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Abstract

We present a newp — 1)-brane solution to Einstein’s equations in a general spacetime dimension. This solution is a
natural generalization of the stringlike defect solution with codimension 2 in 6 spacetime dimensions, which has been recently
discovered by Gogberashvili and Singleton, to a gengral 1)-brane solution with codimension in generalD = p +n
spacetime dimensions. It is shown that all the local fields are localized on the brane only through the gravitational interaction
although this solution does not have a warp factor and takes a finite value in the radial infinity. Thus, this solution is a solution
in an arbitrary spacetime dimension realizing the idea of “gravitational trapping” of the whole bulk fields on the brane within
the framework of a local field theory. Some problems associated with this solution and localization are pointed out.

0 2003 Published by Elsevier B.V. Open access under CC BY license.

The idea that our four-dimensional world is a three-brane embedded in a higher-dimensional spacetime with
non-factorizable warped geometry has been much investigated since the appearance of papers [1-3]. (See alsc
[4—6] for the pioneering works and [7] for many brane model.) In this idea, the key observation is that the graviton,
which is allowed to be free to propagate in the bulk, is confined to the brane because of the warped geometry,
thereby implying that the gravitational law on the brane obeys the usual four-dimensional Newton’s law as desired.

On the other hand, the other local fields except the gravitational field are not always localized on the brane
even in the warped geometry. Indeed, in the Randall-Sundrum model in five dimensions [2], the following facts
are well known: spin O field is localized on a brane with positive tension which also localizes the graviton [8].
Spin 1 field is not localized neither on a brane with positive tension nor on a brane with negative tension [9]. (In
six spacetime dimensions, the spin 1 gauge field is also localized on the brane [10].) Moreovet2spid B2
fields are localized not on a brane with positive tension but on a brane with negative tension [8]. Thus, in order to
fulfill the localization of Standard Model particles on a brane with positive tension, it seems that some additional
interactions except the gravitational interaction must be also introduced in the bulk. (See the review [11] and the
papers [12] for the localization of the bulk fields in various brane world models.)

The introduction of such additional interactions, however, is not only unnatural from the physical viewpoint
but also can be applied to only specific situations. (For instance, for the localization of fermionic fields one must
introduce a mass term with a ‘kink’ profile [13].) Thus, it is very welcoming if we could find a model in the brane
world where all the local bulk fields are localized on the 3-brane only by the universal interaction, i.e., the gravity.
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Itis of interest that Gogberashvili and Singleton [14,15] have recently found such a solution to Einstein’s equations
in six spacetime dimensions and pointed out that all the local fields ranging from the spin 0 scalar field to the spin
2 gravitational field are localized on the 3-brane in this background geometry.

The aim of the present Letter is twofold. One aim is to extend their 3-brane model in six spacetime dimensions
to the case of a genergb — 1)-brane model in a general spacetime dimension. We explicitly show that even
in this general model whole local fields, those are, spin 0 scalar field, ggisgdinor field, spin 1 gauge field,
spin 3/2 gravitino field and spin 2 gravitational field as well as totally antisymmetric tensor fields, are confined
on the(p — 1)-brane without appealing to the additional bulk interactions except the gravity. The other aim is to
mention some problems associated with the solution and the localization. In particular, we will stress that the ‘mild’
localization of the wave function of the zero-modes might give rise to a conflict with experiments and arguments
about the stability of the brane is completely ignored.

The action which we consider in this Letter is that of gravity in genérat p + n dimensions, with the
conventional Einstein—Hilbert action plus the bulk cosmological constant and some matter action [16]:

S 1 de\/—_g(R—ZA)+/de«/—ng, (1)

=52
2,

wherexp denotes theD-dimensional gravitational constant with the relatic%1= 8nGy = M%’,T,z with Gy and

M, being theD-dimensional Newton constant and thedimensional Planck mass scale, res*pectively. Throughout
this Letter we follow the standard conventions and notation of the textbook of Misner, Thorne and Wheeler [17].

The variation of the action (1) with respect to tiiedimensional metric tensogyn leads to Einstein’s
equations:

1
Run — EgMNR =—Agun + KIZJTMN, (2)
where the energy—momentum tensor is defined as

2 8
TMNZ—\/?g(SgTN/\dDX«/—ng. (3)

We adopt the following metric ansatz:
ds® = SMN dx™ dxV
= guv dx" dx" + Zap dx dx® = §2(r) g (x*) dxt dx¥ + g(r) (dr? +r?d22_,), (4)

where M, N, ... denote D-dimensional spacetime indiceg, v,... p-dimensional brane ones, andb, ...
n-dimensional extra spatial ones, so the equdlty- p + n holds. (We assume > 4.) And d.Qf_1 stands for
the metric on a unifn — 1)-sphere, which is concretely expressed in terms of the angular varéalaes

n—1
A7) = d63 +Sir? 02d63 + Sir? 0 siP 93d6Z + -+ + [ [ sirP6; do?, (5)
i=2
; 273
with the volume elemenf d$2,_1= FT%) .

Moreover, following Gogberashvili and Singleton [14] we take the ansatz for the energy—momentum tensor
respecting the spherical symmetry (see [10] for the more general ansatz):

T/w :gqu(r)» Tap = gab K (1), (6)

whereF andK are functions of only the radial coordinate
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Under these ansatze, after a straightforward calculation, Einstein’s equations reduce to
1 ¢"\? ¢ (%)  (n—D(n—2) (%)’ 1
= - = -1 —(n—=Dn—-2=
g[p(p )<¢) + p(n )¢ 2 + 7 ( 2 ) n—-Dn-2)
1.
- ER+2A=2K%K, (7)

1 " v N\ 2 S 2y
E[(P—1)<2¢——g—£)+(p—l)(p—2)(%) +(p—1)(n—1)¢i(r2g)

o 8@ ¢ reg

(r29)"  n—4((%)"\* 1g (%) 111,.2-p1, o2
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where the prime denotes the differentiation with respeat,tand R is the scalar curvature associated with the
brane metri,,,. Here we define the cosmological constanton the(p — 1)-brane by the equation

. 1. . .
Ry = S8R =—Ap8uy. (10)

In deriving Eq. (8), we have useR),, = 12, R, which is obtained by taking the trace of Eq. (10). Note that since

Ty, is proportional tgg .., R is a constant [16]. In addition, the conservation law for the energy—momentum tensor,
VM Ty N =0, takes the form

K’+p%(K—F):O. (11)

One of our purposes in this Letter is to find a néw— 1)-brane solution to Einstein’s equations and the
conservation law in the above. To do that, the first step is to subtract Eq. (7) from Eq. (9). The result is given by

" /Y ’ ” 3 /N 2 1o
zp[¢__g_¢;_£]+(n_z)[g___(g_) __g_]zo. (12)
¢ g¢ ro g 2\¢g rg
Next we require the terms in each square bracket to vanish separately, that is,
" /Y ’ " 3 /N 2 1o
¢ g g___(g_) I (13)
¢ g¢ ro g 2\g rg

Here we notice that = 2 is special in that the latter equation does not arise from Eq. (12) owing to the factor
n — 2. In this sense, the stringlike defect solution with codimension 2, which has been found by Gogberashvili and
Singleton [14] is distinct from the other defect solutions. Nevertheless, we will see that there is a similar solution
even inn # 2, whose solution precisely correspond$te 2 case in [14].

It turns out that the solution to the former equation in Eq. (13) is given by [14]

g(r)= pz@, (14)
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wherep is an integration constant. The latter equation in Eq. (13) is then solved and the explicit foprandp
are given by

2 2 > 2 1

N = 4aC 5 5> 15
wherea, ¢ andp are mtegration constants. (See below about boundary conditions which we take.) Furthermore,
we can show that the remaining Einstein’s equations and the conservation law of the energy—momentum tensor are
satisfied if we choose the following form of the source functions:

¢(r)—ar

1 [4c? r? 1 1 (r24c?
K@) = 22 ZP(P DW_a_p?("_l)("J”Zp_Z)_F e R+2A
1[4 r? 1 r2 +c
12—p(r2+c2\?,
+—2—p(%> R+2A] (16)
a p re—c

Note that these source functions approach a definite value at the infirityoo. Although we could take
K (00) = F(00) = 0 by selecting bothR and p (or a) appropriately, we do not so singein the solution (15)
does not take the vanishing valuerat> co, either.

Here we should mention one subtle point, that is, what boundary conditions on the brane (and/or at the infinity)
we should impose. For instance, in the previous work of the stringlike defect model with codimension 2 [10], we
have required that the extra two dimensions are conical around the brane with a deficit angle in order to describe
the “local cosmic string” sitting at the origin= 0. In the case at hand, we take the different boundary conditions
which require us only to avoid singularities on the brane [14]. Then, the suitable boundary conditions which we
take in this Letter are

¢(e)=1, ¢(c0) =a, (17)
wheree denotes the “brane width”, which now takes a fixed value. The former boundary condition allows us to

express the constantin terms of the “brane width” ag = \/Z:jje, which impliesa > 1 under the assumption
of a being positive. Let us count the number of independent integration constants in the solution (15). Originally
we have two second-order differential equations with respe¢t &md g. Since we have set up two boundary
conditions (17), the number of the remaining independent constants should be two, which are nothisgdaut
Furthermore, it is worthwhile to mention that in this Letter the brane is assumed to have the nonvanishing “brane
width” since the “brane width% appears in the later arguments of localization of the bulk fields and plays a role
as the short-distance cutoff. In this context, let us note that the core physicsrinsiges in essence controlled by
the short-distance and high-energy physics, so the complete understanding of the core physics calls for quantum
gravity. Because we have at present no satisfying theory of quantum gravity, it is physically reasonable to introduce
such a cutoff via the boundary conditions into our theory where the cutoff has the physical meaning as the brane
width.

Closely relating to the problem of boundary conditions, it is worthwhile to see how our solution (15) can be
described in the coordinate system where the defects with a deficit angle are usually described. The result is given

by
ds? = 9*(R)gv dx" dx” + dR? + h(R) d27_,

= a20052<

1 1
—— R\ $,p dx"dx" + dR? + dap?sir? R)d92 .. 18
oda )glw xPdx” + + 4ap 20a n—1 (18)



|. Oda/ Physics Letters B 571 (2003) 235-244 239

In this coordinate system, the line element has especially a simple form in that the scale factor is expressed by (the
square of) the cosine whereas the angular factor is the sine. Then, a deficit angle can be calcziﬂa@d—g;é;,
which means that we have no deficit angle around the brane swhdhas expected [10].

Now we turn our attention to the problem of the localization of the bulk fields on the brane in the background
geometry (15). Of course, in due analysis, we will neglect the back-reaction on the geometry induced by the
existence of the bulk fields. We proceed our study of the localization in order according to the size of spin of local
fields and finally investigate totally antisymmetric tensor fields.

Let us start with a massless, spin 0, real scalar coupled to gravity:

1
Soz—év/de«/—ggMNaMcDaN(D, (19)
from which the equation of motion can be derived:
1
— (/=g g"Noay®) =0. (20)
NaT ( )

From now on, without loss of generality, we shall take a flat metric on the brane, tigat,iss n,.,. It turns out

that® (xM) = ¢ (x*)uo which satisfies the Klein—-Gordon equation on the brgtted, 3,4 (x) = 0 is a solution to

the equation of motion (20) in the background metric (15). Substituting this solution into the starting action (19),
the action can be cast to

1272
—= u
2I(3)

So=

00
S/dr‘bpfzg%r”*l/dpx "3, pdud + - - (22)
e

Now we wish to show that this zero-mode is localized on the brane sitting around therod@nThe condition
for having localizedp-dimensional scalar field is that the solution is normalizable. It is of importance to notice that
normalizability of the ground state wave function is equivalent to the condition that the “coupling” constant is
non-vanishing. In other words, in order to show that the bulk zero-modes which satisfy the equation of motion in
the bulk is in fact confined to a brane, the zero-modes must give us the kinetic terms on the brane, from which we
can understand that the bulk zero-modes are truely dynamical and propagate on the brane. Thus, provided that we
define

oo

o0
[O=f drd)p*zg%r”*l:(2cp)”ap+%72/dr

& &

the condition of having localizeg-dimensional scalar field on the brane requires thhathould be finite. The
integral in Ip scales asrn% at the radial infinity and is a smooth function betweesa ¢ andr = oo, so I is
finite even if the analytic expression is not available. (In the case-et, Ip can be expressed in terms of the
hypergeometric function, which is of course finite.) Hence, phéimensional scalar fielgh is localized on the
brane by the gravitational interaction.

Next, let us consider spin/2 spinor field. Our starting action in this case is the Dirac action given by

S =/dea/_—g ir"pyw, (23)

from which the equation of motion is given by

(r2 — (2)p=2

n—1
(r2 + cZ)n+p72 r ’ (22)

0=IY"Dyw = (I'"Dy, + I'" D, + I'"% Dy, )W. (24)

We introduce the viereir&%_ (and its inversee%) through the usual definitiom_m = e%_e,’g,’nm-, where
M, N, ... denote the local Lorentz indices:™ in a curved spacetime is related @’ in a flat spacetime by
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™ = eﬂ"_ij. In addition, the spin connectian!?" in the covariant derivativ®y ¥ = (9 + S0M Ny )W =

(0p + wp) ¥ is defined as

- - — — — 1 _ _ _ 1 _ — _
N = > NM (3pel — dvety) — EeNN(BMe]A\;[ — dneht) — EePMeQN(apeQ,@ —dpepplek., (25)
so the covariant derivative can be calculated to
¢/
DY =|0 =—1I, I )Y,
: ( Sy )
DV =0,V
11 1 -
Do W = |9, — >3 3r(g2r)Fngi + @y, (0) (¥, (26)
2

whereay, (0) is a contribution froms”—1, whose explicit form is now irrelevant so is omitted to write down.

Let us look for a solution with the form o (x™) = v (x*)u(r) x (9), wherey (x*) satisfies the massless
p-dimensional Dirac equation*d, 3 = 0 and the chiral conditiop” ¢ (x*) = ¥ (x*), andy satisfies the equation
yoi (39, + @g;) x = 0. With this ansatz, the Dirac equation (24) is reduced to

pe’  n—10(g? r)}
o + == = 27
[ TR T (27)

The solution to this equation then reads:

u(r)_C1¢ (ng)_%, (28)

with c1 being an integration constant.
Now we are willing to show that the solution (28) is normalizable so that the sfdrsfinor field is localized
on the brane. Inserting the above solution to the action gives rise to

o
Sy =/dr¢l’—1g%r”—1u2(r)/dgn,lxz(e)/dl’x Viyrap 4 - (29)
I3

In order to localize the spin/2 fermion, the integral%, which is defined as

o0
= /dr o g2 LU (r) (30)
e
should be finite. (Here note that the integral og&r? is finite.) Indeed, this integral can be easily calculated as
2
1%=57:|o ifz (31)

which is obviously finite as long as the brane widths non-vanishing. The important point here is that the
divergence at = oo, which usually makes the zero-mode solutions unnormalizable, does not occur in the model
at hand.

Let us turn to spin 1 gauge field. We consider the actioti @) vector field:

1

Sl=—Z/deV_ggMNgRSFMRFNS, (32)
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whereFyy = oy Ay — dn Ay as usual. From this action the equation of motion is given by

1
——m(v—g¢"" " Fys) =0. (33)
NET ( )
It is easily checked thaztﬂ(x’”) = au(xk)uo, A, (xM) = const, andy, (xM) = const is a solution to this equation
of motion if 3* f,,, = 0 wheref,, = d,a, — day.
Once we have found the solution, let us ask ourselves whether this solution is a normalizable one or not by
substituting it into the action (32). It turns out that the action is reduced to

n 00
12r2
S1=-— 4F( )uofdr¢p 4 /dpxr/lw )L(rfp,)»fvo (34)

The integral defined by

o0

oo
Ilzfdrqsl’—“g%r"—l: (2cp)"ap+%—4fdr (r?—c

(r C2)n+p —4

2)p 4 n—1
(35)

& &

is finite as in the scalar field. Thus, the vector field can be also localized on the brane only by the gravitational
interaction.

Next we are ready to consider spiiZ3fermionic field, in other words, the gravitino. Let us begin with the
action of the Rarita—Schwinger gravitino field:

S =/de./—glffMirWFNrR]DNwR, (36)
from which the equation of motion is given by
r'MpeNpRipywg =o. (37)
Here the square bracket denotes the total antisymmetrization and the covarlant derivative is defined with the affine
connection ", = e® (aMeN + oMNeyw) by DyWy = duWn — TE Wk + 50Ny ¥ . We look for a
solution with the form o, (xM) = ¥, (x"u(r)x (6) and¥, = 0= W, wherey andx are assumed to satisfy the

equationsy*y,, = y[“y”y”]avdfp =0,y ¥, = ¥, andy? 3y, + @g,)x = 0. Then, the equation of motion (37)
takes the form

1
p—1¢ n—lar<gzr>]
0, + 4+ =0. 38
[ 2 6" 2 o 'V (38)

The solution to this equation reads:
p—1 _n-1
u(ry=cs¢~ ' (g2r) 7, (39)
2
with cs being an integration constant.

We shall show that as in the case of spif field, this solution is normalizable so the gravitino field is also
localized on the brane. To do so, let us substitute the solution into the action, whose result is of form

o0

S =fdr¢"*3 ot 2<r>/dszn 1 w)fdf’xww y" 1o, + (40)

&
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It is certain that the integraﬂ%, which is defined as
° cep 2

I3 = /dr ¢ 32" Ly2(r) = 2—2—82 (41)

2 as/a - —¢c¢
&

is finite as long as the brane widthis non-zero. (Here note that the integral osér? is also finite.)

Next let us consider spin 2 gravitational field. As in the cases treated so far, we can search for a solution to the
equation of motion in the background (15), insert the solution in the Einstein—Hilbert action and then examine the
finiteness of the radial integral. However, in this case, it is well known that the localization property of the graviton
is the same as in the scalar field [10], so we can conclude that the bulk graviton is trapped on the brane as in case
of the scalar field.

Finally, we take account of totally antisymmetric tensor fields. In general, the actignraik totally
antisymmetric tensor field, is of the form in the form notation

1
Sk=—> / Fit1 A% Fq1, (42)
whereFy;1 = dA. The equation of motion is simply given by

dAN*xFyp1=0. (43)

We can show that ,,, iy, = Guqpp-u (XU is @ solution to this equation of motion if A *f = 0 where
f =da. Substituting this solution in the action (42) leads to the following expression:

Sk=1k/fk+1/\*fk+1+~w (44)

wherel; is defined as

o0

o
IkO(/dr(ﬁp_z_Zkg%r”_lo(/dr r

(r2+62)n+p7272k :

2 _ (2)p—2-2kn-1

(45)

It is obvious thatl is finite so the totally antisymmetric tensor fields are also localized on the brane by the
gravitational interaction.

In conclusion, in this Letter, we have presented a n@wn— 1)-brane solution in an arbitrary spacetime
dimension. This solution is a natural generalization of the 3-brane solution in six dimensions recently discovered
by Gogberashvili and Singleton [14] to genefakpacetime dimensions. We have also clarified that the stringlike
defect model with codimension 2 is specific due to the terms proportional to the fae®m Einstein’s equations.
Moreover, we have presented a complete analysis of localization of all bulk fields on a brane and showed that all
the bulk fields are trapped on the brane only via the gravitational interaction. It is well known that in the warped
geometry spin 12 and 32 fermionic fields are not trapped by the gravitational interaction so it is necessary to
introduce a non-trivial Higgs coupling, thereby generating a bulk mass term with a ‘kink’ profile and leads to the
localization of these fermionic fields on the brane [13]. It is remarkable that in the present model, we do not have
to include such an additional interaction for the localization of the fermionic fields.

At this stage, it is useful to ask why our solution gives rise to the localization of all the bulk fields on the brane.
The technical reason is very much simple. Namely, the scale fa¢tgrhas a property such that it approaches a
definite value at the infinity and a smooth function without singularities from the edge of the brane to the radial
infinity. So the normalizability of the ground state wave function, which is equivalent to a finite integral over the
radial coordinate, is assured for all the bulk fields. On the other hand, in the warped geometry, the integral over
associated with the fermionic fields include’s” (¢ > 0) factors coming frong#¥ (andeﬁ.j), for which the integral
overr diverges at — oo so it leads to the non-localization of these fermionic fields.
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As problems in this model, we should first recall one important point about the localization. As stressed before
[12], the normalizable condition, in other words, the convergence of the integrat oigansually thought to be a
condition for the localization, but the story is not so simple. As in the locally localized gravity models (see the third
paper in [12]) the present model provides us with an example such that the zero-mode solutions of the bulk fields
are normalizable, but their wave functions spread rather widely in the bulk owing to the lack of the warp factor.
Thus, in order not to contradict with the strict experiments such as the charge conservation law, some parameters
in our model must be chosen in a proper way. At present, we have no idea whether there is such a suitable choice
of the parameters.

As the second problem, we wish to point out a problem associated with the source functions. In our model,
the presence of a solution to Einstein’s equations heavily depends on the form of the source functions. Therefore,
there would be a possibility that we might have more solutions by changing the form of the source functions. The
real problem is then how to construct such source functions from fundamental matter fields so that the brane is
a stable localized object. For instance, a set gtalar functions with the Higgs potential, thereby breaking the
global SO(n) symmetry toSO(n — 1) symmetry, are used to make the topologicalple brane since a topological
argument guarantees the stability because of a mathematical forlpul@aSO(n — 1)) = Z [12].

Let us close by mentioning some interesting future works related to the present study. For instance, one
interesting work would be to construct a supergravity model corresponding to the situation at hand and investigate
the SUSY-breaking and the cosmological constant problem, etc. The other problem is to make the source functions
concretely from some local field such as the scalar field. As mentioned above, the physics near the core of the
brane is in the regime of the short-distance and the high-energy physics, so it would be difficult to understand the
physics completely since it is expected that quantum gravity plays an important role in the core physics. However,
some low energy effective action might be useful to describe the characteristic behavior of our source functions
and insure the stability of a brane under deformations. We wish to report these works in future publication.
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