsewhere is thereby reduced to the problem of evaluating certain integrals in the interior of the 
region. There are, however, several difficulties encountered in computing these integrals directly. 
First, it is clearly very expensive to evaluate integrals at many points. This is particularly true 
since the kernels of the integrals are often expensive to evaluate. An even more serious problem is 
that it is difficult to compute the mapping accurately where it is often needed the most-near the 
boundary of the region. This is because the kernels of the integrals are always unbounded as the 
the point at which one computes them nears the boundary. 

Our method overcomes these two difficulties. In fact, in our method we only compute the 
mapping by evaluating any integrals at the edge of a rectangular region in which we embed the 
the region we wish to map. Furthermore, we can compute the mapping to second order accuracy 
at all points of the region. 

The idea of the method is the following. The conformal mapping is an analytic function. We 
use the solution of the integral equation to define another analytic function in the rest of the 
embedding region. The extension is discontinuous, but the discontinuities between the mapping 
and its extension can be expressed in terms of the solution of the integral equation. Once we 
know the discontinuities we use them to compute approximations to the discrete Laplacians of 
the real and imaginary parts of the extended analytic function. Then we use fast Poisson solvers 
to find the mapping itself. 

We note that our method of computing the conformal mapping at points inside the region can 
be combined with other integral equation formulations of the problem. This is because in many 
methods the mapping can be expressed in terms of single or double layer density functions, which 
can be rapidly computed by our method. For example, our method can be combined with 
Symm’s method [2]. 

We have chosen to use the integral equation formulation of Mikhlin. When the region is 
simply connected this formulation reduces the problem to solving a Dirichlet problem, while for 
regions of higher connectivity it reduces the problem to solving a modified Dirichlet problem. A 
modified Dirichlet problem is an elliptic boundary value problem on a multiply connected region 
in which the the boundary values of the function are specified only up to an additive constant on 
all but one of the boundary curves. The constants are determined by the requirement that the 
conjugate of the solution of the problem be single valued in the region. 

This integral equation formulation has several advantages. In particular, all the integral 
equations that arise are Fredholm integral equations of the second kind with bounded kernels. 
This is in contrast to the commonly used method of Symm, where the integral equations are 
integral equations of the first kind [2,6] and the kernels have a logarithmic singularity. We note 
that integral equations of the second kind do not suffer from the problem of being ill-condi- 
tioned, and reliable error estimates are available [l]. Of course, when we use an integral equation 
of the second kind, the singularity of the kernel at points near but not on the boundary is worse. 
This is a major reason why engineers often prefer to formulate problems using integral equations 
of the first kind. However, since we do not compute the mapping in the interior by evaluating 
any integrals this singularity problem is of no importance. This observation is central for our 
solution technique, and is what makes the method work so well. 

In addition, the solution of the .integral equations is always unique. This is not the case, for 
example, in the method of Gershgorin [4]. Moreover, in his integral equation formulation and 
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others the solution of the integral equation is not periodic. In Mikhlin’s formulation it is. This 
allows for effective use of the trapezoid rule, which is highly accurate on smooth closed contours. 
Also, the kernels are inexpensive to evaluate. From the solution of the integral equation it is 
possible to determine constants such as the radius of the inner boundary when we map onto an 
annulus, and the location of the slits when we map onto the slit disc. We also note that a similar 
integral equation formulation can be used to map exterior as well as interior regions. Finally, we 
mention that since we map the given region onto the canonical region, the mapping problem is 
linear. Other recently developed methods [3,5,13] provide the mapping onto the given region, and 
therefore require the solution of a nonlinear system of equations. 

We have chosen to solve the integral equation by a direct method. We note, however, that it 
may be more efficient to solve it iteratively. For example, we note that Young et al. [15] have 
solved similar systems using a conjugate gradient method applied to the normal equations. 

In the first section of this paper we present the mathematical formulation of the problem, in 
the second and third we present the integral equation formulation and method used to solve the 
integral equations, and in the fourth we give the method used to evaluate the mapping in the 
interior of the region. In the last section we present results of numerical experiments. 

1. Mathematical formulation 

I. 1. Simply connected regions 

Assume we have a simply connected region D with smooth boundary L, and we wish to map 
it onto the unit disc 1 w 1 -c 1. Let z = (Y be the point that gets mapped onto the center of the disc, 
w = 0. Following Mikhlin [lo], the mapping function w(r) can be written in the form 

44=(z-4g(z), 0.1) 

where g(z) is analytic and nonzero in D. It follows that the function 

444 = log g(z) 

is also analytic in D. We can determine the boundary values of the real part of Q by noting that 
if t is a point on the boundary of D, then 

Iw(t)l=If-alIg(t)l=1, 
and so 

Re +(t) = loglg(t) ] = -1oglt - a]. 

Therefore, in order to find C#I we can first solve Laplace’s equation with Dirichlet boundary 
values -log It - a I to determine Re c$, and then determine the conjugate harmonic function. 
Having done this we use that fact that 

g( _7) = e+(‘) 

to determine g(z), and thereby w(z). We note that this formulation is the same as the one used 
in Symm’s method [2]. 
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I. 2. Doubly connected regions 

We now consider the problem of mapping a doubly connected region D in the z plane with 
smooth boundary onto an annulus R, < 1 w 1 < 1. Suppose D is bounded on the outside by the 
curve L,, and on the inside by the curve L,. We assume that L, is mapped onto 1 w 1 = 1, and f., 
is mapped onto I w I = R,. 

For simplicity we also assume that the origin of the coordinate system in the z plane is inside 
the region bounded by L,. Since the mapping function w(z) is bounded and nonzero in D, the 
function log w(z) is nonsingular in D. Define 

C$( 2) = log w( 2)/z = log w( 2) - log z. 

Upon traversing L, or any curve homotopic to it in D in the counterclockwise direction, both 
Arg w(z) and Arg z increase by 2a. It follows that $(z) is single valued and regular in D. Since 
we know that both boundary curves are mapped onto circles we can easily find the boundary 
values of Re $. 

For t in L,, I w(t) I = 1, and for t in L,, 1 w(t) I = R,. Hence 

Re +(t) = 
-logl~l, ~~LlJ, 
-log(t] +log R,, r EL,. 04 

The value of R, is determined by the condition that the conjugate function Re $ be single 
valued. The problem of finding Re + therefore reduces to solving a modified Dirichlet problem 
with boundary values -log I t I. 

It is possible to show that the value of R, so determined is always less than 1, and that L, and 
L, are in one-to-one correspondence with the circles I w I = 1 and I w 1 = R,. See [lo]. It follows 
that the function w(z) = z exp +(z) maps D onto the annulus. 

1.3. The mapping of multiconnected regions onto the slit disc 

We now assume that our region D is (n + l)-connected where n >, 2. We wish to map it onto 
the the unit disc in the w plane with concentric cuts. 

Suppose D is bounded on the outside by a smooth curve L,, and on the inside by smooth 
curves L,, L2,..., L,. We assume that the point z = a which gets mapped to the origin is inside 
D. 

We again use the fact that the map w(z) can be written 

w(z) = (z - &(z), 

where g(z) is analytic and nonzero in D. As in the case of a simply connected region we have 

Re+(t)= -loglt-cu], MEL,. 

Suppose that the curve Li gets mapped onto a portion of the circle I w I = Ri, i.e. I w(z) I = Ri for 
t in Li. Then 

Re$(t)= -loglr-cy], MEL,. 

Suppose that the curve Li gets mapped onto a portion of the circle I w I = Ri, i.e. I w(z) I = Ri for 
t in Li. Then 

Re+(t)= -log(t-cu]+log Ri fortELi, 2<i<n. (1.3) 
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Once again the problem of finding the real part of $ reduces to solving a modified Dirichlet 
problem. Also, as before, once we know Re $I we can determine Im + and thereby g( 2) and w(z). 

2. Integral equations 

We solve both the Dirichlet and modified Dirichlet problems described 
integral equation formulations. In both cases we assume that the solution 
integral of a double layer density function p: 

in Section 1 by using 
can be written as the 

1 
U(X, _y) = Y 

/ 
a log +, Y, n(s), j(s)) ds 

271 aoP(s) an, 

where 

r2 = (x - _t(s))‘+(y -Y(s))~, 

or, equivalently, as the real part of the Cauchy integral with density p: 

If the region D is simply connected, then we have an ordinary Dirichlet problem with 

boundary data 

u(t) = -log)r-aI. 

It can be shown [lo] that the density function p(s) is the solution of the following integral 
equation on the boundary of D 

p(t)+~~~~(s)alogarn(sl ‘Ids= -2loglr-al. 
* 

When the region is not simply connected we solve a modified Dirichlet problem. We must 
determine not only the density function p(s), bu’t also the constants log Ri which appear on the 
right-hand sides of equations (1.2) and (1.3). Following (10, p. 1461, let p(t) denote the solution 
of the integral equation 

p(t)+;l)(s)[ aloga;(s’ t, -a(~, r)]dr= -2loglt-aI 
s 

where 

Let 

a(s, t)= 1 if s, t lie on the same curve, 
0 otherwise. 

Ri = $(s)ds. 

Then it is easy to verify that p(s) is the correct density function and that { Ri} are the required 
constants. 
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3. Solution of the integral equations 

The integral equations we solve are all Fredholm integral equations of the second kind, that is, 
equations of the form 

g(t)-/‘G(r, s)g(s)ds=d(t) fora<t<b, 
D 

where g(t), h(t), and G(s, t) are continuous for a < s,t < 6, and 

’ 
// 

‘]G(s, t)]Zdsdt<cc. 
(I a 

Moreover, the kernels are all bounded. (When s = t on 3D we have 

a log r(s, t) 
an, = $K(S), 

where K(S) is the curvature at s.) 
We solve the integral equation for most regions by using a Nystrom method with the trapezoid 

rule as the quadrature formula: 

p,(Q+$ 
[ 

a log ‘(t;, I,) 

antj 
+a(ri7 t,) Pn(rj)h=d(fl) 

J 1 
where h is the mesh width. In our experiments we chose the mesh points equally spaced with 
respect to some boundary parameter. (The points used as nodes for solving the integral equation 
are independent of the mesh points used for the fast solver.) We note that the accuracy of the 
solution of the integral is the same as the accuracy of the quadrature formula [l]. Using the 
Euler-Maclaurin formula it is easy to see that the trapezoid rule is highly accurate on periodic 
regions. We can therefore usually expect very high accuracy using this method. 

For some regions, such as an oval of Cassini [12, p. 2551, where two different parts of the 
boundary are close to each other, and therefore the kernel is very large, this method is not 
sufficiently accurate. In such cases we integrate the kernel exactly: 

/ 

f,,, a 1% r(s, 'j) f,+I a+, t,) 
I,- I an, ds=J 

f,- I 
as ds=8(ti+l, I,)-e(ti_l’ 5). 

We thereby obtain the system of equations: 

p(ti)+$ae+ha(~;, t,)p(rj)=d(ti) 
i 

where A8 = arctan ( ti+ 1 - rj)/( ti_ 1 - fj) is the angle between the lines joining the points ti+i and 

‘i-1 to the point lj. 
For our numerical experiments we chose to solve these systems directly using Gaussian 

elimination. It is also possible to solve them iteratively [14, 151. (We note that although the 
integral equation is in genera1 nonsymmetric it nevertheless has positive real eigenvalues [8].) 
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4. Solution evaluation in the interior 

After we compute the density function p(f), it remains to evaluate the Cauchy integral 
+(t) = (1/27)/p(t)/(z - t)dz at points in the interior of the regions. We use the method 
described in [9]. 

We first show how to compute the real part of I#(?), that is 

&jPt’) an 

a log 4~ 4 ds 

* 

s 

(4.1) 

In order to do this we first embed D in some larger region R such a rectangle with a uniform 
mesh in the x and y directions for which there exists a fast Poisson solver. We note that (4.1) 
defines another function ii at points outside D. The function fi is harmonic, but it is a 
discontinuous extension of U. Denote by U(t) the combined function, that is the function that is 
equal to u at points inside D, and equal to fi at points of R - D. Our objective is to compute an 
approximation to the discrete Laplacian of U at all the mesh points of R. Since u and ii are 
harmonic, at mesh points which have all four of their nearest neighbors on the same side of the 
boundary we set the discrete Laplacian equal to 0. It remains to show how to compute an 
approximation at the other (irregular) mesh points. 

The idea is the following. It is well known that u and ii are continuous in the normal direction, 
but have a jump in the tangential direction equal to the density p. Consequently, it is easy to find 
expressions for the jumps in the derivatives of u and ii in the coordinate directions. For example 

ux - ti, = p’( s ) x’b> 
XI(s)* +y’(s)* 

and 

uy - ii, =.p’( s> Y’(S) 

XI(s)* +y+)* - 

Such expressions are composed entirely of evaluations of p and its derivatives and derivatives of 
the boundary curve. We use these jumps to compute an approximation to the discrete difference 
operators at the irregular mesh points. 

Suppose, for example, that a point p is inside the region D, and its neighbor to the left, pE, is 
not. Let p’ be the point where the line between p and pE intersects the boundary, and let h, be 
the distance between p’ and pE. By manipulating the Taylor series at p and pE, we can derive 
the following expression for ii( p) - u( p E): 

The first three terms can be expressed in terms of the solution of the integral equation and the 
boundary data. The other terms are the usual Taylor series terms. We obtain the same type of 
formula for the difference between U at p and U at its other neighbors, except that there may not 
be any boundary terms. Therefore, if we can solve the integral equation we can compute an 
approximation to the discrete Laplacian of U which is the sum of the four difference operators, 
at all points of the grid. As for boundary values of U, we need only compute an approximation to 
the integral (4.1) at mesh points at the edge of the embedding region. 
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We can also compute the conjugate function Im g = u at small additional cost. That is because 
by using the Cauchy-Riemann equations we can express the discontinuities in u in terms of the 
discontinuities in u. We can thereby also compute the discrete Laplacian of u. Once we know the 
discrete Laplacians of u and u we need only apply a fast Poisson solver twice to obtain their 
values at the mesh points of the grid. The solution will be second-order accurate in h, where h is 
the mesh width in R. If greater accuracy is required then it is possible to obtain greater accuracy 
by computing higher order accurate approximations to the discrete Laplacians and using higher 
order accurate Poisson solvers. See [9] for details. 

5. Results of numerical experiments 

We ran experiments on simply, doubly and triply connected regions. 
The first simply connected regions we tested were ellipses. Figures 1 and 2 are the graphs of 

the images of the segments of the coordinate lines x = ih and y =jh inside two ellipses. For Fig. 
1 the semiaxes of the ellipse were 0.2 and 0.35, and for Fig. 2 they were 0.35 and 0.3. In both 
examples h = ft. We used the trapezoid rule with 30 mesh points to discretize the integral 
equation. In this and all subsequent examples the embedding region was the unit square. 

The second simply connected region we tested was an oval of Cassini: 

x(O) = R(O)cos(fl), y(e) = R( f?)sin( 8), 

R(B)= c2cos28f a4-c4sin26’ . 

In our experiments we chose c = 0.10 and a = 0.43. To discretize the integral equation we used 

Fig. 1. Fig. 2. 



A. Ma_vo / Mapping of rnultip(v connected regions 151 

Fig. 3. Fig. 4. 

the second method described in Section 3 (that is, we integrated the kernel exactly), and we used 
90 mesh points equally spaced with respect to 8. The exact mapping function is known [12, p. 
2561. When we embedded the region in the unit square with mesh witdth h = ft the maximum 
error in the interior was 0.54 E-2, and when we used h = & the maximum error was 0.24 E-2. 

The doubly connected region we tested was the region bounded by the two eccentric circles, 
It] =0.35, and (z - 0.08 1 = 0.14. The exact solution is a bilinear transformation and is known 

exactly [II, p. 1741. Moreover, the solution of the integral equation is also known exactly. We 
found that when we used a total of 70 points, the error we made in solving the integral equation 
was 0.78 E-6. From this, other numerical experiments [9], and theoretical results [l]. we believe 

Fig. 5. 
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Fig. 6. 

that we solve the integral equation very accurately. However, since the fast Poisson solver we use 
to compute the map in the interior is only second order accurate, we lose accuracy. To be 
specific, when we used mesh h = $ on the unit square the error was 0.19 E-2, and when we used 
mesh width h = & the error was 0.51 E-3. We believe that, since this accuracy was achieved at 
points very close to the boundary, the results are quite good. However, as we mentioned before, if 
greater accuracy is required then one can use a higher order accurate Poisson solver. 

The last regions we tested were triply connected. In both cases the outside boundary curve was 
the circle 1 z 1 = 0.35. In the first example (Fig. 3) the inner boundary curves were circles of 
radius 0.08 centered at x = -0.14 and x = 0.14, and in the second (Fig. 4), the inner curves were 
elllipses with semiaxes 0.06 and 0.13 centered at x = 0.17 and x = -0.17. Figures 5 and 6 are the 
images of the mesh lines inside these regions. The mesh width on the square was h = A, and a 
total of 180 mesh points were used to solve the integral equation in both examples. For clarity we 
have also plotted the unit circle and the slits. 
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