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Abstract

Representations of Banach–Lie groups are realized on Hilbert spaces formed by sections of holomorphic
homogeneous vector bundles. These sections are obtained by means of a new notion of reproducing kernel,
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applies in particular to representations of C∗-algebras endowed with conditional expectations. In this way,
we present holomorphic geometric models for the Stinespring dilations of completely positive maps. The
general results are further illustrated by a discussion of several specific topics, including similarity orbits of
representations of amenable Banach algebras, similarity orbits of conditional expectations, geometric mod-
els of representations of Cuntz algebras, the relationship to endomorphisms of B(H), and non-commutative
stochastic analysis.
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1. Introduction

Originally, the interest in the study of representations of algebras and groups of operators on
infinite-dimensional Hilbert or Banach spaces is to be found, as one of the main motivations,
in problems arising from Quantum Physics. In this setting, unitary groups of operators can be
interpreted as symmetry groups while the self-adjoint operators are thought of as observable
objects, hence the direct approach to such questions leads naturally to representations both in-
volving algebras generated by commutative or non-commutative canonical relations, and groups
of unitaries on Hilbert spaces; see for instance [31,59], or [58]. Over the years, there have been
important developments of this initial approach, in papers devoted to analyze or classify a wide
variety of representations, and yet many questions remain open in the subject. It is certainly
desirable to transfer to this field methods, or at least ideas, of the rich representation theory of
finite-dimensional Lie groups.

In this respect, recall that geometric representation theory is a classical topic in finite di-
mensions. Its purpose is to shed light on certain classes of representations by means of their
geometric realizations (see for instance [45]). Thus the construction of geometric models of rep-
resentations lies at the heart of that topic. One of the classical results obtained in this direction is
the Bott–Borel–Weil theorem concerning realizations of irreducible representations of compact
Lie groups, in spaces of sections (or higher cohomology groups) of holomorphic vector bundles
over flag manifolds [15]. Section spaces of vector bundles also appear in methods of induction
of representations of Lie groups [29,35].

In special situations, or for particular aims, these ideas have been applied in the setting of
infinite-dimensional Lie groups; see for example [16,35,47]. However, several difficult points are
encountered when one tries to extend these methods in general, and perhaps the most important
one is related to the lack of an algebraic structure theory for representations of these groups. Also,
it is not a minor question the fact that, in infinite dimensions, there is no sufficiently well-suited
theory of integration. The most reasonable way to deal with these problems seems to be to restrict
both the class of groups and the class of representations one is working with. Moreover, one is
led quite frequently to employ methods of operator algebras. See for example [61], where the
study of factor representations of the group U(∞) and AF-algebras is undertaken. There, a key
role is played by the Gelfand–Naimark–Segal (or GNS, for short) representations constructed
out of states of suitable maximal abelian self-adjoint subalgebras.

The importance of GNS representations as well as that of the geometric properties of state
spaces in operator theory are well known. In [11], geometric realizations of restrictions of GNS
representations to groups of unitaries in C∗-algebras are investigated, by considering suitable ver-
sions of reproducing kernels on vector bundles, in order to build representation spaces formed by
sections. (This technique has already a well-established place in representation theory of finite-
dimensional Lie groups; see for instance the monograph [45].) In some more detail, let B ⊆ A

be unital C∗-algebras such that there exists a conditional expectation E :A → B . Let UA and
UB be the unitary groups of A and B , respectively, and ϕ a state of A such that ϕ ◦ E = ϕ.
A reproducing kernel Hilbert space Hϕ,E can be constructed out of ϕ and E, consisting of C∞
sections of a certain Hermitian vector bundle with base the homogeneous space UA/UB , and the
restriction to UA of the GNS representation associated with ϕ can be realized as the natural mul-
tiplication of UA on Hϕ,E ; see [11, Theorem 5.4]. This theorem relates the GNS representations
to the geometric representation theory, in the spirit of the Bott–Borel–Weil theorem. In view of
this result and of the powerful method of induction developed in [16], it is most natural to ask
about similar results for more general representations of infinite-dimensional Lie groups.
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The above circle of ideas is naturally connected with holomorphy. Recall that this is the classi-
cal setting of the Bott–Borel–Weil theorem of [15] involving the flag manifolds, and it reinforces
the strength of applications. The idea of complexification plays a central role in this area, inas-
much as one of the ways to describe the complex structure of the flag manifolds is to view the
latter as homogeneous spaces of complexifications of compact Lie groups. (See [13,14,40,62]
for recent advances in understanding the differential geometric flavor of the process of complex-
ification.) In some cases involving finiteness properties of spectra and traces of elements in a
C∗-algebra, it is possible to prove that the aforementioned homogeneous space UA/UB is a com-
plex manifold as well and the Hilbert space Hϕ,E is formed by holomorphic sections (see [11,
Theorem 5.8]). Similar results about complex structures hold in the special case of tautological
bundles over Grassmann manifolds associated with involutive algebras, where they are related to
constructions of almost hypercomplex structures; see [10].

Apart from the above two examples, the holomorphic character of the manifolds UA/UB (and
associated bundles) is far from being clear in general. Thus, since the tautological bundles con-
sidered in [10] are universal among manifolds of type UA/UB , it sounds sensible to investigate
complexifications of the manifolds UA/UB in general. On the other hand, the aforementioned
conditional expectation E :A → B has a geometric meaning as a connection form defining a
reductive structure in the homogeneous space GA/GB ; see [2,21]. Since X is the Lie algebra
of the complex Banach–Lie group GX for X = A and X = B , it is desirable to incorporate full
groups of invertibles to the framework established in [11]. Note also that GX is the universal
complexification of UX , according to the discussion of [46].

The above considerations suggest to find out the character of spaces GA/GB as natural can-
didates to complexifications of spaces UA/UB , as well as their relationship with vector bundles
and kernels.

Brief description of the present paper. One of our aims in the present paper is to extend the
geometric representation theory of unitary groups of operator algebras to the complex setting of
full groups of invertible elements. For this purpose we need a method to realize the represen-
tation spaces as Hilbert spaces of sections in holomorphic vector bundles. If one tries to mimic
the arguments of [11] then one runs into troubles very soon (regarding the construction of ap-
propriate reproducing kernels), due to the fact that general invertible elements of a C∗-algebra
lack, when considered in an inner product, helpful cancellative properties (that unitaries have).
This can be overcome by using certain involutions z �→ z−∗ (that come from the involutions of
C∗-algebras) on the bases of the bundles, but then the problem is that our bundles lose their
Hermitian character.

So we are naturally led toward developing a special theory of reproducing kernels on vector
bundles. Section 2 includes a discussion of a version of Hermitian vector bundles suitable for
our purposes. We call them like-Hermitian. The bases of such vector bundles are equipped with
involutive diffeomorphisms z �→ z−∗, so that we need to find out a class of reproducing kernels,
compatible in a suitable sense with the corresponding diffeomorphisms, which we call here re-
producing (−∗)-kernels. The very basic elements for the theory of reproducing (−∗)-kernels are
presented in Section 3 (it is our intention to develop such a theory more sistematically in forth-
coming papers). In Section 4 we discuss examples of the above notions which arise in relation to
homogeneous manifolds obtained by (smooth) actions of complex Banach–Lie groups (see Def-
inition 2.10). These examples play a critical role for our main constructions of geometric models
of representations; see Theorems 4.2 and 4.4. In particular, Theorem 4.4 provides the holomor-
phic versions of such realizations. In order to include the homogeneous spaces of unitary groups
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UA/UB in the theory and to avoid the fact that they are not necessarily complex manifolds, we
had to view them as embedded into their natural complexifications GA/GB .

The special case where GA is the group of invertibles in a C∗-algebra is treated in Section 5.
Using a significant polar decomposition of GA found by Porta and Recht, relative to a prescribed
conditional expectation (see [53]), it is possible to interpret the manifold GA/GB as (diffeo-
morphic to) the tangent bundle of UA/UB , see Theorems 5.1 and 5.5 below. These properties
resemble very much similar properties enjoyed by complexifications of manifolds of compact
type in finite dimensions. This may well mean that the homogeneous spaces UA/UB and GA/GB

are suitable substitutes for compact homogeneous spaces in the infinite-dimensional setting.
The set of ideas previously exposed can be used to investigate geometric models for represen-

tations which arise as Stinespring dilations of completely positive maps on C∗-algebras A. In this
way we shall actually end up with a geometric dilation theory of completely positive maps. This
in particular enables us to get more examples of representations of Banach–Lie groups (namely,
UA, GA) which admit geometric realizations in the sense of [11]. At this point, it is noteworthy
that, just by differentiating, it is possible to recover the whole dilation on A and not only its
restriction to UA or GA, see Theorem 6.10. So this provides a geometric interpretation of the
classical methods of extension and induction of representations of C∗-algebras (see [25,54]). We
should point out here that there exist earlier approaches in which completely positive maps have
been considered under geometric perspectives—see for instance [3,6,52], or [44]—however they
are different from the present line of investigation.

The last section of the paper, Section 7, is devoted to showing, by means of several specific
examples, that the theory established here has interesting links with quite a number of different
subjects in operator theory and related areas.

For the sake of better explanation, we conclude this introduction by a summary of the main
points considered in the paper. These are:

– a theory of reproducing kernels on vector bundles that takes into account prescribed involu-
tions of the bundle bases (Section 3);

– in the case of homogeneous vector bundles we investigate a circle of ideas centered on
the relationship between reproducing kernels and complexifications of homogeneous spaces
(Theorems 4.4 and 5.1);

– by using the previous items we model the representation spaces of Stinespring dilations as
spaces of holomorphic sections in certain homogeneous vector bundles; thereby we set forth
a rich panel of differential geometric structures accompanying the dilations of completely
positive maps (Section 6); for one thing, we provide a geometric perspective on induced
representations of C∗-algebras (cf. [54]);

– as an illustration of our results we describe in Section 7 a number of geometric properties of
orbits of representations of nuclear C∗-algebras and injective von Neumann algebras (Corol-
lary 7.2), similarity orbits of conditional expectations, and some relationships with represen-
tations of Cuntz algebras and endomorphisms of B(H), as well as with non-commutative
stochastic analysis.

2. Like-Hermitian structures

We are going to introduce a variation of the notion of Hermitian vector bundle, which will
turn out to provide the appropriate setting for the geometric representation theory of involutive
Banach–Lie groups as developed in Section 4.
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Definition 2.1. Assume that Z is a real Banach manifold equipped with a diffeomorphism
z �→ z−∗, Z → Z, which is involutive in the sense that (z−∗)−∗ = z for all z ∈ Z. Denote by
p1,p2 :Z × Z → Z the natural projection maps. Let Π :D → Z be a smooth vector bundle
whose fibers are complex Banach spaces (see for instance [1] or [38] for details on infinite-
dimensional vector bundles).

We define a like-Hermitian structure on the bundle Π (with typical fiber the Banach space E )
as a family {(· | ·)z,z−∗}z∈Z with the following properties:

(a) For every z ∈ Z, (· | ·)z,z−∗ :Dz × Dz−∗ → C is a sesquilinear strong duality pairing.
(b) For all z ∈ Z, ξ ∈ Dz, and η ∈ Dz−∗ we have (ξ | η)z,z−∗ = (η | ξ)z−∗,z.
(c) If V is an arbitrary open subset of Z, and Ψ0 :V × E → Π−1(V ) and Ψ1 :V −∗ × E →

Π−1(V −∗) are trivializations of the vector bundle Π over V and V −∗ (:= {z−∗ | z ∈ V }),
respectively, then the function (z, x, y) �→ (Ψ0(z, x) | Ψ1(z

−∗, y))z,z−∗ , V × E × E → C, is
smooth.

We call like-Hermitian vector bundle any vector bundle equipped with a like-Hermitian structure.

Remark 2.2. Here we explain the meaning of condition (a) in Definition 2.1. To this end let X
and Y be two complex Banach spaces. A functional (· | ·) : X × Y → C is said to be a sesquilinear
strong duality pairing if it is continuous, is linear in the first variable and antilinear in the second
variable, and both the mappings

x �→ (x | ·), X → (Y )∗, and y �→ (· | y), Y → X ∗,

are (not necessarily isometric) isomorphisms of complex Banach spaces.
Here we denote, for any complex Banach space Z , by Z ∗ its dual Banach space (i.e., the space

of all continuous linear functionals Z → C) and by Z the complex-conjugate Banach space. That
is, the real Banach spaces underlying Z and Z coincide, and for any z in the corresponding real
Banach space and λ ∈ C we have λ · z (in Z) = λ · z (in Z).

Remark 2.3. For later use we now record the following fact. Assume that X and Y are two
Banach spaces over C, and let (· | ·) : X × Y → C be a sesquilinear strong duality pairing. Now
let H be a Hilbert space over C and let T : H → X be a continuous linear operator. Then there
exists a unique linear operator S : Y → H such that

(∀h ∈ H, y ∈ Y ) (T h | y) = (h | Sy)H. (2.1)

Conversely, for every bounded linear operator S : Y → H there exists a unique bounded linear
operator T : H → X satisfying (2.1), and we denote S−∗ := T and T −∗ := S.

Remark 2.4. In Definition 2.1 if z−∗ = z and (ξ | ξ)z,z � 0 for all z ∈ Z and ξ ∈ Dz, then we
shall speak simply about Hermitian structures and bundles, since this is just the usual notion of
Hermitian structure on a vector bundle. See for instance Definition 1.1 in [67, Chapter III] for
the classical case of finite-dimensional Hermitian vector bundles.

Example 2.5. Let Π :D → Z be a smooth vector bundle whose fibers are complex Banach
spaces. Assume that there exist a complex Hilbert space H and a smooth map Θ :D → H with
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the property that Θ|Dz :Dz → H is a bounded linear operator for all z ∈ Z. Then Θ determines
a family of continuous sesquilinear functionals

(· | ·)z,z−∗ :Dz × Dz−∗ → C, (η1 | η2)z,z−∗ = (Θ(η1) | Θ(η2)
)

H.

If in addition Θ|Dz :Dz → H is injective and has closed range, and the scalar product of H deter-
mines a sesquilinear strong duality pairing between the subspaces Θ(Dz) and Θ(Dz−∗) whenever
z ∈ Z, then it is easy to see that we get a like-Hermitian structure on the vector bundle Π .

Definition 2.6. An involutive Banach–Lie group is a (real or complex) Banach–Lie group G

equipped with a diffeomorphism u �→ u∗ satisfying (uv)∗ = v∗u∗ and (u∗)∗ = u for all u,v ∈ G.
In this case we denote

(∀u ∈ G) u−∗ := (u−1)∗
and

G+ := {u∗u | u ∈ G}

and the elements of G+ are called the positive elements of G.
If in addition H is a Banach–Lie subgroup of G, then we say that H is an involutive Banach–

Lie subgroup if u∗ ∈ H whenever u ∈ H .

Remark 2.7. If G is an involutive Banach–Lie group then for every u ∈ G we have (u−1)∗ =
(u∗)−1 and moreover 1∗ = 1. To see this, just note that the mapping u �→ (u∗)−1 is an automor-
phism of G, hence it commutes with the inversion mapping and leaves 1 fixed.

Example 2.8. Every Banach–Lie group G has a trivial structure of involutive Banach–Lie group
defined by u∗ := u−1 for all u ∈ G. In this case the set of positive elements is G+ = {1}.

Example 2.9. Let A be a unital C∗-algebra with the group of invertible elements denoted by GA.
Then GA has a natural structure of involutive complex Banach–Lie group defined by the in-
volution of A. If B is any C∗-subalgebra of A such that there exists a conditional expectation
E :A → B , then GB is an involutive complex Banach–Lie subgroup of GA.

The following definition provides us with an important example of like-Hermitian vector bun-
dles, associated with a given representation, which plays a central role through the paper.

Definition 2.10. Assume that we have the following data:

• GA is an involutive real (respectively, complex) Banach–Lie group and GB is an involutive
real (respectively, complex) Banach–Lie subgroup of GA.

• For X = A or X = B , assume HX is a complex Hilbert space with HB closed subspace
in HA, and πX :GX → B(HX) is a uniformly continuous (respectively, holomorphic) ∗-
representation such that πB(u) = πA(u)|HB

for all u ∈ GB . By ∗-representation we mean
that πA(u∗) = πA(u)∗ for all u ∈ GA.

• We denote by P : HA → HB the orthogonal projection.
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We define an equivalence relation on GA × HB by

(u,f ) ∼ (u′, f ′) whenever there exists w ∈ GB such that u′ = uw and f ′ = πB

(
w−1)f.

For every pair (u,f ) ∈ GA × HB we define its equivalence class by [(u,f )] and let D = GA ×GB

HB denote the corresponding set of equivalence classes. Then there exists a natural onto map

Π :
[
(u,f )

] �→ s := uGB, D → GA/GB.

For s ∈ GA/GB , let Ds := Π−1(s) denote the fiber on s. Note that (u,f ) ∼ (u′, f ′) implies that
πA(u)f = πA(u′)f ′ so that the correspondence [(u,f )] �→ πA(u)f , Ds → πA(u)HB , gives rise
to a complex linear structure on Ds . Moreover,∥∥[(u,f )

]∥∥
Ds

:= ∥∥πA(u)f
∥∥

HA

where [(u,f )] ∈ Ds , defines on Ds a Hilbertian norm.
Clearly, this structure does not depend on the choice of u. Nevertheless, note that the natural

bijection from HB onto the fiber Π−1(s) defined by

Θu :f �→ [
(u,f )

]
, HB → Π−1(s),

is a topological isomorphism but it need not be an isometry. In other words, the fiberwise maps

ΘvΘ
−1
u :
[
(u,f )

] �→ f �→ [
(v, f )

]
, Ds → HB → Dt,

where s = uGB , t = vGB and f ∈ HB , are topological isomorphisms but they are not unitary
transformations in general. As a complex Hilbert space, Ds has so many realizations of the
topological dual or predual. We next consider the following ones. For ξ = [(u,f )], η = [(v, g)]
in D, and s = uGB , t = vGB , we set as in Example 2.5,

(ξ | η)D ≡ (ξ | η)s,t := (πA(u)f | πA(v)g
)

HA
,

where (· | ·)HA
is the inner product which defines the complex Hilbert structure on HA and, by

restriction, on HB . This is a well-defined, non-negative sesquilinear form on D. In particular
(· | ·)s,t = (· | ·)t,s . We are mainly interested in forms (· | ·)s,t with t = s−∗ ∈ GA/GB . In this
case ([

(u,f )
] | [(u−∗, g

)])
s,s−∗ = (πA(u)f | πA

(
u−∗)g)HA

= (πA

(
u−1)πA(u)f | g)HA

= (f | g)HB
, (2.2)

whenever [(u,f )] ∈ Ds and [(u−∗, g)] ∈ Ds−∗ . Thus Example 2.5 shows that the basic mapping

Θ :
[
(u,f )

] �→ πA(u)f, D → HA,

gives rise to a like-Hermitian structure on the vector bundle Π .
We shall say that Π :D → GA/GB is the (holomorphic) homogeneous like-Hermitian vector

bundle associated with the data (πA,πB,P ).



D. Beltiţă, J.E. Galé / Journal of Functional Analysis 255 (2008) 2888–2932 2895
Remark 2.11. Let us see that Definition 2.10 is correct, that is, condition (a) of Defini-
tion 2.1 is satisfied. In fact, let u ∈ GA arbitrary, denote z = uGB ∈ GA/GB , and let ϕ be
any bounded linear functional on Dz−∗ . Then the mapping ϕ̃ :g �→ [(u−∗, g)] �→ ϕ([(u−∗, g)]),
HB → Dz−∗ → C, is antilinear and bounded. By the Riesz’ theorem there exists f ∈ HB such
that

ϕ
([

(u−∗, g)
])= ϕ̃(g) = (f | g)HB

(2.2)= ([
(u,f )

] | [(u−∗, g)
])

z,z−∗

and so (· | ·)z,z−∗ is a sesquilinear strong duality pairing between Dz and Dz−∗ .

3. Reproducing (−∗)-kernels

Definition 3.1. Let Π :D → Z be a like-Hermitian bundle, with involution −∗ in Z. A repro-
ducing (−∗)-kernel on Π is a section

K ∈ Γ
(
Z × Z,Hom

(
p∗

2Π,p∗
1Π
))

(whence K(s, t) :Dt → Ds is a bounded linear operator for all s, t ∈ Z) which is (−∗)-positive
definite in the following sense: for every n � 1 and tj ∈ Z, η−∗

j ∈ Dt−∗
j

(j = 1, . . . , n),

n∑
j,l=1

(
η−∗

j | K(tj , t−∗
l

)
η−∗

l

)
t−∗
j ,tj

=
n∑

j,l=1

(
K
(
tl , t

−∗
j

)
η−∗

j | η−∗
l

)
tl ,t

−∗
l

� 0.

Here p1,p2 :Z × Z → Z are the natural projection mappings. If in addition Π :D → Z is a
holomorphic like-Hermitian vector bundle and K(·, t)η ∈ O(Z,D) for all η ∈ Dt and t ∈ Z,
then we say that K is a holomorphic reproducing (−∗)-kernel.

Remark 3.2. In Definition 3.1, the symbol η−∗
j is just a way to refer to elements of Dt−∗

j
, that

is, η−∗
j is not associated to any element ηj of Dtj necessarily. From the definition we have that

K(s, s−∗) � 0 in the sense that (K(s, s−∗)ξ−∗ | ξ−∗)s,s−∗ � 0 for all ξ−∗ ∈ Ds−∗ .

The following results are related to the extension of Theorem 4.2 in [11] to reproducing ker-
nels on like-Hermitian vector bundles.

Proposition 3.3. Let Π :D → Z be a smooth like-Hermitian vector bundle and, as usu-
ally, denote by p1,p2 :Z × Z → Z the projections. Next consider a section K ∈ Γ (Z × Z,

Hom(p∗
2Π,p∗

1Π)) and for all s ∈ Z and ξ ∈ Ds denote Kξ = K(·, s)ξ ∈ Γ (Z,D). Also denote

HK
0 := span{Kξ | ξ ∈ D} ⊆ Γ (Z,D).

Then K is a reproducing (−∗)-kernel on Π if and only if there exists a complex Hilbert space H
such that HK

0 is a dense linear subspace of H and

(Kη | Kξ)H = (K(s−∗, t)η | ξ)
s−∗,s (3.1)

whenever s, t ∈ Z, ξ ∈ Ds , and η ∈ Dt .
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The proof is straightforward, just by adapting Definition 3.1 to the arguments employed in
[11, Theorem 4.2], and we omit it.

Definition 3.4. Let Π :D → Z be a smooth like-Hermitian vector bundle, p1,p2 :Z × Z → Z

the projections, and let K ∈ Γ (Z × Z,Hom(p∗
2Π,p∗

1Π)) be a reproducing (−∗)-kernel. As
above, for all s ∈ Z and ξ ∈ Ds , put Kξ = K(·, s)ξ ∈ Γ (Z,D). It is clear that the Hilbert space
H given by Proposition 3.3 is uniquely determined. We shall denote it by HK and we shall call
it the reproducing (−∗)-kernel Hilbert space associated with K .

In the same framework we also define the mapping

K̂ :D → HK, K̂(ξ) = Kξ . (3.2)

It follows by Lemma 3.5 below that for every s ∈ Z there exists a bounded linear operator
θs : HK → Ds−∗ such that(∀ξ ∈ Ds,h ∈ HK

) (
K̂(ξ) | h)HK = (ξ | θsh)s,s−∗ . (3.3)

Note that the operator θs is uniquely determined since {(· | ·)z,z−∗}z∈Z is a like-Hermitian struc-
ture, and in the notation of Remark 2.3 we have

(θs)
−∗ = K̂|Ds−∗ . (3.4)

Lemma 3.5. Assume the setting of Definition 3.4. Then for every s ∈ Z the operator K̂|Ds :Ds →
HK is bounded, linear and adjointable, in the sense that there exists a bounded linear operator
θs : HK → Ds−∗ such that (3.3) is satisfied.

Proof. Since at every point of Z we have a sesquilinear strong duality pairing, it will be
enough to show that for arbitrary s ∈ Z the linear operator K̂|Ds :Ds → HK is continuous.
(See Remark 2.3.) To this end, let us denote by ‖ · ‖Ds any norm that defines the topology

of the fiber Ds . Then for every ξ ∈ Ds we have ‖K̂(ξ)‖HK = ‖Kξ‖HK = (Kξ | Kξ)
1/2
HK

(3.1)=
(K(s−∗, s)ξ | ξ)

1/2
s−∗,s � M

1/2
s ‖ξ‖Ds , where Ms > 0 denotes the norm of the continuous sesquilin-

ear functional Ds × Ds → C defined by (ξ, η) �→ (K(s−∗, s)ξ | η)s−∗,s . So the operator

K̂|Ds :Ds → HK is indeed bounded and ‖K̂|Ds ‖ � M
1/2
s . �

Example 3.6. Every reproducing kernel on a Hermitian vector bundle (see e.g., [11, Section 4])
provides an illustration for Definition 3.4. In fact, this follows since every Hermitian vector
bundle is like-Hermitian.

Proposition 3.7. Let Π :D → Z be a like-Hermitian bundle, and denote by p1,p2 :Z × Z →
Z the natural projections. Then for every reproducing (−∗)-kernel K ∈ Γ (Z × Z,Hom(p∗

2Π,

p∗
1Π)) there exists a unique linear mapping ι : HK → Γ (Z,D) with the following properties:

(a) The restriction of ι to the dense subspace HK
0 is the identity mapping.

(b) The mapping ι is injective.
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(c) The evaluation operator evι
s :h �→ (ι(h))(s), HK → Ds , is continuous linear for arbitrary

s ∈ Z, and we have

(∀s, t ∈ Z) K(s, t−∗) = evι
s ◦ (evι

t

)−∗
.

Definition 3.8. In the setting of Proposition 3.7 we shall say that ι is the realization operator
associated with the reproducing (−∗)-kernel K .

Proof of Proposition 3.7. The uniqueness of ι is clear. To prove the existence of ι, note that for
every s ∈ Z there exists a bounded linear operator θs : HK → Ds−∗ such that(∀ξ ∈ Ds,h ∈ HK

)
(Kξ | h)HK = (ξ | θsh)s,s−∗ (3.5)

(see Lemma 3.5). We shall define the wished-for mapping ι by

ι : HK → Γ (Z,D),
(
ι(h)
)
(s) := θs−∗h (3.6)

whenever h ∈ HK and s ∈ Z. In particular we have

(∀s ∈ Z) evι
s = θs−∗ , (3.7)

and in addition Eq. (3.4) holds.
It is also clear that the mapping ι defined by (3.6) is linear. To prove that it is injective, let

h ∈ HK with ι(h) = 0. Then (ι(h))(s−∗) = 0 for all s ∈ Z, so that θsh = 0 for all s ∈ Z, according
to (3.6). Now (3.5) shows that (Kξ | h)HK = 0 for all ξ ∈ D, whence h ⊥ HK

0 in HK . Since HK
0

is a dense subspace of HK , it then follows that h = 0.
We shall check that the restriction of ι to HK

0 is the identity mapping. To this end it will be
enough to see that for all t ∈ Z and η ∈ Dt we have ι(Kη) = Kη . In fact, at any point s ∈ Z we
have (ι(Kη))(s) = θs−∗(Kη) by (3.6). Hence for all ξ ∈ Ds−∗ we get

(
ξ | (ι(Kη)

)
(s)
)
s−∗,s = (ξ | θs−∗(Kη)

)
s−∗,s

(3.5)= (Kξ | Kη)HK
(3.1)= (

K
(
t−∗, s−∗)ξ | η)

t−∗,t

= (ξ | K(s, t)η
)
s−∗,s = (ξ | Kη(s)

)
s−∗,s .

Since ξ ∈ Ds−∗ is arbitrary and {(· | ·)z,z−∗}z∈Z is a like-Hermitian structure, it then follows that
(ι(Kη))(s) = Kη(s) for all s ∈ Z, whence ι(Kη) = Kη , as desired.

Next we shall prove that ι has the asserted property (c). To this end, let s, t ∈ Z, η ∈ Dt−∗ , and
ξ ∈ Ds−∗ arbitrary. Then

((
evι

s ◦ (evι
t

)−∗)
η | ξ)

s,s−∗
(3.7)= ((

θs−∗ ◦ (θt−∗)−∗)η | ξ)
s,s−∗

(3.3)= (((
θt−∗
)−∗)

η | Kξ

)
HK

(3.4)= (Kη | Kξ)HK

(3.1)= (
K
(
s, t−∗)η | ξ)

s,s−∗ .

Since η ∈ Dt−∗ and ξ ∈ Ds−∗ are arbitrary and {(· | ·)z,z−∗}z∈Z is a like-Hermitian structure, it
follows that evι ◦ (evι )−∗ = K(s, t−∗) for arbitrary s, t ∈ Z, as desired. �
s t
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We now extend to our framework some basic properties of the classical reproducing kernels
(see for instance the first chapter of [45]).

Proposition 3.9. Assume that Π :D → Z is a like-Hermitian vector bundle, and K is a contin-
uous reproducing (−∗)-kernel on Π with the realization operator ι : HK → Γ (Z,D). Then the
following assertions hold:

(a) We have Ran ι ⊆ C(Z,D) and the mapping ι is continuous with respect to the topology of
C(Z,D) defined by the uniform convergence on the compact subsets of Z.

(b) If Π is a holomorphic bundle and K is a holomorphic reproducing (−∗)-kernel then we
have Ran ι ⊆ O(Z,D).

Proof. The proof has two stages.
1◦ At this stage we prove that every s ∈ Z has an open neighborhood Vs such that for every

sequence {hn}n∈N in HK convergent to some h ∈ HK we have limn∈N(ι(hn))(z) = (ι(h))(z)

uniformly for z ∈ Vs .
In fact, since the vector bundle Π is locally trivial, there exists an open neighborhood V of

s such that Π is trivial over both V and V −∗ := {z−∗ | z ∈ V }. Let Ψ0 :V × E → Π−1(V ) and
Ψ1 :V −∗ × E → Π−1(V −∗) be trivializations of the vector bundle Π over V and V −∗ respec-
tively, where the Banach space E is the typical fiber of Π . In particular, these trivializations allow
us to endow each fiber Dz with a norm (constructed out of the norm of E ) for z ∈ V ∪ V −∗. On
the other hand, property (c) in Definition 2.1 shows that the function

B : (z, x, y) �→ (
Ψ0(z, x) | Ψ1(z

−∗, y)
)
z,z−∗ , V × E × E → C

is smooth. Then by property (c) in Definition 2.1 we get a well-defined mapping

B̃ :V → Iso
(

E , E ∗), B̃(z)x := B(z, x, ·) for z ∈ V and x ∈ E ,

and it is straightforward to prove that B̃ is continuous since B is so. Here Iso(E , E ∗) stands for
the set of all topological isomorphisms E → E ∗, which is an open subset of the complex Banach
space B(E , E ∗). Then by shrinking the open neighborhood V of s we may assume that there
exists M > 0 such that max{‖B̃(z)‖,‖B̃(z)−1‖} < M whenever z ∈ V . In particular, for such z

and x ∈ E we have ‖x‖ < M‖B̃(z)x‖, and then the definition of the norm of B̃(z)x ∈ E ∗ implies
the following fact:

(∀z ∈ V )(∀x ∈ E )
(∃y ∈ E , ‖y‖ = 1

) ‖x‖ � M
∣∣B(z, x, y)

∣∣.
In view of the fact that the norms of the fibers Dz and Dz−∗ are defined such that the operators
Ψ0(z, ·) : E → Dz and Ψ1(z

−∗, ·) : E → Dz−∗ are isometries whenever z ∈ V , it then follows that

(∀z ∈ V )(∀η ∈ Dz)
(∃ξ ∈ Dz−∗ , ‖ξ‖ = 1

) ‖η‖ � M
∣∣(ξ | η)z−∗,z

∣∣. (3.8)

On the other hand, it follows by (3.6) that ‖(ι(h))(z)‖Dz = ‖θz−∗(h)‖Dz for arbitrary z ∈ V and
h ∈ HK . Then by (3.8) there exists ξ ∈ Dz−∗ such that ‖ξ‖ = 1 and

∥∥(ι(h)
)
(z)
∥∥ � M

∣∣(ξ | θz−∗(h)
)

−∗
∣∣ (3.5)= M

∣∣(Kξ | h)HK

∣∣� M‖Kξ‖HK ‖h‖HK .

Dz z ,z
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On the other hand, since K :Z × Z → Hom(p∗
2Π,p∗

1Π) is continuous, it follows that after
shrinking again the neighborhood V of s we may suppose that m := supz∈V Mz < ∞, where Mz

denotes the norm of the bounded sesquilinear functional Dz × Dz → C defined by (η1, η2) �→
(K(z−∗, z)η1 | η2)z−∗,z whenever z ∈ V . Then the computation from the proof of Lemma 3.5
shows that ‖Kξ‖HK � m1/2‖ξ‖Dz = m1/2. It then follows by the above inequalities that we end
up with an open neighborhood V of s with the following property:

(∀h ∈ HK
)
(∀z ∈ V )

∥∥(ι(h)
)
(z)
∥∥

Dz
� m1/2M‖h‖HK ,

which clearly implies the claim from the beginning of the present stage of the proof.
2◦ At this stage we come back to the proof of the assertions (a) and (b). Assertion (a) follows

by means of a straightforward compactness reasoning and by what we proved at stage 1◦, since
Kξ ∈ C(Z,D) whenever ξ ∈ D and span{Kξ | ξ ∈ D} = HK

0 . Finally, assertion (b) follows by the
assertion (a) in a similar manner, since O(Z,D) is a closed subspace of C(Z,D) with respect to
the topology of uniform convergence on the compact subsets of Z (see [65, Corollary 1.14]). �
Remark 3.10. It follows by Proposition 3.9(a) that every reproducing (−∗)-kernel Hilbert space
HK is a Hilbert subspace of C(Z,D) in the sense of [57]. Thus the theory of reproducing (−∗)-
kernels developed in the present section provides a new class of examples of reproducing kernels
in the sense of Laurent Schwartz.

4. Homogeneous like-Hermitian vector bundles and kernels

We develop here some aspects of the theory of kernels introduced in the previous section,
when the manifold Z is assumed to be a homogeneous manifold arising from the (smooth) ac-
tion of a Banach–Lie group. Specifically, we shall construct realizations of ∗-representations, of
Banach–Lie groups, on spaces of analytic sections in like-Hermitian vector bundles. A critical
role in this connection will be played by the class of examples derived from Definition 2.10.

Let GA be an involutive real (respectively, complex) Banach–Lie group and GB an involu-
tive real (respectively, complex) Banach–Lie subgroup of GA. For X = A or X = B , let HX be
a complex Hilbert space with HB closed subspace in HA and P : HA → HB the correspond-
ing orthogonal projection, and let πX :GX → B(HX) be a uniformly continuous (respectively,
holomorphic) ∗-representations such that πB(u) = πA(u)|HB

for all u ∈ GB . In addition, denote
by Π :D = GA ×GB

HB → GA/GB the homogeneous like-Hermitian vector bundle associated
with the data (πA,πB,P ), and let p1,p2 :GA/GB × GA/GB → GA/GB be the natural projec-
tions. Set

K(s, t)η = [(u,P
(
πA

(
u−1)πA(v)f

))]
for s, t ∈ GA/GB , s = uGB , t = vGB , and η = [(v, f )] ∈ Dt ⊂ D.

Proposition 4.1. In the above setting, K is a reproducing (−∗)-kernel, for which the corre-
sponding reproducing (−∗)-kernel Hilbert space HK ⊂ C∞(GA/GB,D) (respectively HK ⊂
O(GA/GB,D)) consists of sections of the form Fh := [(·,P (πA(·)−1h))], h ∈ span(πA(GA)HB)

in HA.
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Proof. Let sj = ujGB ∈ GA/GB and ξj = [(u−∗
j , fj )] ∈ Ds−∗

j
for j = 1, . . . , n. We have

n∑
j,l=1

(
K
(
sl, s

−∗
j

)
ξj | ξl

)
sl ,s

−∗
l

=
n∑

j,l=1

(
P
(
πA

(
u−1

l

)
πA

(
u−∗

j

)
fj

) | fl

)
HB

=
n∑

j,l=1

(
πA

(
u−1

l

)
πA

(
u−∗

j

)
fj | fl

)
HA

=
(

n∑
j=1

πA

(
u−∗

j

)
fj |

n∑
l=1

πA

(
u−∗

l

)
fl

)
HA

� 0.

On the other hand, by the above calculation we get(
K
(
sl, s

−∗
j

)
ξj | ξl

)
sl ,s

−∗
l

= (πA

(
u−∗

j

)
fj | πA

(
u−∗

l

)
fl

)
HA

= (πA

(
u−∗

l

)
fl | πA

(
u−∗

j

)
fj

)
HA

= (K(sj , s−∗
l

)
ξl | ξj

)
sj ,s−∗

j
= (ξj | K(sj , s−∗

l

)
ξl

)
s−∗
j ,sj

.

Thus K is a reproducing (−∗)-kernel. Again by the above calculation it follows that

(Kξj
| Kξl

)HK = (K(sl, s−∗
j

)
ξj | ξl

)
sl ,s

−∗
l

= (πA

(
u−∗

j

)
fj | πA

(
u−∗

l

)
fl

)
HA

. (4.1)

Now, by Proposition 3.9, HK ⊂ C(GA/GB,D). Let F be a section in HK . By definition F

is a limit, in the norm of HK , of a sequence of sections of the form
∑n(m)

j=1 Kξm
j

, where ξm
j =

[(vm
j , f m

j )] ∈ D, j = 1, . . . , n(m), m = 1,2, . . . . By Eq. (4.1),
∑n(m)

j=1 πA(vm
j )f m

j is a Cauchy

sequence in HA, so that there exists h := limm→∞
∑n(m)

j=1 πA(vm
j )f m

j in HA. Now, by the proof

of Proposition 3.9, convergence in HK implies (locally uniform) convergence in C(GA/GB,D)

whence, for every s = uGB in GA/GB , we get

F(s) = lim
m→∞

n(m)∑
j=1

Kξm
j
(s) = lim

m→∞

n(m)∑
j=1

[(
u,P
(
πA(u)−1πA

(
vm
j

)
f m

j

))]

= lim
m→∞

[(
u,P

(
πA(u)−1

n(m)∑
j=1

πA

(
vm
j

)
f m

j

))]

in Ds . On the other hand, since the norm in Ds is the copy of the norm in HA, through
the action of the basic mapping Φ associated with data (πA,πB,P ) (see Example 2.5 and
the bottom of Definition 2.10), we also have limm→∞[(u,P (πA(u)−1∑n(m)

j=1 πA(vm
j )f m

j ))] =
[(u,P (πA(u)−1h))]. Thus we have shown that F = Fh. Also, for arbitrary h ∈ HA,

Fh = 0 ⇔ (∀u ∈ GA) P
(
πA

(
u−1)h)= 0 ⇔ (∀u ∈ GA) πA

(
u−1)h ⊥ HB.

Since πA is a ∗-representation, it then follows that Fh = 0 if and only if h ⊥ span(πA(GA)HB).
Hence HA/([span(πA(GA)HB)]⊥) = HK = {Fh | h ∈ span(πA(GA)HB)}.
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Finally, note that HK ⊂ C∞(GA/GB,D) indeed, by definition of Fh (h ∈ HA). In the case
where GA and GB are complex Banach–Lie groups then HK ⊂ O(GA/GB,D), by the definition
of Fh as well.

Clearly, the mapping Fh �→ h, HK → span(πA(GA)HB)} ⊂ HA is an isometry, which we de-
note by W , such that W(Kη) = πA(v)f for η = [(v, f )] ∈ D. In addition, if spanπA(GA)HB =
HA then the operator W is unitary. Recall the mapping K̂ :D → HK given by K̂(ξ) = Kξ if
ξ ∈ D, as in (3.2). Clearly W ◦ K̂ = Θ , where Θ is the basic mapping for the data (πA,πB,P )

(see Definition 2.10). �
The following result is an extension of [11, Theorem 5.4] and provides geometric realizations

for ∗-representations of involutive Banach–Lie groups.

Theorem 4.2. In the preceding setting, the following assertions hold:

(a) The linear operator

γ : HA → HK ⊂ C∞(GA/GB,D),
(
γ (h)

)
(uGB) = [(u,P

(
πA

(
u−1)h))],

satisfies Kerγ = (span(πA(GB)HB))⊥ and the operator ι := γ ◦ W is the canonical inclu-
sion HK ↪→ C∞(GA/GB,D). Moreover, γ ◦ Θ = K̂ .

(b) For every point t ∈ GA/GB the evaluation map evι
t = ι(·)(t) : HK → Dt is a continuous

linear operator such that

(∀s, t ∈ GA/GB) K(s, t−∗) = evι
s ◦ (evι

t

)−∗
.

(c) The mapping γ is a realization operator in the sense that it is an intertwiner between the
∗-representation πA :GA → B(HA) and the natural representation of GA on the space of
cross sections C∞(GA/GB,D).

Proof. (a) This part is just a reformulation of what has been shown prior to the statement of the
theorem. The equality γ ◦ Θ = K̂ is obvious.

(b) Let t ∈ GA/GB be arbitrary and then pick u ∈ GA such that t = uGB . In particular, once
the element u is chosen, we get a norm on the fiber Dt (see Definition 2.10) and then for every
F = Fh ∈ HK , where h ∈ spanπA(GA)HB , we have∥∥evι

t (Fh)
∥∥

Dt
= ∥∥ιFh(t)

∥∥
Dt

= ∥∥[(u,P
(
πA(u)−1h

))]∥∥
Dt

= ∥∥πA(u)P
(
πA(u)−1h

)∥∥
HA

�
∥∥πA(u)

∥∥ · ∥∥πA

(
u−1)∥∥ · ‖h‖HA

= Cu‖Fh‖HK ,

so that the evaluation map evι
t : HA → Dt is continuous.

Let us keep s = uGB fixed for the moment. We first prove that

(K̂|Ds )
−∗ = evι

s−∗ : HK → Ds−∗ . (4.2)

To this end we check that condition (3.3) in Definition 3.4 is satisfied with θs = evι
s−∗ : HK →

Ds−∗ . In fact, let ξ = [(u,f )] ∈ Ds arbitrary.
Then for all h ∈ span(πA(GA)HB) we have
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(ξ | θsFh)s,s−∗ = ([(u,f )
] | [(u−∗,P

(
πA

((
u−∗)−1)

h
))])

s,s−∗

= (πA(u)f | πA

(
u−∗)P (πA

((
u−∗)−1)

h
))

HA

= (f | P (πA(u∗)h
))

HA
= (πA(u)f | h)HA

= (W(γ ◦ Θ)(ξ) | W (γ (h)
))

HA
= ((γΘ)(ξ) | Fh

)
HK

= (K̂(ξ) | Fh

)
HK = (Kξ | Fh)HK .

Now let s, t ∈ GA/GB be arbitrary and u,v ∈ GA such that s = uGB and t = vGB . It follows
by (4.2) that (evι

t )
−∗ = K̂Dt−∗ , hence for every η = [(v−∗, f )] ∈ Dt−∗ we have

evι
s ◦ (evι

t

)−∗
η = evι

s

(
K̂(η)

)= (ι(Kη)
)
(s) = [(u,P

(
πA

(
u−1)πA

(
v−∗)f ))]= K

(
s, t−∗)η.

(c) Let h ∈ HA and v ∈ GA arbitrary. Then at every point t = uGB ∈ GA/GB we have

(
γ
(
πA(v)h

))
(t) = [(u,P

(
πA

(
u−1)πA(v)h

))]= [(u,P
(
πA

((
v−1u

)−1)
h
))]

= v · [(v−1u,P
(
πA

((
v−1u

)−1)
h
))]= v · (γ (h)

)(
v−1t

)
and the proof ends. �

Part (c) of the above theorem tells us that it is possible to realize representations like
πA :GA → B(HA) as natural actions on spaces of analytic sections. We next take advantage of
this geometric model to point out some phenomena of holomorphic extension in bundle vectors
and sections of them. Firstly, we record some auxiliary facts in the form of a lemma.

Lemma 4.3. Let GA be an involutive Banach–Lie group and GB an involutive Banach–Lie
subgroup of GA, and denote by β : (v,uGB) �→ vuGB , GA × GA/GB → GA/GB , the cor-
responding transitive action. Also denote UX = {u ∈ GX | u−∗ = u} for X ∈ {A,B}. Then the
following assertions hold:

(a) There exists a correctly defined involutive diffeomorphism

z �→ z−∗, GA/GB → GA/GB,

defined by uGB �→ u−∗GB . This diffeomorphism has the property β(v−∗, z−∗) = β(v, z)−∗
whenever v ∈ GA and z ∈ GA/GB .

(b) The group UX is a Banach–Lie subgroup of GX for X ∈ {A,B} and UB is a Banach–Lie
subgroup of UA.

(c) If G+
B = G+

A ∩ GB , then the mapping

λ :uUB �→ uGB, UA/UB → GA/GB,

is a diffeomorphism of UA/UB onto the fixed-point submanifold of the involutive diffeomor-
phism of GA/GB introduced above in assertion (a).
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Proof. Assertion (a) follows since the mapping u �→ u−∗ is an automorphism of GA (Re-
mark 2.7). The proof of assertion (b) is straightforward.

As regards (c), what we really have to prove is the equality λ(UA/UB) = {z ∈ GA/GB |
z−∗ = z}. The inclusion ⊆ is obvious. Conversely, let z ∈ GA/GB with z−∗ = z. Pick u ∈ GA

arbitrary such that z = uGB . Since z−∗ = z, it follows that u−1u−∗ ∈ GB . On the other hand,
u−1u−∗ ∈ G+

A , hence the hypothesis G+
B = G+

A ∩ GB implies that u−1u−∗ ∈ G+
B . That is, there

exists w ∈ GB such that u−1u−∗ = ww∗. Hence uw = u−∗(w∗)−1, so that uw = (uw)−∗. Con-
sequently uw ∈ UA, and in addition z = uGB = uwGB = λ(uwUB). �

The next theorem gives a holomorphic extension of the Hermitian vector bundles and kernels
introduced in [11].

Theorem 4.4. For X ∈ {A,B}, let GX be a complex Banach–Lie group and GB a Banach–Lie
subgroup of GA. As above, set UX = {u ∈ GX | u−∗ = u}. Let πX :X → B(HX) be a holo-
morphic ∗-representation such that πB(u) = πA(u)|HB

for all u ∈ GB . Denote by Π :D →
GA/GB the like-Hermitian vector bundle, K the reproducing (−∗)-kernel, and W : HK →
HA the isometry and γ : HA → C∞(GA/GB,D) the realization operator associated with the
data (πA,πB,P ), where P : HA → HB is the orthogonal projection.

Also denote by ΠU :DU → UA/UB the like-Hermitian vector bundle, KU the reproducing
(−∗)-kernel, and WU : HKU → HA the isometry and γ U : HA → C∞(UA/UB,D) the operators
associated with the data (πA|UA

,πB |UB
,P ):

Assume in addition that G+
B = G+

A ∩ GB . Then the following assertions hold:

(a) The inclusion ι := γ ◦W : HK → O(GA/GB,D) is the realization operator associated with
the reproducing (−∗)-kernel K . Moreover, γ intertwines the ∗-representation πA :GA →
B(HA) and the natural representation of GA on the space of cross sections O(GA/GB,D).

(b) The like-Hermitian vector bundle ΠU :DU → UA/UB is actually a Hermitian vector bun-
dle. The mapping λ :uUB �→ uGB , UA/UB ↪→ GA/GB , is a diffeomorphism of UA/UB

onto a submanifold of GA/GB and we have

λ(UA/UB) = {z ∈ GA/GB | z−∗ = z}. (4.3)

In addition, there exists an UA-equivariant real analytic embedding Λ :DU → D such that
the diagrams

DU

ΠU

Λ
D

Π

UA/UB
λ

GA/GB

and

DU
Λ

D

UA/UB

γ U (h)

λ
GA/GB

γ (h)

for arbitrary h ∈ span(πA(GA)HB) are commutative, the mapping Λ is a fiberwise isomor-
phism, and Λ(DU) = Π−1(λ(UA/UB)).

(c) The inclusion ιU := γ U ◦ W : HK → Cω(UA/UB,DU) is the realization operator as-
sociated with the reproducing kernel KU , where Cω(UA/UB,DU) is the subspace of
C∞(UA/UB,DU) of real analytic sections. In addition, γ U is an intertwiner between the
unitary representation πA :UA → B(HA) and the natural representation of UA on the space
of cross sections Cω(UA/UB,DU).
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Proof. (a) This follows by Theorem 4.2 applied to the data (πA,πB,P ). The fact that the range
of the realization operator ι consists only of holomorphic sections follows either by Proposi-
tion 3.9(c) or directly by the definition of γ (see Theorem 4.2(a)).

(b) The fact that ΠU is a Hermitian vector bundle (Remark 2.4) follows by (2.2). Moreover,
the asserted properties of λ follow by Lemma 4.3(c) as we are assuming that G+

B = GB ∩G+
A . As

regards the UA-equivariant embedding Λ :DU → D, it can be defined as the mapping that takes
every equivalence class [(u,f )] ∈ DU into the equivalence class [(u,f )] ∈ D. Then Λ clearly
has the wished-for properties.

(c) Use again Theorem 4.2 for the data (πA|UA
,πB |UB

,P ). It is clear from definitions (see also
[11]) that KU is a reproducing kernel indeed. The fact that the range of γ U , or ιU , consists of
real analytic sections follows by the definition of γ U (see Theorem 4.2(a) again). Alternatively,
one can use assertions (a) and (b) above to see that for arbitrary h ∈ HA the mapping Λ◦γ U(h)◦
λ−1 :λ(UA/UB) → D is real analytic since it is a section of Π over λ(UA/UB) which extends
to the holomorphic section γ (h) :GA/GB → D. �
Remark 4.5. Theorem 4.4(b) says that the image of Λ is precisely the restriction of Π to the
fixed-point set of the involution on the base GA/GB , and this restriction is a Hermitian vector
bundle. This remark along with the alternative proof of assertion (c) show that there exists a close
relationship between the setting of Theorem 4.4 and the circle of ideas related to complexifica-
tions of real analytic manifolds, and in particular complexifications of compact homogeneous
spaces (see for instance [34,48,62] and the references therein for the case of finite-dimensional
manifolds). Specifically, the manifold UA/UB can be identified with the fixed-point set of the
antiholomorphic involution z �→ z−∗ of GA/GB . Thus we can view GA/GB as a complexifi-
cation of UA/UB . By means of this identification, we can say that for arbitrary h ∈ HA the
real analytic section γ U(h) :UA/UB → DU can be holomorphically extended to the section
γ (h) :GA/GB → D.

In the next section we analyze the complex structure of GA/GB (with self-conjugate
space UA/UB ) in more detail, when GX is the group of invertibles of a C∗-algebra X = A

or B and there exists a conditional expectation E :A → B .

5. Complexifications in the C∗-algebra case

The complexification GA/GB of UA/UB can be suitably displayed in a C∗-algebra setting.
Assume that 1 ∈ B ⊆ A are two C∗-algebras such that there exists a conditional expectation
E :A → B from A onto B . Denote the groups of invertible elements in A and B by GA and GB ,
respectively, and consider the quotient map q :a �→ aGB , GA → GA/GB .

Theorem 5.1. Let p := (KerE) ∩ uA, which is a real Banach space acted on by UB by means
of the adjoint action (u,X) �→ uXu−1. Consider the corresponding quotient map κ : (u,X) �→
[(u,X)], UA ×p → UA ×UB

p, and define the mapping Ψ E
0 : (u,X) �→ u exp(iX), UA ×p → GA.

Then there is a unique UA-equivariant, real analytic diffeomorphism Ψ E : UA ×UB
p → GA/GB

such that the diagram
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UA × p

κ

Ψ E
0

GA

q

UA ×UB
p

Ψ E

GA/GB

is commutative. Thus the complex homogeneous space GA/GB has the structure of a UA-
equivariant real vector bundle over its real form UA/UB , the corresponding projection being
given by the composition (depending on the conditional expectation E)

GA/GB
(Ψ E)−1

−→ UA ×UB
p

Ξ−→ UA/UB,

where the typical fiber of the vector bundle Ξ ◦ (Ψ E)−1 is the real Banach space p =
(KerE) ∩ uA.

Proof. The uniqueness of Ψ E follows since the mapping κ is surjective. For the existence of Ψ E ,
note that for all u ∈ UA, v ∈ UB , and X ∈ p we have

q
(
Ψ E

0

(
uv, v−1Xv

))= q
(
uv · exp

(
iv−1Xv

))= q
(
uv · v−1 exp(iX)v

)= q
(
u exp(iX)v

)
= u exp(iX)vGB = u exp(iX)GB = q

(
Ψ E

0 (u,X)
)
.

This shows that the mapping

Ψ E :
[
(u,X)

] �→ u exp(iX)GB, UA ×UB
p → GA/GB, (5.1)

is well defined, and it is clearly UA-equivariant. Moreover, since κ is a submersion and Ψ E ◦ κ

(= q ◦ Ψ E
0 ) is a real analytic mapping, it follows by Corollary 8.4(i) in [65] that Ψ E is real

analytic.
Now we prove that Ψ E is bijective. To this end we need the following fact:

for all a ∈ GA there exists a unique (u,X,b) ∈ UA × p × G+
B such that a = u · exp(iX) · b

(5.2)

(see [53, Theorem 8]). It follows by (5.1) and (5.2) that the mapping Ψ E : UA ×UB
p → GA/GB

is surjective. To see that it is also injective, assume that u1 exp(iX1)GB = u2 exp(iX2)GB ,
where (uj ,Xj ) ∈ UA × p for j = 1,2. Then there exists b1 ∈ GB such that u1 exp(iX1)b1 =
u2 exp(iX2). Let b1 = vb be the polar decomposition of b1 ∈ GB , where v ∈ UB and b ∈ G+

B .
Then

u1 exp(iX1)b1 = u1 exp(iX1)vb = u1v exp
(
iv−1X1v

)
b.

Note that u1v ∈ UA and v−1X1v ∈ p since E(v−1X1v) = v−1E(X1)v = 0. Since
u1 exp(iX1)b1 = u2 exp(iX2), it then follows by the uniqueness assertion in (5.2) that u2 = u1v

and X2 = v−1X1v. Hence [(u1,X1)] = [(u2,X2)], and thus the mapping Ψ E : UA ×UB
p →

GA/GB is injective as well.
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Finally, we show that the inverse function(
Ψ E
)−1 :aGB = u exp(iX)GB �→ [

(u,X)
]
, GA/GB → UA ×UB

p

is also smooth. For this, note that u and X in (5.2) depend on a in a real analytic fashion (see
[53]). Hence, the mapping σ :a �→ [(u,X)], GA → UA ×UB

p is smooth. Since σ = (Ψ E)−1 ◦ q

and q is a submersion, it follows again from Corollary 8.4(i) in [65] that (Ψ E)−1 is smooth. In
conclusion, Ψ E is a real analytic diffeomorphism (see [9, p. 268]), as we wanted to show. �
Remark 5.2. From the observation in the second part of the above statement, it follows that the
mapping Ξ ◦ (Ψ E)−1 can be thought of as an infinite-dimensional version of Mostow fibration;
see [42,43] and Section 3 in [14] for more details on the finite-dimensional setting. See also
Theorem 1 in [39, Section 3] for a related property of complexifications of compact symmetric
spaces.

In fact the construction of the diffeomorphism Ψ E in Theorem 5.1 relies on the representation
(5.2), and so it depends on the decomposition of A obtained in terms of the expectation E,
see [53]. It is interesting to see how Ψ E depends explicitly on E at the level of tangent maps: we
have

T(1,0)κ : (Z,Y ) �→ (
(1 − E)Z,Y

)
, uA × p → T[(1,0)](UA ×UB

p) � p × p,

T(1,0)

(
Ψ E

0

)
: (Z,Y ) �→ Z + iY, uA × p → A,

T1q :Z �→ (1 − E)Z, A → KerE,

hence T[(1,0)](Ψ E)((1 − E)Z,Y ) = (1 − E)(Z + iY) = (1 − E)Z + iY whenever Z ∈ uA and
Y ∈ p. Thus

T[(1,0)]
(
Ψ E
)

: (Y1, Y2) �→ Y1 + iY2, p × p → KerE,

which is an isomorphism of real Banach spaces since KerE = p � ip.

Corollary 5.3. Let A and B two C∗-algebras as in the preceding theorem. Then GA/GB �
UA ×UB

p is a complexification of UA/UB with respect to the anti-holomorphic involutive dif-
feomorphism

u exp(iX)GB �→ u exp(−iX)GB, GA/GB → GA/GB

where u ∈ UA, X ∈ p (alternatively, [(u,X)] �→ [(u,−X)]).

Proof. First, note that G+
B = GB ∩ G+

A . This is a direct consequence of the fact that the C∗-
algebras are closed under taking square roots of positive elements. So Theorem 5.1 applies to
get UA/UB as the set of fixed points of the mapping aGB �→ a−∗GB on GA/GB , where a−∗ :=
(a−1)∗ for a ∈ A, and ∗ is the involution in A. By (5.2), every element aGB in GA/GB is of
the form aGB = u exp(iX)GB with u ∈ UA and X ∈ p, and the correspondence u exp(iX)GB �→
[(u,X)] is a bijection. But then (u exp(iX))−∗ = u exp(−iX) since X∗ = −X, and the proof
ends. �
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To put Theorem 5.1 and Corollary 5.3 in a proper perspective, we recall that for X ∈ {A,B}
the Banach–Lie group GX is the universal complexification of UX (see [46, Example VI.9], and
also [32]). Besides this, we have seen in Theorem 4.4 that the homogeneous space GA/GB is a
complexification of UA/UB . Now Corollary 5.3 implements such a complexification in the ex-
plicit terms of a sort of polar decomposition (if X ∈ p then exp(iX)∗ = exp(−i(−X)) = exp(iX)

whence exp(iX) = exp(iX/2) exp(iX/2)∗ is positive). For the group case, see [32].

Remark 5.4. It is to be noticed that there is an alternative way to express the involution mapping
considered in this section as multiplication by positive elements. This representation was sug-
gested by Axiom 4 for involutions of homogeneous reductive spaces as studied in the paper [41].

Specifically, under the conditions assumed above the following condition is satisfied:

(∀a ∈ GA)
(∃a+ ∈ G+

A, b+ ∈ G+
B

)
a−∗ = a+ab+. (5.3)

To see this first note that we can assume ‖a∗‖ <
√

2. Then, if H is a Hilbert space such that
A is embedded in B(H) and x ∈ H,

‖a∗ax‖2 < 2‖ax‖2 ⇔ (x − a∗ax | x − a∗ax)H < (x | x)H ⇔ ∥∥(1 − a∗a)x
∥∥2

< ‖x‖2.

Thus ‖1−a∗a‖ < 1 and so ‖1−E(a∗a)‖ = ‖E(1)−E(a∗a)‖ < 1, whence b+ := E(a∗a) ∈ G+
B .

Now it is clear that (5.6) holds with a+ := (a−∗)b−1+ a−1 ∈ G+
A .

As a consequence of (5.6), we have that a−∗GB = a+aGB for every a ∈ GB . Let us
see the correspondence of such an identity with the decomposition of a−∗GB given in
Theorem 5.1. Since a = ueiXb in (5.5), we have a∗a = (beiXu−1)(ueiXb) = be2iXb and
so E(a∗a) = bE(e2iX)b. It follows that a−∗ = a+ab+ where b+ = bE(e2iX)b and a+ =
ue−iXb−2E(e2iX)−1b−2e−iXu−1.

There is a natural identification between the vector bundle Ξ : UA ×UB
p → UA/UB and the

tangent bundle T (UA/UB) → UA/UB . In view of Theorem 5.1, we get an interesting interpreta-
tion of the homogeneous space GA/GB as the tangent bundle of UA/UB .

Corollary 5.5. In the above notation, the vector bundle Ξ : UA ×UB
p → UA/UB is UA-

equivariantly isomorphic to the tangent bundle T (UA/UB) → UA/UB . Hence, the composition

GA/GB
(Ψ E)−1

−→ UA ×UB
p

�−→ T (UA/UB)

defines a UA-equivariant diffeomorphism between the complexification GA/GB and the tangent
bundle T (UA/UB) of the homogeneous space UA/UB .

Proof. Let α : (u, vUB) �→ uvUB , UA × UA/UB → UA/UB . Then let p0 = 1UB ∈ UA/UB and
∂2α : UA × T (UA/UB) → T (UA/UB) the partial derivative of α with respect to the second
variable. Since Tp0(UA/UB) � p, by restricting ∂2α to UA × Tp0(UA/UB) we get a mapping
αE

0 : UA × p → T (UA/UB). Then it is straightforward to show that there exists a unique UA-
equivariant diffeomorphism αE : UA ×U p → T (UA/UB) such that αE ◦ κ = αE .
B 0
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Now it follows by Theorem 5.1 that the composition GA/GB
(Ψ E)−1

−→ UA ×UB
p

αE−→
T (UA/UB) defines a UA-equivariant diffeomorphism between the complexification GA/GB and
the tangent bundle T (UA/UB) of the homogeneous space UA/UB . �
Remark 5.6. It is known that conditional expectations can be regarded as connection forms of
principal bundles, see [2,21,30]. Thus Corollary 5.5 leads to numerous examples of real ana-
lytic Banach manifolds whose tangent bundles have complex structures associated with certain
connections. See for instance [13,40,62] for the case of finite-dimensional manifolds.

6. Stinespring representations

In this section we are going to apply the preceding theory of reproducing (−∗)-kernels, for
homogeneous like-Hermitian bundles, to explore the differential geometric background of com-
pletely positive maps. Thus we shall find geometric realizations of the Stinespring representations
which will entail an unexpected bearing on the Stinespring dilation theory. Specifically, it will
follow that the classical constructions of extensions of representations and induced represen-
tations of C∗-algebras (see [25,54], respectively), which seemed to pass beyond the realm of
geometric structures, actually have geometric interpretations in terms of reproducing kernels on
vector bundles. See Remark 6.9 below for some more details.

Notation 6.1. For every linear map Φ :X → Y between two vector spaces and every in-
teger n � 1 we denote Φn = Φ ⊗ idMn(C) :Mn(X) → Mn(Y ), that is, Φn((xij )1�i,j�n) =
(Φ(xij ))1�i,j�n for every matrix (xij )1�i,j�n ∈ Mn(X).

Definition 6.2. Let A1 and A2 be two unital C∗-algebras and Φ :A1 → A2 a linear map. We
say that Φ is completely positive if for every integer n � 1 the map Φn :Mn(A1) → Mn(A2) is
positive in the sense that it takes positive elements in the C∗-algebra Mn(A1) to positive ones in
Mn(A2).

If moreover Φ(1) = 1 then we say that Φ is unital and in this case we have ‖Φn‖ = 1 for
every n � 1 by the Russo–Dye theorem (see e.g., [50, Corollary 2.9]).

Definition 6.3. Let A be a unital C∗-algebra, H0 a complex Hilbert space and Φ :A → B(H0)

a unital completely positive map. Define a nonnegative sesquilinear form on A ⊗ H0 by the
formula

(
n∑

j=1

bj ⊗ ηj |
n∑

i=1

ai ⊗ ξi

)
=

n∑
i,j=1

(
Φ
(
a∗
i bj

)
ηj | ξi

)

for all a1, . . . , an, b1, . . . , bn ∈ A, ξ1, . . . , ξn, η1, . . . , ηn ∈ H0 and n � 1. In particular

(
n∑

bj ⊗ ηj |
n∑

bj ⊗ ηj

)
= (Φn

((
b∗
i bj

)
1�i,j�n

)
η | η), (6.1)
j=1 j=1
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where η =
( η1

...
ηn

)
∈ Mn,1(C) ⊗ H0. Consider the linear space N = {x ∈ A ⊗ H0 | (x | x) = 0}

and denote by K0 the Hilbert space obtained as the completion of (A ⊗ H0)/N with respect to
the scalar product defined by (· | ·) on this quotient space.

On the other hand define a representation π̃ of A by linear maps on A ⊗ H0 by

(∀a, b ∈ A)(∀η ∈ H0) π̃(a)(b ⊗ η) = ab ⊗ η.

Then every linear map π̃(a) :A ⊗ H0 → A ⊗ H0 induces a continuous map (A ⊗ H0)/N →
(A ⊗ H0)/N , whose extension by continuity will be denoted by πΦ(a) ∈ B(K0). We thus ob-
tain a unital ∗-representation πΦ :A → B(K0) which is called the Stinespring representation
associated with Φ .

Additionally, denote by V : H0 → K0 the bounded linear map obtained as the composition

V : H0 → A ⊗ H0 → (A ⊗ H0)/N ↪→ K0,

where the first map is defined by A � h �→ 1 ⊗ h ∈ A ⊗ H0 and the second map is the natural
quotient map. Then V : H0 → K0 is an isometry satisfying Φ(a) = V ∗π(a)V for all a ∈ A.

Remark 6.4. The construction sketched in Definition 6.3 essentially coincides with the proof of
the Stinespring theorem on dilations of completely positive maps [60]; see for instance [27, The-
orem 5.2.1] or [50, Theorem 4.1]. Minimal Stinespring representations are uniquely determined
up to a unitary equivalence; see [50, Proposition 4.2].

We now start the preparations necessary for obtaining the realization theorem for Stinespring
representations (Theorem 6.10).

Lemma 6.5. Let Φ :A → B be a unital completely positive map between two C∗-algebras. Then
for every n � 1 and every a ∈ Mn(A) we have Φn(a)∗Φn(a) � Φn(a

∗a).

Proof. Note that Φn :Mn(A) → Mn(B) is in turn a unital completely positive map, hence after
replacing A by Mn(A), B by Mn(B), and Φ by Φn, we may assume that n = 1. In this case
we may assume B ⊆ B(H0) for some complex Hilbert space H0 and then, using the notation in
Definition 6.3 we have

Φ(a∗a) = V ∗πΦ(a∗a)V = V ∗πΦ(a)∗idK0πΦ(a)V � V ∗πΦ(a)∗V V ∗πΦ(a)V = Φ(a)∗Φ(a),

where the second equality follows since the Stinespring representation πΦ :A → B(K0) is in
particular a ∗-homomorphism. See for instance [27, Corollary 5.2.2] for more details. �

For later use we now recall the theorem of Tomiyama on conditional expectations.

Remark 6.6. Let 1 ∈ B ⊆ A be two C∗-algebras and such that there exists a conditional ex-
pectation E :A → B , that is, E is a linear map satisfying E2 = E, ‖E‖ = 1 and RanE = B .
Then for every a ∈ A and b1, b2 ∈ B we have E(a∗) = E(a)∗, 0 � E(a)∗E(a) � E(a∗a), and
E(b1ab2) = b1E(a)b2. (See for instance [64] or [56].) Additionally, E is completely positive and
E(1) = 1, and this explains why E has the Schwarz property stated in the previous Lemma 6.5.
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Lemma 6.7. Assume that 1 ∈ B ⊆ A are C∗-algebras with a conditional expectation E :A →
B and a unital completely positive map Φ :A → B(H0) satisfying Φ ◦ E = Φ , where H0 is
a complex Hilbert space. Denote by πA :A → B(HA) and πB :B → B(HB) the Stinespring
representations associated with the unital completely positive maps Φ and Φ|B , respectively.
Then HB ⊆ HA, and for every h0 ∈ H0 and b ∈ B we have the commutative diagrams

A

E

ιh0 HA

P

πA(b)
HA

P

B
ιh0 HB

πB(b)
HB

where P : HA → HB is the orthogonal projection, and ιh0 :A → HA is the map induced by
a �→ a ⊗ h0.

Proof. We first check that the right-hand square is a commutative diagram. In fact, it is clear
from the construction in Definition 6.3 that HB ⊆ HA and for every b ∈ B we have πA(b∗)|HB

=
πB(b∗). In other words, if we denote by I : HB ↪→ HA the inclusion map, then πA(b∗) ◦ I = I ◦
πB(b∗). Now note that I ∗ = P and take the adjoints in the previous equation to get P ◦ πA(b) =
πB(b) ◦ P .

To check that the left-hand square is commutative, first note that E⊗ idH0 :A⊗ H0 → A⊗ H0
is an idempotent mapping. To investigate the continuity of this map, let x =∑n

i=1 ai ⊗ ξi ∈
A ⊗ H0 and note that ((E ⊗ idH0)x | (E ⊗ idH0)x) = (Φn((E(a∗

i )E(aj ))1�i,j�n)ξ | ξ), where

ξ =
( ξ1

...
ξn

)
∈ Mn,1(C) ⊗ H0. On the other hand, (E(a∗

i )E(aj ))1�i,j�n = En(a
∗)En(a) �

En(a
∗a) = En((a

∗
i aj )1�i,j�n), where

a =

⎛⎜⎜⎝
a1 . . . an

0 . . . 0
...

...

0 . . . 0

⎞⎟⎟⎠ ∈ Mn(A)

and the above inequality follows by Lemma 6.5. Now, since Φn :Mn(A) → Mn(B) is a
positive map, we get Φn((E(a∗

i )E(aj ))1�i,j�n) � Φn(En((a
∗
i aj )1�i,j�n)). Furthermore we

have Φn ◦ En = (Φ ◦ E)n = Φn by hypothesis, hence ((E ⊗ idH0)x | (E ⊗ idH0)x) �
(Φn((a

∗
i aj )1�i,j�n)ξ | ξ) = (x | x). Thus the linear map E ⊗ idH0 :A ⊗ H0 → A ⊗ H0 is con-

tinuous (actually contractive) with respect to the semi-scalar product (· | ·) and then it induces
a bounded linear operator Ẽ : HA → HA. Moreover, since E2 = E and E(A) = B , it follows
that Ẽ2 = Ẽ and Ẽ(HA) = HB . On the other hand, it is obvious that for every h0 ∈ H we have
Ẽ ◦ ιh0 = ιh0 ◦ E. Hence it will be enough to prove that Ẽ = P .

To this end let x =∑n
i=1 ai ⊗ ξi ∈ A ⊗ H0 and y =∑n

j=1 bj ⊗ ηj ∈ B ⊗ H0 arbitrary. We
have

(
(E ⊗ idH0)x | y)= ( n∑

E(ai) ⊗ ξi |
n∑

bj ⊗ ηj

)

i=1 j=1
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=
n∑

i,j=1

(
Φ
(
b∗
jE(ai)

) | ηj

)= n∑
i,j=1

(
Φ
(
E
(
b∗
j ai

)) | ηj

)

=
n∑

i,j=1

(
Φ
(
b∗
j ai

) | ηj

)= (x | y),

where the third equality follows since E(ba) = bE(a) for all a ∈ A and b ∈ B , while the next-
to-last equality follows by the hypothesis Φ ◦ E = Φ . Since y ∈ B ⊗ H0 is arbitrary, the above
equality shows that (E ⊗ idH0)x − x ⊥ B ⊗ H0. This implies that Ẽ(x̃) − x̃ ⊥ HB , whence

Ẽ(x̃) = P(x̃) for all x ∈ A ⊗ H0, where x �→ x̃, A ⊗ H0 → HA, is the canonical map obtained
as the composition A⊗ H0 → (A⊗ H0)/N ↪→ HA. (See Definition 6.3.) Since {x̃ | x ∈ A⊗ H0}
is a dense linear subspace of HA, it follows that Ẽ = P throughout HA, and we are done. �
Remark 6.8. Under the assumptions of the previous lemma, we also obtain that HA =
spanπA(UA)HB : by standard arguments in C∗-algebras, we have that A = span UA or, equiv-
alently, A = span UAB since we have 1 ∈ B . So A ⊗ H0 = span UA(B ⊗ H0) whence by
quotienting and then by passing to the completion we get HA = spanπA(UA)HB .

Hence the mapping γ is an isometry from HA onto HK and the inverse mapping γ −1 coin-
cides with W , see the remark prior to Theorem 4.2.

Remark 6.9. In the setting of Lemma 6.7, if the restriction of Φ to B happens to be a nondegen-
erate ∗-representation of B on H0, then HB = H0 and πB = Φ|B by the uniqueness property of
the minimal Stinespring dilation (see Remark 6.4). In this special case our Lemma 6.7 is related
to the constructions of extensions of representations (see [25, Proposition 2.10.2]) and induced
representations of C∗-algebras (see [54, Lemma 1.7, Theorem 1.8, and Definition 1.9]).

In the following theorem we are using notation of Section 4.

Theorem 6.10. Assume that B ⊆ A are two unital C∗-algebras such that there exists a con-
ditional expectation E :A → B from A onto B , and let Φ :A → B(H0) be a unital completely
positive map satisfying Φ ◦E = Φ , where H0 is a complex Hilbert space. Let (πA|GA

,πB |GB
,P )

be the Stinespring data associated with E and Φ . Set λ : uUB �→ uGB , UA/UB ↪→ GA/GB .
Then the following assertions hold:

(a) There exists a real analytic diffeomorphism a �→ (u(a),X(a), b(a)), GA → UA × p × G+
B

so that a = u(a) exp(iX(a))b(a) for all a ∈ A, which induces the polar decomposition in
GA/GB ,

aGB = u(a) exp
(
iX(a)

)
GB, a ∈ GA.

(b) The mapping −∗ :u exp(iX)GB �→ u exp(−iX)GB , GA/GB → GA/GB is an anti-holo-
morphic involutive diffeomorphism of GA/GB such that

λ(UA/UB) = {s ∈ GA/GB | s = s−∗}.
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(c) The projection

u exp(iX)GB �→ uUB, GA/GB → UA/UB

has the structure of a vector bundle isomorphic to the tangent bundle UA×UB
p → UA/UB of

the manifold UA/UB . The corresponding isomorphism is given by u exp(iX)GB �→ [(u,X)]
for all u ∈ UA, X ∈ p.

(d) Set H(E,Φ) := {γ (h) | h ∈ HA} ⊂ O(GA/GB,D) where γ : HA → O(GA/GB,D) is the
realization operator defined by γ (h)(aGB) = [(a,P (πA(a)−1h))] for a ∈ GA and h ∈ HA.
Put γ U := γ (·)|UA/UB

: HA → Cω(UA/UB,DU) and HU(E,Φ) := {γ U(h) | h ∈ HA}. De-
note by μ(a) the operator on the spaces Cω(UA/UB,DU) and O(GA/GB,D) defined by
natural multiplication by a ∈ GA. Then H(E,Φ) and HU(E,Φ) are Hilbert spaces isomet-
ric with HA. Moreover, for every a ∈ GA the following diagram

HA

π(a)

γ U

HU(E,Φ)

μ(a)

� H(E,Φ)

μ(a)

HA

γ U

HU(E,Φ)
� H(E,Φ),

is commutative, that is, γ ◦ π(a) = μ(a) ◦ γ .
(e) There exists an isometry VE,Φ : H0 → H(E,Φ) such that

Φ(a) = V ∗
E,Φ(T1μ)(a)VE,Φ, a ∈ A,

where T1μ is the tangent map of μ(·)|H(E,Φ) at 1 ∈ GA. In fact, T1μ is a Banach algebra
representation of A which extends μ.

Proof. (a) Let (πA|GA
,πB |GB

,P ) be the Stinespring data introduced in Lemma 6.7, so that
HA = spanπA(GA)HB according to Remark 6.8. We have that G+

B = GB ∩G+
A as a direct conse-

quence of the fact that the C∗-algebras are closed under taking square roots of positive elements.
Then parts (a)–(d) of the theorem follow immediately by application of Theorem 5.1, Corollar-
ies 5.3, 5.5 and Theorem 4.4.

As regards (e) note that for every a ∈ A and h ∈ HA,

T1μ(a)γ (h) = (d/dt)|t=0μ
(
eta
)
γ (h)

= (d/dt)|t=0e
ta
[(

e−ta(·),P (πA(·)−1πA

(
eta
)
h
))]= γ

(
πA(a)(h)

)
.

Since γ is bijective (and isometric) we have that T1μ(a) = γ −1πA(a)γ for all a ∈ A, whence
it is clear that T1μ becomes a Banach algebra representation (and not only a Banach–Lie algebra
representation).

Now take VE,Φ := γ ◦ V where V is the isometry V : H0 → HA given in Definition 6.3. It is
clear that γ ∗ = γ −1 and then that VE,Φ is the isometry we wanted to find. �
Remark 6.11. Theorem 6.10 extends to the holomorphic setting, and for Stinespring represen-
tations, the geometric realization framework given in of [11, Theorem 5.4] for GNS represen-
tations. As part of such an extension we have found that the real analytic sections obtained in
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[11] are always restrictions of holomorphic sections of suitable (like-Hermitian) vector bundles
on fairly natural complexifications.

Part (e) of the theorem provides us with a strong geometric view of the completely positive
mappings on C∗-algebras A: such a map is the compression of the “natural action of A” (in the
sense that it is obtained by differentiating the non-ambiguous natural action of GA) on a Hilbert
space formed by holomorphic sections of a vector bundle of the formerly referred to type.

7. Further applications, examples and links

7.1. Banach algebraic amenability

Example 7.1. Let A be a Banach algebra. A virtual diagonal of A is by definition an element M

in the bidual A-bimodule (A ⊗̂ A)∗∗ such that

y · M = M · y and m(M) · y = y (y ∈ A)

where m is the extension to (A ⊗̂A)∗∗ of the multiplication map in A, y ⊗ y′ �→ yy′. The algebra
A is called amenable when it possesses a virtual diagonal as above. When A is a C∗-algebra, then
A is amenable if and only it is nuclear. Analogously, a dual Banach algebra M is called Connes-
amenable if A has a virtual diagonal which in addition is normal. Then a von Neumann algebra
A is Connes-amenable if and only it is injective. For all these concepts and results, see [55].

Let A be a C∗-algebra and let B be a von Neumann algebra. By Rep(A,B) we denote the
set of bounded representations ρ :A → B such that ρ(A)B∗ = B∗ where B∗ is the (unique)
predual of B (recall that B∗ is a left Banach B-module). In the case B = B(H), for a complex
Hilbert space H, the property that ρ(A)B∗ = B∗ is equivalent to have ρ(A)H = H, that is, ρ is
nondegenerate. Let Rep∗(A,B) denote the subset of ∗-representations in Rep(A,B). For a von
Neumann algebra M, we denote by Repω(M,B) the subset of homomorphisms in Rep(M,B)

which are ultraweakly continuous, or normal for short. As above, the set of ∗-representations of
Repω(M,B) is denoted by Repω∗ (M,B).

From now on, A, M will denote a nuclear C∗-algebra and an injective von Neumann algebra,
respectively. Fix ρ ∈ Rep(A,B). The existence of a virtual diagonal M for A allows us to define
an operator Eρ :B → B by

(
Eρ(T )x | x′) := M

(
y ⊗ y′ �→ ((

ρ(y)T
)
ρ(y′)x | x′))≡ ∫

A⊗A

((
ρ(y)T

)
ρ(y′)x | x′)dM(y,y′)

where x, x′ belong to a Hilbert space H such that B ↪→ B(H), and T ∈ B. In the formula, the
“integral" corresponds to the Effros notation, see [20]. The operator Eρ is a bounded projection
such that

Eρ(B) = ρ(A)′ := {T ∈ B | Tρ(y) = ρ(y)T , y ∈ A
}
.

In fact, it is readily seen that ‖Eρ‖ � ‖M‖‖ρ‖2, so that Eρ becomes a conditional expectation
provided that ‖M‖ = ‖ρ‖ = 1. For instance, if ρ is a ∗-homomorphism then its norm is one, see
[50, p. 7]. The existence of (normal) virtual diagonals of norm one in (dual) Banach algebras is
not a clear fact in general, but it is true, and not simple, that such (normal) virtual diagonals exist
for (injective von Neumann) nuclear C∗-algebras, see [55, p. 188].
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For ρ ∈ Rep(A,B) and T ∈ B, let TρT −1 ∈ Rep(A,B) defined as (TρT −1)(y) :=
Tρ(y)T −1 (y ∈ A). Put

S(ρ) := {TρT −1 | T ∈ GB

}
and U(ρ) := {TρT −1 | T ∈ UB

}
.

The set S(ρ) is called the similarity orbit of ρ, and U(τ ) is called the unitary orbit of
τ ∈ Rep∗(A,B). It is known that Rep(A,B), endowed with the norm topology, is the discrete
union of orbits S(ρ). Moreover, each orbit S(ρ) is a homogeneous Banach manifold with a
reductive structure induced by the connection form Eρ . In the same way, Rep∗(A,B) is the dis-
joint union of orbits U(τ ), and the restriction of Eρ on uB is a connection form which induces
a homogeneous reductive structure on U(τ )—see [2,20,30]. We next compile some more infor-
mation, about the similarity and unitary orbits, which is obtained on the basis of results of the
preceding sections.

Let ρ ∈ Rep(A,B). As it was proved in [18] and independently in [19] (see also [33]), there
exists τ ∈ Rep∗(A,B) ∩ S(ρ), whence S(ρ) = S(τ ). Hence, without loss of generality, ρ can
be assumed to be a ∗-representation, so that ‖ρ‖ = 1. Moreover, since we are assuming that
A is nuclear, we can choose a virtual diagonal M of A of norm one. Thus the operator Eρ is
a conditional expectation. Set A := B, B := ρ(A)′. With this notation, S(ρ) = GA/GB and
U(ρ) = UA/UB diffeomorphically.

For X ∈ pρ := KerEρ ∩uA, let [X] denote the equivalence class of X under the adjoint action
of UB on pρ considered in Theorem 5.1. Also, set eiX := exp(iX).

Corollary 7.2. Let A be a nuclear C∗-algebra and let B be a von Neumann algebra. The fol-
lowing assertions hold:

(a) Each connected component of Rep(A,B) is a similarity orbit S(ρ), for some ρ ∈
Rep∗(A,B). Moreover, each orbit S(ρ) is the disjoint union

S(ρ) =
⋃

[X]∈pρ/UB

U
(
eiXρe−iX)

where U(eiXρe−iX) is connected, for all [X] ∈ pρ/UB .
(b) The similarity orbit S(ρ) is a complexification of the unitary orbit U(ρ) with respect to the

involutive diffeomorphism ueiXρe−iXu−1 �→ ue−iXρeiXu−1 (u ∈ UB).
(c) The mapping ueiXρe−iXu−1 �→ uρu−1, S(ρ) → U(ρ) is a continuous retraction which de-

fines a vector bundle diffeomorphic to the tangent bundle UA ×UB
pρ → U(ρ) of U(ρ).

(d) Let H0 be a Hilbert space such that B ↪→ B(H0). For every ρ ∈ Rep(A,B) there exists
a Hilbert space H0(ρ) isometric with H0, which is formed by holomorphic sections of a
like-Hermitian vector bundle with base S(ρ). Moreover, B acts continuously by natural
multiplication on H0(ρ), and the representation R obtained by transferring ρ on H0(ρ)

coincides with multiplication by ρ; that is, R(y)F = ρ(y) · F for all y ∈ A and section
F ∈ H0(ρ).

Proof. (a) As said before, every similarity orbit of Rep(A,B) is of the form S(ρ) for some
ρ ∈ Rep∗(A,B). Since A = B is a von Neumann algebra, the set of unitaries UA = UB is
connected whence it follows that the orbits S(ρ) and U(eiXρe−iX) are connected for all X ∈ pρ

(see for instance [10] for more details). For X,Y ∈ pρ , we have U(eiXρe−iX) = U(eiY ρe−iY )
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if and only if there exists u ∈ UA such that eiY ρe−iY = ueiXρe−iX , which means that u ∈ UB

and Y = uXu−1 (see Theorem 5.1). Hence [X] = [Y ]. Finally, by Theorem 5.1 again we have
S(ρ) =⋃[X]∈pρ/UB

U(eiXρe−iX).
(b) This is Theorem 6.10(b).
(c) This follows by Theorem 6.10(c).
(d) Given ρ in Rep(A,B), there is τ = τ(ρ) in Rep∗(A,B) such that S(ρ) = S(τ ). Now we

fix a virtual diagonal of A of norm one and then define the conditional expectation Eρ ≡ Eτ(ρ) as
prior to this corollary. So Eρ :B → B(H0) is a completely positive mapping and one can apply
Theorem 6.10(d). As a result, one gets a Hilbert space H(ρ) := H(Eρ,Eρ) of holomorphic
sections of a like-Hermitian bundle on S(ρ) = GB/GB (where B = ρ(A)′), and an isometry
Vρ := VEρ : H0 → H(ρ), satisfying Eρ(ρ(y)) = V ∗

ρ T1μ(ρ(y))Vρ for all y ∈ A, in the notations
of Theorem 6.10. Note that V ∗

ρ Vρ = 1 and therefore the correspondence y �→ Vρρ(y)V ∗
ρ defines a

(bounded) representation of H(ρ). Now take H0(ρ) := V (H0) and define R(y) as the restriction
of Vρρ(y)V ∗

ρ on H0(ρ) for every y ∈ A. Clearly, R is the transferred representation of ρ from
H0 to H0(ρ).

Also, for every F ∈ H0(ρ) there exists h0 ∈ H0 such that F = Vρ(1 ⊗h0), that is, F(aGB) =
[(a,P (a−1 ⊗ h0)] for all a ∈ GB, where P is as in Lemma 6.7. Then, for y ∈ A,

R(y)F = R(y)Vρ(1 ⊗ h0) = Vρ ρ(y)V ∗
ρ Vρ(1 ⊗ h0) = Vρ ρ(y)(1 ⊗ h0)

= Vρ

(
ρ(y) ⊗ h0

)= T1μ
(
ρ(y)
)
Vρ(1 ⊗ h0) = ρ(y) · F,

as we wanted to show. �
Remark 7.3. (i) The first part of Corollary 7.2(a) was already well known (see for example [2]).
In the decomposition of the second part, the orbit U(eiXρe−iX) for X = 0 corresponds to the
unitary orbit of ρ. So the disjoint union supplies a sort of configuration of the similarity orbit
S(ρ) by relation with the unitary orbit U(ρ).

(ii) Parts (a)–(c) of Corollary 7.2 are consequences of the Porta–Recht decomposition given
in [53], see (5.2). Such a decomposition has been considered previously in relation with simi-
larity orbits of nuclear C∗-algebras, though in a different perspective, see [2, Theorem 5.7], for
example.

(iii) Corollary 7.2 admits a version entirely analogous for injective von Neumann algebras M

(replacing the nuclear C∗ algebra A of the statement) and representations in Repω(M,B) and
Repω∗ (M,B). Proofs are similar to the nuclear, C∗, case. For the analog of (d) one needs to take
a normal virtual diagonal of M of norm one.

(iv) Corollary 7.2 applies in particular to locally compact groups G for which the group C∗-
algebra C∗(G) is amenable, see [2,21]. When the group is compact the method to define the
expectation Eρ works for every representation ρ taking values in any Banach algebra A. We
shall see a particular example of this below, involving Cuntz algebras.

7.2. Completely positive mappings

Let A be a complex unital C∗-algebra, with unit 1, included in the algebra B(H) of bounded
operators on a Hilbert space H. Assume that Φ :A → B(H) is a unital, completely bounded map-
ping. (In the sequel we shall assume freely that H is separable, when necessary.) The following
lemma is standard. We give a proof for the sake of completeness.
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Lemma 7.4. Given Φ as above and u ∈ GA, let Φu denote the mapping Φu := uΦ(u−1 · u)u−1.
Then

(i) For every u ∈ GA, Φu is completely bounded and ‖Φu‖cb � ‖Φ‖cb‖u∗‖‖u‖‖u−1‖2.
(ii) If Φ is completely positive then Φu is completely positive for every u ∈ UA.

Proof. (i) Let n be a natural number. Take f = (f1, . . . , fn), h = (h1, . . . , hn) ∈ Hn and (aij )ij ∈
Mn(A) all of them of respective norms less than or equal to 1. In the following we shall think of
f and g in their column version. Then, for u ∈ GA, we have

∣∣(Φ(n)
u (aij )ij f | h)Hn

∣∣= ∣∣∣∣∑
i,j

(
Φ
(
u−1aiju

)(
u−1fj

) | u∗hi

)
H

∣∣∣∣
�
∥∥Φ(n)

(
u−1aiju

)
ij

∥∥
B(Hn)

∥∥(u−1fj

)
j

∥∥
Hn

∥∥(u∗hi

)
i

∥∥
Hn

� ‖Φ‖cb
∥∥(u−1I

)
(aij )ij (uI)

∥∥
B(Hn)

∥∥u−1
∥∥‖u∗‖

� ‖Φ‖cb
∥∥u−1

∥∥2‖u‖‖u∗‖.
(ii) Assume now that Φ is completely positive. For natural n, take (aij )ij � 0 in Mn(A) and
h = (h1, . . . , hn) ∈ Hn. Then

(
Φ(n)

u (aij )ij h | h)Hn =
((

n∑
j=1

Φu(a1j )hj , . . . ,

n∑
j=1

Φu(anj )hj

)
| h
)

Hn

=
n∑

i,j=1

(
Φu(aij )hj | hi

)
H =

n∑
i,j=1

(
Φ(n)(bij f | f )

)
Hn

where f = u−1h, bij = u−1aiju, u ∈ UA. So (bij )ij � 0 in Mn(A) and, since Φ is completely

positive, we conclude that Φ(n)(bij ) � 0 as we wanted to show. �
Now let Φ :A → B(H) be a fixed, unital completely positive mapping. By [50, Proposi-

tion 3.5], Φ is completely bounded. According to the preceding Lemma 7.4, if U (Φ) and
S(Φ) denote, respectively, the unitary orbit U (Φ) := {Φu | u ∈ UA} and the similarity orbit
S(Φ) := {Φu | u ∈ GA} of Φ , there are natural actions of GA on S(Φ) and of UA on U (Φ),
under usual conjugation. Note that the elements of the orbit S(Φ) are completely bounded maps
but they need not be completely positive.

Put G(Φ) := {u ∈ GA | Φu = Φ} and U(Φ) := G(Φ) ∩ UA.

Corollary 7.5. In the above notation, S(Φ) = GA/G(Φ) and U (Φ) = UA/U(Φ).

Proof. It is enough to observe that G(Φ) and U(Φ) are the isotropy subgroups of the actions of
GA on S(Φ) and of UA on U (Φ), respectively. �

Note that G(Φ) is defined by the family of polynomial equations

ϕ
(
Φ
(
axa−1)− aΦ(x)a−1)= 0, x ∈ A, ϕ ∈ B(H)∗, a ∈ GA
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on GA × GA, so G(Φ) is algebraic and a Banach–Lie group with respect to the relative topology
of A (see for instance the Harris–Kaup theorem in [65]). To see when the isotropy groups G(Φ)

and U(Φ) are Banach–Lie subgroups of GA, we need to compute their Lie algebras g(Φ) and
u(Φ), respectively, and to see whether they are complemented subspaces of A.

Lemma 7.6. In the above notation we have g(Φ) = {X ∈ A | (∀a ∈ A) Φ([a,X]) = [Φ(a),X]},
and therefore u(Φ) = {X ∈ uA | (∀a ∈ A) Φ([a,X]) = [Φ(a),X]}.

Proof. To prove the inclusion “⊆” just note that if X ∈ A and etX := exp(tX) ∈ G(Φ), then
for every a ∈ A we get Φ(etXae−tX) = etXΦ(a)e−tX for all t ∈ R. Hence by differentiating in
t and taking values at t = 0 we obtain Φ(aX − Xa) = Φ(a)X − XΦ(a); that is, Φ([a,X]) =
[Φ(a),X].

Now let X in the right-hand side of the first equality from the statement. Then A is an
invariant subspace for the mapping adX = [X, ·] : B(H) → B(H), since X ∈ A. In addition,
Φ ◦ (adX)|A = (adX) ◦ Φ . Hence for every t ∈ R and n � 0 we get Φ ◦ (t adX)n|A =
(t adX)n ◦ Φ , whence Φ ◦ exp(t (ad X)|A) = exp(t ad X) ◦ Φ . Since exp(t ad X)b = etXb e−tX

for all b ∈ B(H), it then follows that etX ∈ G(Φ) for all t ∈ R, whence X ∈ g(Φ). The remainder
of the proof is now clear. �

As regards the description of the isotropy Lie algebra g(Φ) in Lemma 7.6, let us note the
following fact:

Proposition 7.7. The isotropy Lie algebra g(Φ) is a closed involutive Lie subalgebra of A. If the
range of Φ is contained in the commutant of A then g(Φ) is actually a unital C∗-subalgebra
of A, given by g(Φ) = {X ∈ A | Φ(aX) = Φ(Xa) for all a ∈ A}. In this case, Gg(Φ) = G(Φ).

Proof. It is clear from Lemma 7.6 that g(Φ) is a closed linear subspace of A which contains the
unit 1. Moreover, since Φ(a∗) = Φ(a)∗ for all a ∈ A (this is automatic by the Stinespring’s dila-
tion theorem, for instance), then for X ∈ g(Φ) and a ∈ A we have Φ([X∗, a]) = Φ([a∗,X]∗) =
Φ([a∗,X])∗ = [Φ(a∗),X]∗ = [X∗,Φ(a)] whence g(Φ) is stable under involution as well. The
fact that g(Φ) is a Lie subalgebra of A follows by [9, Theorem 4.13] (see the proof there).

If the range of Φ is contained in the commutant of A, then g(Φ) = {X ∈ A | Φ(aX) =
Φ(Xa) for all a ∈ A}, and so g(Φ) is a C∗-subalgebra of A. Finally, note that u ∈ Gg(Φ) if
and only if u ∈ GA and Φ(uau−1) = Φ(a) = uΦ(a)u−1 (since Φ(A) ⊆ A′), if and only if
u ∈ G(Φ). �

The condition in the above statement for Φ to be contained in the commutant of A holds if
for instance, Φ is a state of A. Next, we give another example suggested by Example 7.1. For
a C∗-algebra A and von Neumann algebra A with predual A∗, let ρ :A → A be a bounded ∗-
homomorphism such that ρ(A)A∗ = A∗. Denote w∗ the (generic) weak operator topology in a
von Neumann algebra.

Corollary 7.8. Assume that A is a nuclear C∗-algebra or an injective von Neumann alge-
bra (in the second case we assume in addition that ρ is normal ), and that A = ρ(A)w

∗
. Let

Φ = Eρ :A → A be a conditional expectation associated with ρ as in Example 7.1. Then
B := Φ(A) ⊆ A′ and therefore g(Φ) is a von Neumann subalgebra of A. Also, B is commu-
tative and so it is isomorphic to an algebra of L∞ type.



2918 D. Beltiţă, J.E. Galé / Journal of Functional Analysis 255 (2008) 2888–2932
Proof. From Φ(A) = ρ(A)′ and A = ρ(A)w
∗

it is readily seen (recall that A∗ is an A-bimodule
for the natural module operations) that Φ(a) commutes with every element of A for all a ∈ A.
The remainder of the corollary is clear. �

It is not difficult to find representations as those of the preceding corollary. If π :A → B is
a representation as in Example 7.1, then it is enough to take A := π(A)w

∗
in B, and ρ :A → A

defined by ρ(y) := π(y) (y ∈ A), to obtain a representation satisfying the hypotheses of Corol-
lary 7.8. It is straightforward to check that A is a C∗-algebra and, moreover, that A is a dual
Banach space. In effect, if B∗ is the predual of B and ⊥A is the pre-annihilator subspace of
A in B∗, then the quotient B∗/⊥A is a predual of A, and an A-submodule of A∗, such that
ρ(A)(B∗/⊥A) = B∗/⊥A. Note that in the case when B = B(H) the von Neumann’s bicommu-
tant theorems say that A = π(A)′′.

7.3. Conditional expectations

We are going to see that the isotropy group G(Φ) of a completely positive map Φ :A → B(H)

is actually a Banach–Lie subgroup of GA in the important special case when Φ is a faithful
normal conditional expectation. This will provide us with a wide class of completely positive
mappings whose similarity orbits illustrate the main results of the present paper.

Thus, let assume in this subsection that Φ = E is a faithful, normal, conditional expectation
E :A → B , where A and B are von Neumann algebras with B ⊆ A ⊆ B(H). In this case all of
the elements in the unitary orbit U (E) are conditional expectations, whereas all we can say about
the elements in the similarity orbit S(E) is that they are completely bounded quasi-expectations.
We would like to present S(E) and U (E) as examples of the theory given in the previous Theo-
rems 4.4 and/or 5.1, or even Section 5, of this paper.

Denote AE := {x ∈ B ′ ∩ A | E(ax) = E(xa), a ∈ A} and fix a faithful, normal state ϕ on B .
(Such a faithful state exists if the Hilbert space H is separable.) The set AE is a von Neumann
subalgebra of A and, using the modular group of A induced by the gauge state ψ := ϕ ◦ E, it
can be proven that there exists a faithful, normal, conditional expectation F :A → AE such that
E ◦ F = F ◦ E and ψ ◦ F = ψ (see [4, Proposition 4.5]). Set Δ = E + F − EF . Then Δ is a
bounded projection from A onto

Δ(A) = AE + B = (AE ∩ kerE) ⊕ B.

By considering the connected 1-component G(E)0 = GAE
· GB of the isotropy group G(E) (see

[4, Proposition 3.3]), the existence of Δ implies that G(E) is in fact a Banach–Lie subgroup
of GA, the orbits S(E) and U (E) are homogeneous Banach manifolds, and the quotient map
GA → S(E) � GA/G(E) is an analytic submersion, see [4, Corollary 4.7 and Theorem 4.8].
Also, the following assertions hold:

Proposition 7.9. In the notations from above and from Section 7.1, Δ(A) = g(E). In particular,
A splits through g(E) and g(E) is a w∗-closed Lie subalgebra of A.

Proof. By [4, Theorem 4.8] the quotient mapping GA → S(E) = GA/G(E) is an analytic sub-
mersion. In fact the kernel of its differential is g(E) (see [65, Theorem 8.19]). Also, g(E) :=
T1(G(E)) = Δ(A) by [4, Proposition 4.6]. �
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Now let Φ :A → B(H0) be any unital completely positive map such that Φ ◦E = Φ and apply
Stinespring’s dilation procedure to the mapping Φ and the conditional expectation E :A → B .
Thus, for J = A,B there are the Hilbert spaces HJ (Φ) and (Stinespring) representations
πJ :J → B(HJ (Φ)) such that HB(Φ) ⊆ HA(Φ) and πB(u) = πA(u)|HB(Φ) for each u ∈ B , as
given in Lemma 6.7. Denote by P : HA(Φ) → HB(Φ) the corresponding orthogonal projection.

We are going to construct representations of the intermediate groups in the sequence

GB ⊆ G(E)0 ⊆ G(E) ⊆ GA.

For this purpose set HE(Φ) := span(πA(G(E))HB(Φ)) and PE the orthogonal projection from
HA(Φ) onto HE(Φ). We have, span(πA(GA)HE(Φ)) = HA(Φ), since span(πA(GA)HB(Φ)) =
HA(Φ) by Remark 6.8. For every u ∈ G(E), put πE(u) := πA(u)|HE(Φ). Then πE(u)(HE(Φ)) ⊆
HE(Φ) and so (πA,πE,PE) is a data in the sense of Definition 2.10 (with holomorphic πA and
πE). Similarly, set H0

E(Φ) := span(πA(G(E)0)HB(Φ)) and P 0
E the orthogonal projection from

HA(Φ) onto H0
E(Φ), and then for every u ∈ G(E)0, define π0

E(u) := πA(u)|H0
E(Φ).

Next set DB := GA ×GB
HB(Φ), D0

E := GA ×G(E)0 HE(Φ), and DE := GA ×G(E) HE(Φ).
Let HB(P,Φ), H0

E(P 0
E,Φ) and HE(PE,Φ) denote the (reproducing kernel) Hilbert spaces of

holomorphic sections in these bundles, respectively, given by Theorems 4.2 and 6.10(d).

Corollary 7.10. Let B ⊆ A be unital von Neumann algebras, E :A → B be a faithful, nor-
mal, conditional expectation, and use the above notations. Then the inclusion maps HB(Φ) ↪→
H0

E(Φ) ↪→ HE(Φ) and GB ↪→ G(E)0 ↪→ G(E) induce bundle homomorphisms

DB D0
E

DE

GA/GB GA/G(E)0 S(E),

which leads to GA-equivariant isometric isomorphisms HB(P,Φ) → H0
E(P 0

E,Φ) →
HE(PE,Φ). In particular, the Stinespring representation πA|GA

: GA → B(HA(Φ)) can be re-
alized as the natural representation μ : GA → B(HE(PE,Φ)) on the vector bundle DE over the
similarity orbit S(E).

Proof. Recall that S(E) � GA/G(E) and the elements or sections of the spaces HB(P,Φ),
H0

E(P 0
E,Φ) and HE(PE,Φ) are of the form

uGB �→ [(
u,P
(
πA

(
u−1)h))]; uG(E)0 �→ [(

u,P 0
E

(
πA

(
u−1)h))];

Eu
∼= uG(E) �→ [(

u,PE

(
πA

(
u−1)h))],

respectively, for h running over HA(Φ). This gives us the quoted isometries. The fact that πA|GA

is realized as μ acting on HE(PE,Φ) is a consequence of Theorem 4.4. �
Corollary 7.10 admits a version in the unitary setting, that is, for the unitary groups UA, UB ,

U(E)0, U(E) and unitary orbit U (E) playing the role of the corresponding invertible groups and
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orbit. The following result answers in the affirmative the natural question of whether the similar-
ity orbit S(E) � GA/G(E) endowed with the involutive diffeomorphism aG(E) �→ a−∗G(E) is
the complexification of the unitary orbit U (E) of the conditional expectation E.

Corollary 7.11. In the above situation, the similarity orbit S(E) of the conditional expectation
E is a complexification of its unitary orbit U (E), and it is also UA-equivariantly diffeomorphic
to the tangent bundle of U (E).

Proof. Since the tangent bundles of U (E) and UA/U(E) coincide the assertion that the tangent
bundle of U (E) is UA-equivariantly diffeomorphic to GA/G(E) is a consequence of Corol-
lary 5.5. On the other hand, as recalled above, to prove the fact that GA/G(E) is the complex-
ification of UA/U(E) it will be enough to check that G(E)+ = G+

A ∩ G(E) (and then to apply
Lemma 4.3). The inclusion ⊆ is obvious. Now let c ∈ G+

A ∩ G(E). By Definition 2.6, there exists
g ∈ GA such that c = g∗g ∈ G(E). Then the reasoning from the proof of [4, Theorem 3.5] shows
that g∗g = ab with a ∈ G+

AE
and b ∈ G+

B , whence c = ab ∈ G+
AE

· G+
B ⊆ G(E)+. �

Remark 7.12. In connection with the commutative diagram of Corollary 7.10, note that
since G(E)0 is the connected 1-component of G(E), it follows that the arrow GA/G(E)0 →
GA/G(E) = S(E) is actually a covering map whose fiber is the Weyl group G(E)/G(E)0 of the
conditional expectation E (cf. [4] and the references therein).

Remark 7.13. It is interesting to observe how Corollary 7.10 looks in the case when g(E) is an
associative algebra, as in the second part of Proposition 7.7.

Thus let assume that for a conditional expectation E :A → A as in former situations we have
that B := E(A) ⊆ A′. Then B is commutative and A ⊆ B ′ (note that B ′ need not be commutative;
in other words, B is not maximal abelian). Hence, by Proposition 7.7,

g(E) = {X ∈ A | E(aX) = E(Xa), a ∈ A
}= {X ∈ B ′ ∩ A | E(aX) = E(Xa), a ∈ A

} := AE.

By Proposition 7.9, AE + B = Δ(A) = g(E) = AE whence B ⊆ AE . Also, as regards to groups,
Proposition 7.9 applies to give Gg(E) = G(E) whence we have

G(E) = Gg(E) = GAE
⊆ GAE

· GB = G(E)0 ⊆ G(E),

and we obtain that G(E)0 = G(E). This implies that the bundles D0
E → GA/G(E)0 and DE →

S(E) of Corollary 7.10 coincide.
Moreover, from the fact that B ⊆ AE = g(E) it follows that F ◦ E = E where F is the

conditional expectation given prior to Proposition 7.9. In fact, for a ∈ A, E(a) ∈ AE = F(A) so
there is some a′ ∈ A such that E(a) = F(a′). Then (FE)(a) = F(F(a′)) = (FF)(a′) = F(a′) =
E(a) as required. Since FE = EF we have eventually that FE = EF = E.

Suppose now that Φ :A → B(H0) is a completely positive mapping such that Φ ◦ E = Φ .
Then Φ ◦ F = (Φ ◦ E) ◦ F = Φ ◦ (EF) = Φ ◦ E = Φ , and one can use again the argu-
ment preceding Corollary 7.10 to find vector bundles with corresponding Hilbert spaces (fibers)
and representations πA :A → B(HA(Φ)), πAE

:AE → B(HAE
(Φ)) and πB :B → B(HB(Φ)),

and so on. In particular, from E|AE
:AE → B one gets HAE

(Φ) = span πAE
(G(E))HB(Φ) =

spanπA(G(E))HB(Φ) = HE(Φ). Hence, in this case, the bundle DE → S(E) is a Stinespring
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bundle with respect to data πAE
|G(E), πB |GB

(and the corresponding projection) to which Theo-
rem 6.10 can be applied.

More precisely, part (c) of that theorem implies that S(E) is diffeomorphic to the tangent bun-
dle UA ×U(E) pF of U (E), where pF = kerF ∩ uA, in the same way as GA/GB is diffeomorphic
to UA ×UB

pE , pE = kerE ∩ uA.

7.4. Representations of Cuntz algebras

We wish to illustrate the theorem on geometric realizations of Stinespring representations
by an application to representations of Cuntz algebras. For the sake of simplicity we shall be
working in the classical setting [22], although a part of what we are going to do can be extended
to more general versions of these C∗-algebras (see [23,51], and also [26]) or to more general
C∗-dynamical systems.

Example 7.14. Let N ∈ {2,3, . . .} ∪ {∞} and denote by ON the C∗-algebra generated by a
family of isometries {vj }0�j<N that act on the same Hilbert space and satisfy the condition that
their ranges are mutually orthogonal, and in addition v0v

∗
0 + · · · + vN−1v

∗
N−1 = 1 in the case

N �= ∞. The Cuntz algebra ON has a canonical uniqueness property with respect to the choice
of the generators {vj }1�j<N subject to the above conditions (see [22]). In particular, this implies
that there exists a pointwise continuous gauge ∗-automorphism group parameterized by the unit
circle, λ �→ τ(λ) = τλ, T → Aut(ON), such that τλ(vj ) = λvj if 0 � j < N and λ ∈ T. For every
m ∈ Z we denote

O(m)
N = {x ∈ ON | (∀λ ∈ T) τλ(x) = λmx

}
(7.1)

the spectral subspace associated with m, and then FN := O(0)
N (the fixed-point algebra of the

gauge group). For every m ∈ Z we have a contractive surjective linear idempotent mapping
E(m) : ON → O(m)

N defined by

(∀x ∈ ON) E(m)(x) =
∫
T

λ−mτλ(x)dλ, (7.2)

which is a faithful conditional expectation in the case m = 0 (see for instance [24, Theo-
rem V.4.3]). We shall denote E(0) = E for the sake of simplicity.

The following statement is inspired by some remarks from Section 2 in [37]. It shows that,
under specific hypothesis on the C∗-algebras from Theorem 6.10, the corresponding reproducing
kernel Hilbert space has a circular symmetry that resembles the one of the classical spaces of
holomorphic functions on the unit disk. Thus we get series expansions and the natural setting of
harmonic analysis in the spaces of bundle sections associated with completely positive maps.

Corollary 7.15. Let N ∈ {2,3, . . .} ∪ {∞}, a completely positive unital map Φ : ON → B(H0),
and the corresponding Stinespring representation πΦ : ON → B(K0), and isometry V : H0 → K0
such that Φ = V ∗πV . Put H̃0 := V (H0). Then the condition Φ ◦ E = Φ is satisfied if and only
if Φ is gauge invariant, in the sense that for each λ ∈ T we have Φ ◦ τλ = Φ . In addition, if this
is the case, then the following assertions hold:
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(a) Consider the geometric realization γ : K0 → H(E,Φ) of the Stinespring representation πΦ

and let Π :D → GON
/GFN

be the corresponding homogeneous vector bundle. Then the
gauge automorphism group of ON induces smooth actions τ̃ and τ of the circle group T on
the total space D and the base GON

/GFN
, respectively, such that the diagram

T × D

idT×Π

τ̃
D

Π

T × (GON
/GFN

)
τ

GON
/GFN

is commutative. The action on the base of the vector bundle also commutes with the natural
involutive diffeomorphism thereof.

(b) If for all m ∈ Z we denote by H(E,Φ)(m) the closed linear subspace generated by
γ (πΦ(O(m)

N )H̃0), then we have the orthogonal direct sum decomposition H(E,Φ) =⊕
m∈Z

H(E,Φ)(m) and each term of this decomposition is GFN
-invariant.

(c) For each m ∈ Z, the orthogonal projection P
(m)
E,Φ : H(E,Φ) → H(E,Φ)(m) is given by the

formula

(
P

(m)
E,ΦΔ

)
(z) =

∫
T

λ−m
(̃
τλ ◦ Δ ◦ τ−1

λ

)
(z)dλ

whenever z ∈ GON
/GFN

and Δ ∈ H(E,Φ).

Proof. Firstly note that (7.2) implies that E ◦ τλ = τλ ◦ E = E for all λ ∈ T, because of
the invariance property of the Haar measure dλ on the unit circle T. Consequently, if we as-
sume that Φ is gauge invariant, then for all x ∈ ON we have Φ(E(x)) = Φ(

∫
T

τλ(x)dλ) =∫
T

Φ(τλ(x))dλ = ∫
T

Φ(x)dλ = Φ(x). Conversely, if Φ ◦ E = Φ , then for every λ ∈ T we have
Φ ◦ τλ = Φ ◦ E ◦ τλ = Φ ◦ E = Φ .

(a) To define the action of T upon the base GON
/GFN

we use the fact that each gauge auto-
morphism τλ leaves FN pointwise invariant and therefore induces a mapping of GON

/GFN
onto

itself. It is straightforward to show that in this way we get an action (λ, aGFN
) �→ τλ(a)GFN

of
T as claimed. The action of the circle group upon the total space D can be defined by the formula
[(a, f )] �→ [(τλ(a), f )] for all [(a, f )] ∈ D and λ ∈ T.

(b) The realization operator γ : K0 → H(E,Φ) is unitary, hence it will be enough to prove
that K0 =⊕m∈Z

K(m)
0 and that each term of this decomposition is invariant under all of the

operators in the C∗-algebra πΦ(FN), where K(m)
0 is the closed linear subspace of K0 spanned by

πΦ(O(m)
N )H̃0 for all m ∈ Z. (Note that K0 = spanπΦ(FN)H̃0 by construction.)

The proof of this assertion follows the lines of [37, Section 1] and relies on the fact that, as an
easy consequence of (7.1), we have O(m)

N O(n)
N ⊆ O(m+n)

N and (O(m)
N )∗ ⊆ O(−m)

N for all m,n ∈ Z

(where (·)∗ stands for the image under the involution of ON ). Note that V V ∗ : K0 → H̃0 is
the orthogonal projection from K0 onto H̃0. It follows that for all m,n ∈ Z with m �= n, and
x ∈ O(m), y ∈ O(n), ξ, η ∈ H0 we have
N N
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(
πΦ(x)V ξ | πΦ(y)V η

)= (πΦ(y∗x)V ξ | V η
)= (V V ∗(πΦ(y∗x)V ξ) | V η

)
= (Φ(y∗x

)
ξ | η)H0

= (Φ(E(y∗x
))

ξ | η)H0
= 0,

where the latter equality follows since y∗x ∈ O(m−n)
N with m − n �= 0, so that E(y∗x) = 0 as an

easy consequence of (7.2). The above computation shows that K(m)
0 ⊥ K(n)

0 whenever m �= n.

To see that
⋃

m∈Z
K(m)

0 spans the whole K0, just recall from [22] that the set
⋃

m∈Z
O(m)

N spans
a dense linear subspace of ON , and use the image of this set under the unital ∗-homomorphism
πΦ : ON → B(K0). Consequently the asserted orthogonal direct sum decomposition of K0 is
proved. On the other hand, since FN = O(0)

N , it follows that for all m ∈ Z we have FN O(m)
N =

O(0)
N O(m)

N ⊆ O(m)
N , so πΦ(FN)K(m)

0 ⊆ K(m)
0 according to the construction of K(m)

0 .
(c) For every λ ∈ T denote by a ⊗ f �→ a ⊗ f , ON ⊗ H0 → K0, the canonical map. Since

Φ ◦ τλ = Φ , it follows that the mapping a ⊗ f �→ τλ(a) ⊗ f , ON ⊗ H0 → ON ⊗ H0, induces a
unitary operator Vλ :a ⊗ f �→ τλ(a) ⊗ f , K0 → K0. As the closure of the image of O(m)

N ⊗ H0

in K0 is equal to K(m)
0 , it follows that for all m ∈ Z we have

K(m)
0 = {h ∈ K0 | (∀λ ∈ T) Vλh = λmh

}
. (7.3)

On the other hand, for all c, a ∈ ON and f ∈ H0 we have

πΦ

(
τλ(c)

)
a ⊗ f = τλ(c)a ⊗ f = τλ

(
cτλ−1(a)

)⊗ f = Vλcτλ−1(a) ⊗ f = VλπΦ(c)τλ−1(a) ⊗ f

= VλπΦ(c)Vλ−1a ⊗ f ,

whence

(∀λ ∈ T, c ∈ ON) πΦ

(
τλ(c)

)= VλπΦ(c)Vλ−1 . (7.4)

It follows by (7.3) and (7.4) that

(∀λ ∈ T, n ∈ Z, c ∈ ON, h ∈ K(n)
0

)
πΦ

(
τλ(c)

)
h = λ−nVλπΦ(c)h. (7.5)

Now for λ ∈ T, η ∈ K0, and c ∈ GON
we get

(̃
τλ ◦ γ (η) ◦ τ−1

λ

)
(cGFN

) = τ̃λ

(
γ (η)

(
τλ−1(c)GFN

))= τ̃
[(

τλ−1(c),P
(
πΦ

(
τλ−1(c

−1)η
)))]

= [(c,P (πΦ

(
τλ−1

(
c−1)η)))],

whence by (7.5) it follows that (̃τλ ◦ γ (h) ◦ τ−1
λ )(c GFN

) = λn[(c,P (Vλ−1πΦ(c−1)h))], for

h ∈ K(n)
0 where for m ∈ Z, P (m) : K0 → K(m)

0 is the orthogonal projection and P = P (0).
On the other hand, it follows by (7.3) that

∫
T

λn−m(Vλh)dλ = P (m−n)h for all h ∈ K0, and

thus by the above equality we get for h ∈ K(n),
0
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∫
T

λ−m
(̃
τλ ◦ γ (h) ◦ τ−1

λ

)
(cGFN

)dλ =
∫
T

λn−m
[(

c,P
(
Vλ−1πΦ

(
c−1)h))]dλ

= [(c,P (0)P (n−m)
(
πΦ

(
c−1)h))]

=
{

γ (h)(cGFN
) if n = m,

0 if n �= m.

Thus we have proved the asserted formula for Δ = γ (h) with h ∈⋃n∈Z
K(n)

0 . On the other hand,
the reproducing (−∗)-kernel associated with the Stinespring representation πΦ is continuous,
hence the realization operator γ : K0 → O(GON

/GFN
,D) is continuous with respect to the uni-

form convergence on the compact subsets of the base GON
/GFN

. Since K0 =⊕n∈Z
K(n)

0 and
the right-hand side of the asserted formula is linear and continuous with respect to the latter
topology, it follows that the corresponding equality extends by linearity and continuity to the
whole space H(E,Φ) = γ (K0). �
Remark 7.16. It is noteworthy that orthogonal decompositions similar to the one of Corol-
lary 7.15(b) also show up in connection with representations of Cuntz algebras that do not
necessarily occur as Stinespring dilations of gauge invariant maps; see for instance the repre-
sentations studied in [17].

There is a close relationship between ∗-endomorphisms of algebras B(H) and representations
of Cuntz algebras, see for instance [36,37]. In the remainder of this subsection, we point out that
some of the notions underlying this relationship provide us with more examples of the theory
proposed in the present paper. Thus let H be a separable Hilbert space, let A := B(H) and
let α :A → A a unital ∗-endomorphism; then α is normal, as noted for instance in [36]. By a
celebrated result of W. Arveson there exist N ∈ {1, . . . ,+∞} and a ∗-representation ρ : ON → A,
where ON is the Cuntz algebra generated by N isometries vj , on H, such that

α(T ) =
N∑

j=1

ρ(vj )Tρ
(
v∗
j

)
, T ∈ A. (7.6)

(See [5, Proposition 2.1].) Since α is unital we have that
∑N

j=1 ρ(vj )ρ(v∗
j ) = 1 even for N = ∞

(in the strong operator topology, in the latter case). In the sequel we assume that N � 2.
We do observe that, in order to make a link between the geometry of ρ and the one of α,

the endomorphism α can be regarded either as a ∗-representation of the injective von Neumann
algebra A on H or as a completely positive mapping from A into B(H). In fact, it seems natural at
first glance to take into consideration the second option, since (7.6) induces the correspondence
uρu−1 �→ uα(u−1 · u)u−1 (u ∈ GA); that is, the canonical map S(ρ) → S(α). Nevertheless,
in such a case we cannot be sure that the algebraic isomorphism S(α) � GA/G(α) entails a
structure of smooth homogeneous manifold. Namely, the Lie algebra of G(α) is g(α) = {X ∈ A |
X − α(X) ∈ α(A)′}, see Lemma 7.6, and it is not clear that g(α) is topologically complemented
in A.

On the other hand, by looking at α as a ∗-representation and by using a bit of the structure of
von Neumann algebras, it is possible to relate the orbits S(ρ) and S(α) to each other, as we are
going to see.
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Since A is Connes-amenable (that is, A is injective, see [55]) an appropriate virtual diagonal
M for A can be fixed, so that the mapping

Eα(T ) :=
∫

A⊗A

α(a)T α(b)dM(a,b) (T ∈ A),

is a conditional expectation from A onto Bα := Eα(A). This endows S(α) with the correspond-
ing smooth homogeneous manifold structure.

Similarly, ON is a nuclear (amenable) C∗-algebra, see [22], and therefore we can fix a con-
tractive virtual diagonal MN for ON so that the mapping

Eρ(T ) :=
∫

ON⊗ON

ρ(s)Tρ(t)dMN(s, t) (T ∈ A)

is a conditional expectation from A onto Bρ := Eρ(A). In this way, we regard α :A → B(H) and
ρ : ON → A as special cases of Example 7.1.

There are two C∗-subalgebras of A which are important in the study of the endomorphism α.
These are {a ∈ A | α(a) = a} and

⋂
n>0 αn(A). Recall that Bα = {a ∈ A | Eα(a) = a} = α(A)′

and Bρ = {a ∈ A | Eρ(a) = a} = ρ(ON)′, see [20]. (In this notation, g(α) = (I −α)−1(Eα(A)).)
By [36, Proposition 3.1(i)] we have Bρ = ρ(ON)′ = {a ∈ B(H) | α(a) = a} (which means in
particular that Bρ = C1 if the representation ρ is irreducible or, equivalently, if α is an ergodic
endomorphism of A = B(H)). Hence, for every b ∈ Bρ we get b = α(b) ∈ Eα(A)′. Shortly,

Bρ ⊆ α(A)′′ = α(A). (7.7)

Note that α(A)′ is w∗-closed in A and so it is a von Neumann subalgebra of A. Moreover α(A)′
is the range of the conditional expectation Eα and then it turns out to be injective. Let Δ be the
anti-unitary operator (Δ is an antilinear isometry with Δ2 = id) which appears in the standard
form of α(A)′, see [63, vol. II]. Then the mapping EΔαΔ :A → A given by

EΔαΔ(T ) := ΔEα(ΔT Δ)Δ (T ∈ A)

is a conditional expectation such that α(A)′′ = EΔαΔ(A). It follows that α(A)′′ is also injective,
see [63, vol. III]. The above notation is not by chance since EΔαΔ corresponds exactly to the
expectation defined by the virtual diagonal M and representation ΔαΔ. Thus we have

Bρ ⊆ BΔαΔ. (7.8)

Passing to quotients, (7.8) implies that we obtain a canonical surjection S(ρ) → S(ΔαΔ). In
fact, it is a submersion mapping: the above map is GA-equivariant and its tangent map at ρ is
implemented by the bounded projection

id − EΔαΔ : (id − Eρ)(a) �→ (id − EΔαΔ)(a)

from A/Bρ onto A/BΔαΔ.
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On the other hand, the involutive transformation β �→ Δβ(·)Δ carries diffeomorphically sim-
ilarity (unitary) orbits onto similarity (unitary) orbits of the space of representations Repω(A). In
particular S(α) and S(ΔαΔ) are diffeomorphic through the map

aαa−1 �→ (ΔaΔ)(ΔαΔ)(Δa−1Δ), S(α) → S(ΔαΔ)

(note that uα = αu if and only if (ΔuΔ)(ΔαΔ) = (ΔαΔ)(ΔuΔ)). Putting all the above facts
together we obtain the analytic submersion S(ρ) → S(α) given by

aρa−1 �→ (ΔaΔ)α
(
Δa−1Δ

)
(a ∈ GA).

At this point one can return to (7.7), which also tells us that

Bα = α(A)′ ⊆ B ′
ρ. (7.9)

Thus we can proceed as formerly, just replacing α with ρ. In particular, the von Neumann algebra
Bρ = ρ(ON)′ is injective and then its commutant subalgebra B ′

ρ in A is also injective. In effect, it
is the image B ′

ρ = ERρR(A) of the conditional expectation ERρR defined by the virtual diagonal
MN and representation RρR, where R is the anti-unitary operator involved in the standard form
of ρ(ON)′. Hence, there exists an analytic submersion S(α) → S(ρ) given by

uρu−1 �→ (RuR)ρ
(
Ru−1R

)
(u ∈ GA).

In summary, we have proved the following result.

Theorem 7.17. Let Δ, R be the anti-unitary operators associated with the standard forms of the
injective von Neumann algebras α(A)′, ρ(ON)′, respectively. Then Bρ ⊆ BΔαΔ and Bα ⊆ BRρR ,
and the mappings

qρ :aρa−1 �→ (ΔaΔ)α
(
Δa−1Δ

)
, S(ρ) → S(α),

qα :uαu−1 �→ (RuR)ρ
(
Ru−1R

)
, S(α) → S(ρ)

are analytic submersions.

Remark 7.18. The joint action of suitably chosen mappings in the proposition yields new sub-
mersions

aρa−1 �→ (
V aV −1)ρ(V a−1V −1), S(ρ) → S(ρ)

and

uαu−1 �→ (
V −1uV

)
α
(
V −1u−1V

)
, S(α) → S(α),

where V is the unitary operator V = RΔ. Such submersions need not be diffeomorphisms.
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Because of the inclusion Bρ ⊆ BΔαΔ we have EΔαΔ ◦ Eρ = Eρ . Set Fρ := EρEΔαΔ. Then
Fρ is also a conditional expectation and Fρ and Eρ are equivalent: FρEρ = Eρ and EρFρ = Fρ ,
so that Fρ(A) = Bρ . In addition, Fρ and EΔαΔ commute: EΔαΔFρ = Fρ = FρEΔαΔ.

Let Φ :A → B(H0) be a completely positive map, for some Hilbert space H0. Put Φρ :=
Φ ◦ Fρ . Then ΦρFρ = Φρ and ΦρEΔαΔ = Φρ . Applying Stinespring’s dilation theorem we
find Hilbert spaces HJ (Φρ), for J = A,BΔαΔ,Bρ with HBρ (Φρ) ⊆ HBΔαΔ(Φρ) ⊆ HA(Φρ),
and ∗-representations πJ :J → B(HJ (Φρ)) satisfying πBΔαΔ(u) = πA(u)|HBΔαΔ

(Φρ) for each
u ∈ BΔαΔ, and πBρ (u) = πBΔαΔ(u)|HBρ (Φρ) for each u ∈ Bρ .

Corollary 7.19. In the above setting, there exists the commutative diagram

GA ×GBρ
HBρ (Φρ) GA ×GBα

HB(Φρ)

S(ρ)
qρ

S(α)

whose arrows are GA-equivariant and compatible with the involutive diffeomorphisms −∗ on
both S(ρ) and S(α). Moreover, the representation πA of GA on HA(Φρ) can be extended to
A and realized as multiplication on a reproducing kernel Hilbert space formed by holomorphic
sections of the left-side vector bundle in the diagram.

Proof. Firstly, a diagram similar to that one of the statement, and concerning the algebras
Bρ ⊆ BΔαΔ, is immediately obtained by mimicking the proof of Corollary 7.10. Then using the
diffeomorphism Δ(·)Δ one gets the wanted result or diagram, where the action of Bα on HB(Φρ)

is given just by transferring the action of BΔαΔ through Δ(·)Δ (note that BΔαΔ = ΔBαΔ). �
A diagram entirely analog to the previous one of the corollary can be obtained by interchang-

ing roles of representations ρ and α.

Remark 7.20. Using the representation ρ, we can make a link between Corollary 7.15 and
the preceding setting. Let τ be the gauge automorphism group of ON , and let Eτ be the ex-
pectation defined by (7.2) for m = 0. Corollary 7.15 applies to completely positive mappings
Φ : ON → B(H0) such that Φ ◦ Eτ = Φ . Assume that ρ is a ∗-representation of ON on a von
Neumann algebra A, and Eρ :A → A the conditional expectation associated with some, fixed,
virtual diagonal M of norm one for A. Let Φ :Eρ(A) → B(H0) be completely positive, and let
consider Φρ,τ := Φ ◦ Eρ ◦ ρ ◦ Eτ . Then Φρ,τEτ = Φρ,τ and we obtain Hilbert spaces and their
decompositions like those of Corollary 7.15, associated with the representation ρ and algebra A.

Finally, the subalgebra ρ(FN)′ =⋂n>0 αn(A) (see [36, Proposition 3.1(ii)]) suggested us
to form sequences of vector bundles in the following manner. Let α :A → A be a normal,
∗-representation where A = B(H) as above. Then α∗(A∗) ⊆ A∗ where A∗ denotes the predual
of A formed by the trace-class operators on H, and α∗ is the transpose mapping of α. For n ∈ N

we are going to consider the iterative mappings βn := αn ◦ ρ and corresponding expectations
denoted by En := Eβn and put E0 = Eρ . Then, for ξ ∈ A∗ and T ∈ A,
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(En ◦ α)(T )(ξ) =
∫

ON⊗ON

(
αnρ
)
(s)α(T )

(
αnρ
)
(t)(ξ)dMN(s, t)

=
∫

ON⊗ON

(
αn−1ρ

)
(s)T

(
αn−1ρ

)
(t)
(
α∗ξ
)

dMN(s, t)

= En−1(T )
(
α∗ξ
)= (α ◦ En−1)(T )(ξ),

see [20]. More specifically, (Eρα)(T ) = α(
∫

ON⊗ON
ρ(s)Tρ(t)dMN(s, t)) = ϕ(T ) ∈ C, where

ϕ is the state given by ϕ(T ) := ∫ON⊗ON
ρ(s)Tρ(t)dMN(s, t) ∈ B(H)′ = C1, T ∈ A. Hence

En ◦ α = α ◦ En−1, n ∈ N, (7.10)

whence, by a reiterative process and since αEρ = Eρ , we get

En ◦ αn = Eρ, n ∈ N. (7.11)

Hence we get EnEρ = Eρ and therefore Bρ ⊆ Bn, where Bn := En(A), for all n. Further, we
have αEn(A) = En+1α(A) ⊆ En+1(A) by (7.10), that is, α(Bn) ⊆ Bn+1, n ∈ N.

Now consider a countable family (Φn)n�0 of completely positive mappings Φn :A → B(H0),
for some Hilbert space H0, such that

Φn+1 ◦ α = Φn, Φn ◦ En = Φn, n ∈ N. (7.12)

Such a family exists. Take for instance φn := EρE1 . . .En, and a completely positive map
Φ :A → B(H0). Then the family Φn := Φ ◦ φn, n � 0, satisfies (7.12). In these conditions the
diagram

A

E0

α
A

E1

α · · · α
A

En

α
A

En+1

Φn+1 B(H0)

id

B0
α

B1
α · · · α

Bn
α

Bn+1
Φn+1 B(H0)

is commutative in each of its subdiagrams.
For every n � 0, by applying Theorem 6.10 to the conditional expectation En :A → Bn

and mapping Φn one finds the corresponding Hilbert space HBn(Φn) for the representation
which is the Stinespring dilation of Φn. Take a finite set of elements bj in Bn. As Φn(b

∗
i bj ) =

Φn+1(α(bi)
∗α(bj )) it follows that

∥∥∥∥∑bj ⊗ fj

∥∥∥∥
Φn

=
∥∥∥∥∑α(bj ) ⊗ fj

∥∥∥∥
Φn+1
j j
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for all
∑

j bj ⊗fj ∈ Bn ⊗ H0, see Section 5. Hence, α(HBn(Φn)) ⊆ HBn+1(Φn+1). This implies
that we have found the (countable) system of vector bundle homomorphisms

GA ×GBρ
HBρ (Φ0)

id⊗α
GA ×GB1

HB1(Φ1)
id⊗α · · · id⊗α

GA ×GBn
HBn(Φn)

id⊗α · · ·

S(ρ)
α̃0

S(α1ρ)
α̃1 · · · α̃n−1

S(αnρ)
α̃n · · ·

where α̃n is the canonical submersion induced by α|Bn :Bn → Bn+1, n � 0.
Of course the above sequence of diagrams gives rise to the corresponding statements about

complexifications, and realizations of representations on spaces of holomorphic sections.

7.5. Non-commutative stochastic analysis

We have just shown a sample of how to find sequences of homogeneous vector bundles of
the type dealt with in this paper. As a matter of fact, continuous families of such bundles are
also available, which could hopefully be of interest in other fields. More precisely, the geometric
models developed in the present paper might prove useful in order to get a better understanding
of the phenomena described by the various theories of non-commutative probabilities. By way of
illustrating this remark, we shall briefly discuss from our geometric perspective a few basic ideas
related to the stochastic calculus on full Fock spaces as developed in [7,8]. (See also [28,66] for
a complementary perspective that highlights the role of the Cuntz algebras in connection with
full Fock spaces.)

In the paper [7], a family of conditional expectations {Et }t>0 is built on the von Neumann al-
gebra A of bounded operators on the full Fock space, generated by the annihilation, creation, and
gauge operators. Set At := Et(A) for t > 0. It is readily seen that At ⊆ As and that EtEs = Et

whenever 0 < s � t (check first for the so-called in [7] basic elements). Applying the Stine-
spring dilation procedure to the conditional expectation Es and completely positive mapping
Et one gets Hilbert spaces HAs (Et ) ⊆ HA(Et ) and the consequent Stinespring representations
πAj

:Aj → B(HAj
(Et )), where j = 0, t , and A0 = A. This entails the commutative diagram

GA ×Gt HAt (Et ) GA ×Gs HAs (Et ) GA ×Gr HAr (Et )

GA/Gt GA/Gs GA/Gr ,

for r < s < t , where Gj = GAj
for j = r, s, t . Moreover, as usual, the geometrical framework of

the present paper works to produce a Hilbert space HA(Es,Et ), formed by holomorphic sections
on GA/Gs , which is isometric to HA(Et ) and enables us to realize πA as natural multiplication.

On the other hand, from the point of view of the quantum stochastic analysis (see for instance
[12,49]), it is worth considering unital completely positive mappings Φ :A → B(H0) with the
following filtration property: There exists a family {Φt :A → B(Ht )}t�0 of completely positive



2930 D. Beltiţă, J.E. Galé / Journal of Functional Analysis 255 (2008) 2888–2932
mappings which approximate Φ in some sense and satisfy Φt ◦ Et = Φt for all t > 0. Then we
get commutative diagrams

GA ×Gt HAt (Φt ) GA ×Gs HAs (Φs)

GA/Gt GA/Gs

whenever s < t . By means of the realizations of the full Fock space as reproducing kernel Hilbert
spaces of sections in appropriate holomorphic vector bundles we find geometric interpretations
for most concepts usually related to the Fock spaces (for instance, annihilation, creation, and
gauge operators). We thus arrive at the challenging perspective of a relationship between the non-
commutative stochastic analysis and the infinite-dimensional complex geometry, which certainly
deserves to be understood in more detail. For one thing, this might provide useful geometric
insights in areas like the theory of quantum Markov processes.
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