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Abstract

We present a new(p − 1)-brane solution to Einstein’s equations in a general spacetime dimension. This solutio
natural generalization of the stringlike defect solution with codimension 2 in 6 spacetime dimensions, which has been
discovered by Gogberashvili and Singleton, to a general(p − 1)-brane solution with codimensionn in generalD = p + n
spacetime dimensions. It is shown that all the local fields are localized on the brane only through the gravitational in
although this solution does not have a warp factor and takes a finite value in the radial infinity. Thus, this solution is a
in an arbitrary spacetime dimension realizing the idea of “gravitational trapping” of the whole bulk fields on the brane
the framework of a local field theory. Some problems associated with this solution and localization are pointed out.
 2003 Published by Elsevier B.V.

The idea that our four-dimensional world is a three-brane embedded in a higher-dimensional spaceti
non-factorizable warped geometry has been much investigated since the appearance of papers [1–3].
[4–6] for the pioneering works and [7] for many brane model.) In this idea, the key observation is that the gr
which is allowed to be free to propagate in the bulk, is confined to the brane because of the warped g
thereby implying that the gravitational law on the brane obeys the usual four-dimensional Newton’s law as

On the other hand, the other local fields except the gravitational field are not always localized on th
even in the warped geometry. Indeed, in the Randall–Sundrum model in five dimensions [2], the followin
are well known: spin 0 field is localized on a brane with positive tension which also localizes the gravit
Spin 1 field is not localized neither on a brane with positive tension nor on a brane with negative tension
six spacetime dimensions, the spin 1 gauge field is also localized on the brane [10].) Moreover, spin 1/2 and 3/2
fields are localized not on a brane with positive tension but on a brane with negative tension [8]. Thus, in
fulfill the localization of Standard Model particles on a brane with positive tension, it seems that some ad
interactions except the gravitational interaction must be also introduced in the bulk. (See the review [11]
papers [12] for the localization of the bulk fields in various brane world models.)

The introduction of such additional interactions, however, is not only unnatural from the physical view
but also can be applied to only specific situations. (For instance, for the localization of fermionic fields on
introduce a mass term with a ‘kink’ profile [13].) Thus, it is very welcoming if we could find a model in the b
world where all the local bulk fields are localized on the 3-brane only by the universal interaction, i.e., the g
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It is of interest that Gogberashvili and Singleton [14,15] have recently found such a solution to Einstein’s eq
in six spacetime dimensions and pointed out that all the local fields ranging from the spin 0 scalar field to
2 gravitational field are localized on the 3-brane in this background geometry.

The aim of the present Letter is twofold. One aim is to extend their 3-brane model in six spacetime dim
to the case of a general(p − 1)-brane model in a general spacetime dimension. We explicitly show that
in this general model whole local fields, those are, spin 0 scalar field, spin 1/2 spinor field, spin 1 gauge field
spin 3/2 gravitino field and spin 2 gravitational field as well as totally antisymmetric tensor fields, are co
on the(p − 1)-brane without appealing to the additional bulk interactions except the gravity. The other aim
mention some problems associated with the solution and the localization. In particular, we will stress that th
localization of the wave function of the zero-modes might give rise to a conflict with experiments and arg
about the stability of the brane is completely ignored.

The action which we consider in this Letter is that of gravity in generalD = p + n dimensions, with the
conventional Einstein–Hilbert action plus the bulk cosmological constant and some matter action [16]:

(1)S = 1

2κ2
D

∫
dDx

√−g (R− 2Λ)+
∫
dDx

√−gLm,

whereκD denotes theD-dimensional gravitational constant with the relationκ2
D = 8πGN = 8π

MD−2∗
with GN and

M∗ being theD-dimensional Newton constant and theD-dimensional Planck mass scale, respectively. Throug
this Letter we follow the standard conventions and notation of the textbook of Misner, Thorne and Wheele

The variation of the action (1) with respect to theD-dimensional metric tensorgMN leads to Einstein’s
equations:

(2)RMN − 1

2
gMNR = −ΛgMN + κ2

DTMN,

where the energy–momentum tensor is defined as

(3)TMN = − 2√−g
δ

δgMN

∫
dDx

√−gLm.

We adopt the following metric ansatz:

ds2 = gMN dxM dxN
(4)= gµν dxµ dxν + g̃ab dxa dxb = φ2(r)ĝµν

(
xλ

)
dxµ dxν + g(r)(dr2 + r2 dΩ2

n−1

)
,

whereM,N, . . . denoteD-dimensional spacetime indices,µ,ν, . . . p-dimensional brane ones, anda, b, . . .
n-dimensional extra spatial ones, so the equalityD = p + n holds. (We assumep � 4.) And dΩ2

n−1 stands for
the metric on a unit(n− 1)-sphere, which is concretely expressed in terms of the angular variablesθi as

(5)dΩ2
n−1 = dθ2

2 + sin2 θ2dθ
2
3 + sin2 θ2 sin2 θ3dθ

2
4 + · · · +

n−1∏
i=2

sin2 θi dθ
2
n,

with the volume element
∫
dΩn−1 = 2π

n
2

Γ ( n2 )
.

Moreover, following Gogberashvili and Singleton [14] we take the ansatz for the energy–momentum
respecting the spherical symmetry (see [10] for the more general ansatz):

(6)Tµν = gµνF (r), Tab = gabK(r),
whereF andK are functions of only the radial coordinater.
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Under these ansatze, after a straightforward calculation, Einstein’s equations reduce to

1

g

[
p(p − 1)

(
φ′

φ

)2

+ p(n− 1)
φ′

φ

(r2g)′

r2g
+ (n− 1)(n− 2)

4

(
(r2g)′

r2g

)2

− (n− 1)(n− 2)
1

r2

]

(7)− 1

φ2
R̂ + 2Λ= 2κ2

DK,

1

g

[
(p− 1)

(
2
φ′′

φ
− g

′

g

φ′

φ

)
+ (p− 1)(p− 2)

(
φ′

φ

)2

+ (p− 1)(n− 1)
φ′

φ

(r2g)′

r2g

(8)+ (n− 1)

{
(r2g)′′

r2g
+ n− 4

4

(
(r2g)′

r2g

)2

− 1

2

g′

g

(r2g)′

r2g
− (n− 2)

1

r2

}]
+ 2− p

p

1

φ2 R̂ + 2Λ= 2κ2
DF,

1

g

[
p

(
2
φ′′

φ
− g

′

g

φ′

φ

)
+ p(p− 1)

(
φ′

φ

)2

+ p(n− 2)
φ′

φ

(r2g)′

r2g

(9)+ (n− 2)

{
(r2g)′′

r2g
+ n− 5

4

(
(r2g)′

r2g

)2

− 1

2

g′

g

(r2g)′

r2g
− (n− 3)

1

r2

}]
− 1

φ2
R̂ + 2Λ= 2κ2

DK,

where the prime denotes the differentiation with respect tor, andR̂ is the scalar curvature associated with
brane metriĉgµν . Here we define the cosmological constantΛp on the(p− 1)-brane by the equation

(10)R̂µν − 1

2
ĝµν R̂ = −Λpĝµν.

In deriving Eq. (8), we have used̂Rµν = 1
p
ĝµνR̂, which is obtained by taking the trace of Eq. (10). Note that si

Tµν is proportional toĝµν , R̂ is a constant [16]. In addition, the conservation law for the energy–momentum te
∇MTMN = 0, takes the form

(11)K ′ + pφ
′

φ
(K − F)= 0.

One of our purposes in this Letter is to find a new(p − 1)-brane solution to Einstein’s equations and
conservation law in the above. To do that, the first step is to subtract Eq. (7) from Eq. (9). The result is give

(12)2p

[
φ′′

φ
− g

′

g

φ′

φ
− φ′

rφ

]
+ (n− 2)

[
g′′

g
− 3

2

(
g′

g

)2

− 1

r

g′

g

]
= 0.

Next we require the terms in each square bracket to vanish separately, that is,

(13)
φ′′

φ
− g

′

g

φ′

φ
− φ′

rφ
= 0,

g′′

g
− 3

2

(
g′

g

)2

− 1

r

g′

g
= 0.

Here we notice thatn = 2 is special in that the latter equation does not arise from Eq. (12) owing to the
n− 2. In this sense, the stringlike defect solution with codimension 2, which has been found by Gogberash
Singleton [14] is distinct from the other defect solutions. Nevertheless, we will see that there is a similar s
even inn �= 2, whose solution precisely corresponds tob= 2 case in [14].

It turns out that the solution to the former equation in Eq. (13) is given by [14]

(14)g(r)= ρ2φ
′(r)
r
,
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whereρ is an integration constant. The latter equation in Eq. (13) is then solved and the explicit forms ofφ andg
are given by

(15)φ(r)= a r
2 − c2
r2 + c2 , g(r)= 4ac2ρ2 1

(r2 + c2)2 ,

wherea, c andρ are integration constants. (See below about boundary conditions which we take.) Furthe
we can show that the remaining Einstein’s equations and the conservation law of the energy–momentum t
satisfied if we choose the following form of the source functions:

K(r)= 1

2κ2
D

[
4c2

aρ2p(p− 1)
r2

(r2 − c2)2 − 1

aρ2 (n− 1)(n+ 2p− 2)− 1

a2

(
r2 + c2
r2 − c2

)2

R̂ + 2Λ

]
,

(16)

F(r)= 1

2κ2
D

[
4c2

aρ2p(p− 1)
r2

(r2 − c2)2 − 1

aρ2 (n− 1)(n+ 2p− 2)− 2

aρ2 (p− 1)

(
r2 + c2
r2 − c2

)2

+ 1

a2

2− p
p

(
r2 + c2
r2 − c2

)2

R̂ + 2Λ

]
.

Note that these source functions approach a definite value at the infinityr → ∞. Although we could take
K(∞) = F(∞) = 0 by selecting bothR̂ andρ (or a) appropriately, we do not so sinceφ in the solution (15)
does not take the vanishing value atr→ ∞, either.

Here we should mention one subtle point, that is, what boundary conditions on the brane (and/or at the
we should impose. For instance, in the previous work of the stringlike defect model with codimension 2 [1
have required that the extra two dimensions are conical around the brane with a deficit angle in order to
the “local cosmic string” sitting at the originr = 0. In the case at hand, we take the different boundary condi
which require us only to avoid singularities on the brane [14]. Then, the suitable boundary conditions wh
take in this Letter are

(17)φ(ε)= 1, φ(∞)= a,
whereε denotes the “brane width”, which now takes a fixed value. The former boundary condition allows

express the constantc in terms of the “brane width” asc =
√
a−1
a+1ε, which impliesa > 1 under the assumptio

of a being positive. Let us count the number of independent integration constants in the solution (15). Or
we have two second-order differential equations with respect toφ andg. Since we have set up two bounda
conditions (17), the number of the remaining independent constants should be two, which are nothing buta andρ.
Furthermore, it is worthwhile to mention that in this Letter the brane is assumed to have the nonvanishing
width” since the “brane width”ε appears in the later arguments of localization of the bulk fields and plays a
as the short-distance cutoff. In this context, let us note that the core physics insider = ε is in essence controlled b
the short-distance and high-energy physics, so the complete understanding of the core physics calls for
gravity. Because we have at present no satisfying theory of quantum gravity, it is physically reasonable to in
such a cutoff via the boundary conditions into our theory where the cutoff has the physical meaning as th
width.

Closely relating to the problem of boundary conditions, it is worthwhile to see how our solution (15) c
described in the coordinate system where the defects with a deficit angle are usually described. The resu
by

ds2 = ϕ2(R)ĝµν dx
µ dxν + dR2 + h(R)dΩ2

n−1

(18)= a2 cos2
(

1

ρ
√
a
R

)
ĝµν dx

µ dxν + dR2 + 4aρ2 sin2
(

1

2ρ
√
a
R

)
dΩ2

n−1.
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In this coordinate system, the line element has especially a simple form in that the scale factor is expresse

square of) the cosine whereas the angular factor is the sine. Then, a deficit angle can be calculated toδ = 2π ε2

8ρ3a
,

which means that we have no deficit angle around the brane whenε ≈ 0 as expected [10].
Now we turn our attention to the problem of the localization of the bulk fields on the brane in the backg

geometry (15). Of course, in due analysis, we will neglect the back-reaction on the geometry induced
existence of the bulk fields. We proceed our study of the localization in order according to the size of spin
fields and finally investigate totally antisymmetric tensor fields.

Let us start with a massless, spin 0, real scalar coupled to gravity:

(19)S0 = −1

2

∫
dDx

√−g gMN∂MΦ∂NΦ,
from which the equation of motion can be derived:

(20)
1√−g ∂M

(√−g gMN∂NΦ
) = 0.

From now on, without loss of generality, we shall take a flat metric on the brane, that is,ĝµν = ηµν . It turns out
thatΦ(xM)= φ(xµ)u0 which satisfies the Klein–Gordon equation on the braneηµν∂µ∂νφ(x)= 0 is a solution to
the equation of motion (20) in the background metric (15). Substituting this solution into the starting actio
the action can be cast to

(21)S0 = −1

2

2π
n
2

Γ (n2)
u2

0

∞∫
ε

dr φp−2g
n
2 rn−1

∫
dpx ηµν∂µφ∂νφ + · · · .

Now we wish to show that this zero-mode is localized on the brane sitting around the originr = 0. The condition
for having localizedp-dimensional scalar field is that the solution is normalizable. It is of importance to notic
normalizability of the ground state wave function is equivalent to the condition that the “coupling” cons
non-vanishing. In other words, in order to show that the bulk zero-modes which satisfy the equation of m
the bulk is in fact confined to a brane, the zero-modes must give us the kinetic terms on the brane, from w
can understand that the bulk zero-modes are truely dynamical and propagate on the brane. Thus, provide
define

(22)I0 =
∞∫
ε

dr φp−2g
n
2 rn−1 = (2cρ)nap+ n

2−2

∞∫
ε

dr
(r2 − c2)p−2

(r2 + c2)n+p−2
rn−1,

the condition of having localizedp-dimensional scalar field on the brane requires thatI0 should be finite. The
integral in I0 scales as 1

rn+1 at the radial infinity and is a smooth function betweenr = ε and r = ∞, so I0 is
finite even if the analytic expression is not available. (In the case ofε = c, I0 can be expressed in terms of t
hypergeometric function, which is of course finite.) Hence, thep-dimensional scalar fieldφ is localized on the
brane by the gravitational interaction.

Next, let us consider spin 1/2 spinor field. Our starting action in this case is the Dirac action given by

(23)S 1
2

=
∫
dDx

√−g Ψ̄ iΓ MDMΨ,
from which the equation of motion is given by

(24)0= Γ MDMΨ = (
Γ µDµ + Γ rDr +Γ θiDθi

)
Ψ.

We introduce the vielbeineM̄M (and its inverseeM
M̄

) through the usual definitiongMN = eM̄MeN̄NηM̄N̄ where

M̄, N̄, . . . denote the local Lorentz indices.Γ M in a curved spacetime is related toγ M̄ in a flat spacetime by
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Γ M = eM
M̄
γ M̄ . In addition, the spin connectionωM̄N̄M in the covariant derivativeDMΨ = (∂M + 1

4ω
M̄N̄
M γM̄N̄ )Ψ ≡

(∂M +ωM)Ψ is defined as

(25)ωM̄N̄M = 1

2
eNM̄

(
∂Me

N̄
N − ∂NeN̄M

) − 1

2
eNN̄

(
∂Me

M̄
N − ∂NeM̄M

) − 1

2
ePM̄eQN̄(∂P eQR̄ − ∂QePR̄)eR̄M,

so the covariant derivative can be calculated to

DµΨ =
(
∂µ + 1

2

φ′

gφ
ΓµΓr

)
Ψ,

DrΨ = ∂rΨ,
(26)DθiΨ =

[
∂θi −

1

2

1

g
3
2 r
∂r

(
g

1
2 r

)
ΓrΓθi + ω̃θi (θ)

]
Ψ,

whereω̃θi (θ) is a contribution fromSn−1, whose explicit form is now irrelevant so is omitted to write down.
Let us look for a solution with the form ofΨ (xM) = ψ(xµ)u(r)χ(θ), whereψ(xµ) satisfies the massles

p-dimensional Dirac equationγ µ∂µψ = 0 and the chiral conditionγ rψ(xµ)=ψ(xµ), andχ satisfies the equatio
γ θi (∂θi + ω̃θi )χ = 0. With this ansatz, the Dirac equation (24) is reduced to

(27)

[
∂r + p

2

φ′

φ
+ n− 1

2

∂r (g
1
2 r)

g
1
2 r

]
u(r)= 0.

The solution to this equation then reads:

(28)u(r)= c 1
2
φ− p

2
(
g

1
2 r

)− n−1
2 ,

with c 1
2

being an integration constant.
Now we are willing to show that the solution (28) is normalizable so that the spin 1/2 spinor field is localized

on the brane. Inserting the above solution to the action gives rise to

(29)S 1
2

=
∞∫
ε

dr φp−1g
n
2 rn−1u2(r)

∫
dΩn−1χ

2(θ)

∫
dpx ψ̄iγ µ∂µψ + · · · .

In order to localize the spin 1/2 fermion, the integralI 1
2
, which is defined as

(30)I 1
2

=
∞∫
ε

dr φp−1g
n
2 rn−1u2(r)

should be finite. (Here note that the integral overSn−1 is finite.) Indeed, this integral can be easily calculated a

(31)I 1
2

=
c21

2
ρ

√
a

log

∣∣∣∣ε+ c
ε− c

∣∣∣∣,
which is obviously finite as long as the brane widthε is non-vanishing. The important point here is that
divergence atr = ∞, which usually makes the zero-mode solutions unnormalizable, does not occur in the
at hand.

Let us turn to spin 1 gauge field. We consider the action ofU(1) vector field:

(32)S1 = −1

4

∫
dDx

√−g gMNgRSFMRFNS,
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whereFMN = ∂MAN − ∂NAM as usual. From this action the equation of motion is given by

(33)
1√−g ∂M

(√−g gMNgRSFNS
) = 0.

It is easily checked thatAµ(xM)= aµ(xλ)u0, Ar(xM)= const, andAθi (x
M)= const is a solution to this equatio

of motion if ∂µfµν = 0 wherefµν ≡ ∂µaν − ∂νaµ.
Once we have found the solution, let us ask ourselves whether this solution is a normalizable one o

substituting it into the action (32). It turns out that the action is reduced to

(34)S1 = −1

4

2π
n
2

Γ (n2)
u2

0

∞∫
ε

dr φp−4g
n
2 rn−1

∫
dpx ηµνηλσfµλfνσ + · · · .

The integral defined by

(35)I1 =
∞∫
ε

dr φp−4g
n
2 rn−1 = (2cρ)nap+ n

2−4

∞∫
ε

dr
(r2 − c2)p−4rn−1

(r2 + c2)n+p−4

is finite as in the scalar field. Thus, the vector field can be also localized on the brane only by the gravi
interaction.

Next we are ready to consider spin 3/2 fermionic field, in other words, the gravitino. Let us begin with
action of the Rarita–Schwinger gravitino field:

(36)S 3
2

=
∫
dDx

√−g Ψ̄MiΓ [MΓ NΓ R]DNΨR,

from which the equation of motion is given by

(37)Γ [MΓ NΓ R]DNΨR = 0.

Here the square bracket denotes the total antisymmetrization and the covariant derivative is defined with t
connectionΓ RMN = eR

M̄
(∂Me

M̄
N + ωM̄N̄M eNN̄ ) by DMΨN = ∂MΨN − Γ RMNΨR + 1

4ω
M̄N̄
M γM̄N̄ΨN . We look for a

solution with the form ofΨµ(xM)=ψµ(xλ)u(r)χ(θ) andΨr = 0= Ψθi whereψ andχ are assumed to satisfy th
equationsγ µψµ = γ [µγ νγ ρ]∂νψρ = 0, γ rψµ = ψµ andγ θi (∂θi + ω̃θi )χ = 0. Then, the equation of motion (37
takes the form

(38)

[
∂r + p− 1

2

φ′

φ
+ n− 1

2

∂r(g
1
2 r)

g
1
2 r

]
u(r)= 0.

The solution to this equation reads:

(39)u(r)= c 3
2
φ− p−1

2
(
g

1
2 r

)− n−1
2 ,

with c 3
2

being an integration constant.
We shall show that as in the case of spin 1/2 field, this solution is normalizable so the gravitino field is a

localized on the brane. To do so, let us substitute the solution into the action, whose result is of form

(40)S 3
2

=
∞∫
ε

dr φp−3g
n
2 rn−1u2(r)

∫
dΩn−1χ

2(θ)

∫
dpx ψ̄µiγ

[µγ νγ ρ]∂νψρ + · · · .
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It is certain that the integralI 3
2
, which is defined as

(41)I 3
2

=
∞∫
ε

dr φp−3g
n
2 rn−1u2(r)=

c23
2
cρ

a
√
a

2ε

ε2 − c2

is finite as long as the brane widthε is non-zero. (Here note that the integral overSn−1 is also finite.)
Next let us consider spin 2 gravitational field. As in the cases treated so far, we can search for a solutio

equation of motion in the background (15), insert the solution in the Einstein–Hilbert action and then exam
finiteness of the radial integral. However, in this case, it is well known that the localization property of the g
is the same as in the scalar field [10], so we can conclude that the bulk graviton is trapped on the brane a
of the scalar field.

Finally, we take account of totally antisymmetric tensor fields. In general, the action ofk-rank totally
antisymmetric tensor fieldAk is of the form in the form notation

(42)Sk = −1

2

∫
Fk+1 ∧ ∗Fk+1,

whereFk+1 = dAk. The equation of motion is simply given by

(43)d ∧ ∗Fk+1 = 0.

We can show thatAµ1µ2···µk = aµ1µ2···µk (xλ)u0 is a solution to this equation of motion ifd ∧ ∗f = 0 where
f = da. Substituting this solution in the action (42) leads to the following expression:

(44)Sk = Ik
∫
fk+1 ∧ ∗fk+1 + · · · ,

whereIk is defined as

(45)Ik ∝
∞∫
ε

dr φp−2−2kg
n
2 rn−1 ∝

∞∫
ε

dr
(r2 − c2)p−2−2krn−1

(r2 + c2)n+p−2−2k .

It is obvious thatIk is finite so the totally antisymmetric tensor fields are also localized on the brane b
gravitational interaction.

In conclusion, in this Letter, we have presented a new(p − 1)-brane solution in an arbitrary spacetim
dimension. This solution is a natural generalization of the 3-brane solution in six dimensions recently dis
by Gogberashvili and Singleton [14] to generalD spacetime dimensions. We have also clarified that the strin
defect model with codimension 2 is specific due to the terms proportional to the factorn−2 in Einstein’s equations
Moreover, we have presented a complete analysis of localization of all bulk fields on a brane and showed
the bulk fields are trapped on the brane only via the gravitational interaction. It is well known that in the w
geometry spin 1/2 and 3/2 fermionic fields are not trapped by the gravitational interaction so it is necess
introduce a non-trivial Higgs coupling, thereby generating a bulk mass term with a ‘kink’ profile and leads
localization of these fermionic fields on the brane [13]. It is remarkable that in the present model, we do n
to include such an additional interaction for the localization of the fermionic fields.

At this stage, it is useful to ask why our solution gives rise to the localization of all the bulk fields on the
The technical reason is very much simple. Namely, the scale factorφ(r) has a property such that it approache
definite value at the infinity and a smooth function without singularities from the edge of the brane to the
infinity. So the normalizability of the ground state wave function, which is equivalent to a finite integral ov
radial coordinater, is assured for all the bulk fields. On the other hand, in the warped geometry, the integralr
associated with the fermionic fields includese+cr (c > 0) factors coming fromgµν (andeµµ̄), for which the integra
overr diverges atr → ∞ so it leads to the non-localization of these fermionic fields.
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As problems in this model, we should first recall one important point about the localization. As stressed
[12], the normalizable condition, in other words, the convergence of the integral overr, is usually thought to be
condition for the localization, but the story is not so simple. As in the locally localized gravity models (see th
paper in [12]) the present model provides us with an example such that the zero-mode solutions of the bu
are normalizable, but their wave functions spread rather widely in the bulk owing to the lack of the warp
Thus, in order not to contradict with the strict experiments such as the charge conservation law, some pa
in our model must be chosen in a proper way. At present, we have no idea whether there is such a suitab
of the parameters.

As the second problem, we wish to point out a problem associated with the source functions. In our
the presence of a solution to Einstein’s equations heavily depends on the form of the source functions. Th
there would be a possibility that we might have more solutions by changing the form of the source functio
real problem is then how to construct such source functions from fundamental matter fields so that the
a stable localized object. For instance, a set ofn scalar functions with the Higgs potential, thereby breaking
global SO(n) symmetry toSO(n−1) symmetry, are used to make the topologicallystable brane since a topologica
argument guarantees the stability because of a mathematical formula>n−1(SO(n− 1))=Z [12].

Let us close by mentioning some interesting future works related to the present study. For instan
interesting work would be to construct a supergravity model corresponding to the situation at hand and inv
the SUSY-breaking and the cosmological constant problem, etc. The other problem is to make the source
concretely from some local field such as the scalar field. As mentioned above, the physics near the co
brane is in the regime of the short-distance and the high-energy physics, so it would be difficult to unders
physics completely since it is expected that quantum gravity plays an important role in the core physics. H
some low energy effective action might be useful to describe the characteristic behavior of our source fu
and insure the stability of a brane under deformations. We wish to report these works in future publication
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