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SUMMARY

The p53 tumor suppressor plays a key role in
maintaining cellular integrity. In response to diverse
stress signals, p53 can trigger apoptosis to eliminate
damaged cells or cell-cycle arrest to enable cells to
copewith stress and survive. However, the transcrip-
tional networks underlying p53 pro-survival function
are incompletely understood. Here, we show that
in oncogenic-Ras-expressing cells, p53 promotes
oxidative phosphorylation (OXPHOS) and cell sur-
vival upon glucose starvation. Analysis of p53 tran-
scriptional activation domain mutants reveals that
these responses depend on p53 transactivation
function. Using gene expression profiling and ChIP-
seq analysis, we identify several p53-inducible fatty
acid metabolism-related genes. One such gene,
Acad11, encoding a protein involved in fatty acid
oxidation, is required for efficient OXPHOS and cell
survival upon glucose starvation. This study provides
new mechanistic insight into the pro-survival func-
tion of p53 and suggests that targeting this pathway
may provide a strategy for therapeutic intervention
based on metabolic perturbation.

INTRODUCTION

As a critical tumor suppressor, p53 is mutated in more than half

of human malignancies (Olivier et al., 2010). In addition, mice

lacking p53 develop cancer with 100% penetrance, further

underscoring the essential role for p53 in tumor suppression (re-

viewed in Kenzelmann Broz and Attardi, 2010). In response to

diverse stress signals associated with tumor development,

including oncogene activation, DNA damage, nutrient depriva-

tion, and hypoxia, p53 is activated and induces transient G1
1096 Cell Reports 10, 1096–1109, February 24, 2015 ª2015 The Auth
cell-cycle arrest, cellular senescence, or apoptosis as measures

to limit tumorigenesis (Brady and Attardi, 2010; Vousden and

Prives, 2009). When damage is severe, terminal fates such as

apoptosis or senescence can eliminate compromised cells.

However, p53 can also play a pro-survival role by eliciting a

reversible G1 cell-cycle arrest in the presence of milder levels

of DNA damage, allowing the cell to pause and repair the dam-

age before proceeding through the cell cycle (Vousden and

Prives, 2009). p53 induces these responses largely by serving

as a transcriptional activator, a function crucial for various p53

cellular responses, as well as for tumor suppression (Bieging

et al., 2014). p53 also directly represses specific target genes

(Brady and Attardi, 2010; Hammond et al., 2006).

In recent years, an additional role for p53 in regulating cellular

metabolism has been recognized. Reprogramming of cellular

metabolism, characterized by enhanced aerobic glycolysis and

the concomitant decrease inmitochondrial oxidative phosphory-

lation (OXPHOS), is a hallmark of cancer development vital for

tumor cells to sustain energy production and support macromo-

lecular biosynthesis needed for growth and proliferation (Hana-

han and Weinberg, 2011). p53 counteracts these effects by

limiting glycolytic flux and promoting OXPHOS through various

mechanisms. For example, p53 suppresses glycolysis by directly

repressing the expression of the GLUT1/4 glucose transporters

(Schwartzenberg-Bar-Yoseph et al., 2004) and by inducing

expression of TIGAR, which lowers the levels of fructose-2,6-

bisphosphate, a key component of the glycolytic pathway (Ben-

saad et al., 2006). p53 also directly stimulates mitochondrial

OXPHOS by inducing SCO2, whose encoded protein promotes

assembly of the cytochrome c oxidase complex, and of GLS2,

which encodes aprotein that enhancesglutamate anda-ketoglu-

tarate production, thereby fueling OXPHOS (Hu et al., 2010; Ma-

toba et al., 2006; Suzuki et al., 2010). In addition, p53 activates

numerous target genes, includingGPX1,ALDH4, and TP53INP1,

encoding proteins involved in inhibiting reactive oxygen species

(ROS) accumulation, which may also contribute to tumor sup-

pression (Maddocks and Vousden, 2011). p53’s ability to restrain
ors
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Figure 1. p53 Promotes Cell Survival and

OXPHOS in HrasV12 MEFs upon Glucose

Starvation

(A) Relative survival of HrasV12;p53+/+ and

HrasV12;p53�/� MEFs in 1 mM glucose normal-

ized to cell survival in 25 mM glucose after 72 hr.

The ratio of HrasV12;p53+/+ MEFs is set to 1.0.

(B) Percentages of surviving HrasV12;p53+/+ and

HrasV12;p53�/� MEFs in the presence of varying

concentrations of 2-DG relative to cell survival in

0 mM 2-DG, which is set to 100%, after 72 hr. For

(A) and (B), results represent the mean ±SEM from

direct cell counts with the Coulter counter.

(C) Average OCR ± SEM of HrasV12;p53+/+ and

HrasV12;p53�/� MEFs determined by the Sea-

horse XF assay.

(D) Average OCR ± SEM by the Seahorse XF

assay with or without the specific FAO inhibitor

etomoxir (100 mM) in the presence of uncoupler

FCCP. The decrease in OCR upon etomoxir

treatment represents the proportion of the OCR

due to FAO.

The p values from Student’s t test are indicated.

N.S., not significant. See also Figures S1 and S2.
metabolic reprogramming is thought to be important for tumor

suppression in vivo, as suggested by studies of two p53 knockin

mutant mouse strains, expressing p53E177R or p533KR, mutants

altered in the DNA binding domain and in the ability to activate

certain p53 target genes but not others (Li et al., 2012; Timofeev

et al., 2013). Although thep53E177Rmutant is defective in inducing

apoptosis and the p533KR mutant in inducing cell-cycle arrest,

senescence, and apoptosis, in response to stress signals, both

mutants retain the capacity to inhibit glucose uptake, glycolysis,

and ROS accumulation, as well as to suppress spontaneous

tumorigenesis in mice. These findings suggest the importance

of p53 activity in suppressing metabolic reprogramming for its

tumor suppressor function in vivo.

The participation of p53 in metabolic pathways, both in re-

sponding to metabolic stress and in regulating metabolism,

can, in some contexts, promote enhanced cell survival. For

example, upon glucose limitation, AMPK, a major sensor of

ATP depletion in the cell, promotes a reversible G1 cell-cycle ar-

rest and cell survival in primary fibroblasts with wild-type p53,

whereas p53�/� fibroblasts fail to arrest or maintain viability

(Jones et al., 2005). The p53 target gene TIGAR can also

promote cell survival by increasing flux through the pentose

phosphate pathway, leading to the generation of NADPH, which

promotes an antioxidant environment (Bensaad et al., 2006). p53

can also induce G1 arrest and direct de novo serine synthesis to

GSH production to protect cells from oxidative damage and

enhance survival upon serine starvation (Maddocks et al.,

2013). Thus, p53 can promote cell survival through multiple

mechanisms.

Although p53 clearly promotes cell survival in response to

nutrient starvation, the transcriptional programs underlying p53
Cell Reports 10, 1096–1109, F
pro-survival function remain incompletely

understood. Here, we leverage a panel of

previously generated p53 transcriptional
activation domain (TAD) mutant knockin mouse strains to study

p53 pro-survival transcriptional programs. In particular, a mutant

in the first p53 TAD, known as p5325,26, is especially useful, as it

is severely compromised for the activation of most p53 target

genes but activates a small subset of p53 targets efficiently

and retains many p53 functions. We discover that promoting

cell survival upon nutrient deprivation is an activity retained by

p5325,26, in conjunction with the activation of a cohort of direct

metabolism-associated p53 target genes. Characterization of

these genes reveals that Acad11, encoding an acyl-CoA dehy-

drogenase family member (He et al., 2011), is a key cell survival

gene, lending new insight into how p53 allows cells to cope with

metabolic stress.

RESULTS

p53 Promotes Cell Survival uponGlucoseDeprivation by
Stimulating OXPHOS
To investigate the mechanisms underlying the p53 response to

metabolic stress, we used mouse embryonic fibroblasts (MEFs)

expressing oncogenic HrasV12 as a model for p53 function in

neoplastic cells under metabolic stress (Serrano et al., 1997). In

thismodel, HrasV12 constitutively activates p53,which in turn re-

strains proliferation. To examine the effects of a metabolic stress

encountered by incipient tumors, we studied the consequences

of nutrient starvation, specifically glucose starvation, on the

viability of HrasV12;p53+/+ and HrasV12;p53�/� MEFs. Consis-

tent with previous observations in primary MEFs (Jones et al.,

2005), HrasV12;p53�/� MEFs displayed decreased survival

compared with HrasV12;p53+/+ MEFs upon glucose starvation

(Figure 1A). Similarly, treatment of HrasV12-expressing MEFs
ebruary 24, 2015 ª2015 The Authors 1097



with 2-deoxyglucose (2-DG), a glycolysis inhibitor (Wick et al.,

1957), led todiminished survival ofHrasV12;p53�/�MEFs relative

to HrasV12;p53+/+ counterparts (Figure 1B). Thus, in the context

of oncogenic Hras, p53 promotes cell survival upon glucose

deprivation.

Because glucose is a major source of cellular energy, the

decrease in cell viability upon glucose starvation is likely due to

a deficit in energy production. In response to such stress, the

cell may use other sources of nutrients, including fatty acids

andcertain aminoacids, tomaintain energy homeostasis through

OXPHOS (Berkers et al., 2013). To measure the cellular oxygen

consumption rate (OCR), a reflection ofOXPHOSactivity, in living

cells in real time, we used the Seahorse Extracellular Flux

(XF) assay under conditions of glucose starvation. Relative to

HrasV12;p53�/� MEFs, HrasV12;p53+/+ MEFs have a higher

OCR, both at the basal level and under conditions of maximum

respiratory capacity triggered by the mitochondrial uncoupler

FCCP (Figure 1C) (Brand andNicholls, 2011). The use of oligomy-

cin, an ATP synthase inhibitor, establishes the amount of OCR

devoted to ATP production. Because p53 has been reported to

regulate fatty acid oxidation (FAO) (Assaily et al., 2011), which

itself can fuel OXPHOS, we examined whether differences in

FAO levels between HrasV12;p53+/+and HRasV12;p53�/�

MEFs could account for differences in OXPHOS. Treatment

of HrasV12;p53+/+ MEFs, but not HRasV12;p53�/� MEFs, with

the FAO inhibitor etomoxir provoked a significant decrease

in OCR under conditions of glucose starvation, indicating

that HrasV12;p53+/+ MEFs have higher FAO levels than

HRasV12;p53�/� MEFs and that upon glucose depletion, p53

promotes OXPHOS through FAO, thus maintaining energy ho-

meostasis to stimulate cell survival. The pro-survival effect by

p53 is abolished under hypoxic conditions (0.5% O2), which

also inhibit OXPHOS, suggesting further that OXPHOS is

required for the pro-survival function of p53 (Figure S1). There-

fore, in the context of oncogenic Hras, p53 promotes cell survival

upon glucose starvation at least in part by promoting FAO and

sustaining cellular energy homeostasis through OXPHOS.

In addition to stimulating OXPHOS, the ability of p53 to

regulate cell-cycle progression could also contribute to the

enhanced survival in p53-expressing cells, as described previ-

ously (Jones et al., 2005; Maddocks and Vousden, 2011). We

therefore examined the proliferation rates of HrasV12;p53+/+

and HrasV12;p53�/� MEFs upon glucose starvation. Consistent

with the previously reported growth arrest and senescence

responses in HrasV12;p53+/+ MEFs, low BrdU incorporation

(�15% BrdU+) is observed under normal and low-glucose

conditions, whereas HrasV12;p53�/� MEFs remain highly prolif-

erative (>50% BrdU+) under both normal and low-glucose con-

ditions (Figure S2A). Thus, as suggested previously (Jones et al.,

2005), induction of cell-cycle arrest by p53may contribute to sur-

vival in HrasV12;p53+/+ MEFs under glucose starvation, likely by

limiting the energy consumption associated with cell prolifera-

tion. In contrast, HrasV12;p53�/� MEFs undergo unchecked

proliferation upon glucose starvation and eventually die. These

findings suggest further that glucose limitation does not alter

the biological p53 response of cell-cycle arrest in HrasV12

MEFs but that this HrasV12-activated, p53-dependent response

may still help protect against the decreased survival triggered
1098 Cell Reports 10, 1096–1109, February 24, 2015 ª2015 The Auth
by glucose starvation. We also noted a higher induction of

apoptosis in HrasV12;p53�/� MEFs than in HrasV12;p53+/+

MEFs upon glucose deprivation (Figure S2B). Thus, the

decreased cell survival of HrasV12;p53�/� MEFs upon glucose

starvation can also be explained in part by elevated apoptosis.

Selective p53 Transactivation Function Suffices for
Promoting Cell Survival and OXPHOS upon Glucose
Starvation
To gain insight into the molecular basis of p53 pro-survival func-

tion, we sought to define the transcriptional programs associ-

ated with this response. We took advantage of p53 knockin

mouse strains expressing mutants altered in the first (p5325,26)

or both TADs (p5325,26,53,54) that we generated previously and

that display different transactivation potentials that could help

define transcriptional programs involved in cell survival (Fig-

ure 2A) (Brady et al., 2011; Johnson et al., 2005). Specifically,

the p5325,26 mutant is drastically impaired for the activation of

most p53 target genes but retains the capacity to efficiently

induce a select set of p53 target genes, while the p5325,26,53,54

mutant is transactivation-dead. Notably, mutation of the 53,54

residues alone does not compromise p53 transcriptional activity.

Given that the p5325,26 mutant efficiently activates only a small

subset of p53 targets, it provides an ideal molecular tool to

pinpoint essential p53 transcriptional targets involved in the

responses where p5325,26 is active.

To test the dependence of p53 pro-survival function on the

transactivation activity of p53, we examined the ability of the

p53 TAD mutants to promote cell survival in HrasV12 MEFs

upon glucose starvation. In these MEFs, expression of the

different p53 TAD mutants is silenced by an upstream Lox-

Stop-Lox (LSL) transcriptional stop element, until Cre recombi-

nase introduction through adenoviral-Cre (Ad-Cre) infection

drives recombination of the stop element and p53 expression.

Here and in all experiments, highly efficient Ad-Cre-induced

p53 expression (>90% of cells) was confirmed by immunofluo-

rescence and/or western blotting (Figure 2B). Similarly to

HrasV12;p53�/� MEFs, HrasV12;p5325,26,53,54/25,26,53,54 MEFs

showed compromised survival in response to glucose starva-

tion, indicating that p53 transactivation function is indeed critical

for preserving viability upon glucose deprivation (Figure 2C).

Consistent with this idea, HrasV12;p53R172H/R172H MEFs, ex-

pressing the mouse ortholog of a human tumor-derived mutant,

p53R175H, with a DNA binding domain mutation rendering it un-

able to bind p53 response elements, failed to survive efficiently

upon glucose starvation, like HrasV12;p53�/� MEFs (Figure 2D).

Interestingly, the protection conferred by the p5325,26 mutant is

similar to that observed with wild-type p53, suggesting that the

selective transactivation potential of the p5325,26 mutant is suffi-

cient for the p53-dependent pro-survival function upon glucose

deprivation (Figure 2C).

To determine whether the upregulation of OXPHOS by p53

depends on its transactivation function, we measured the OCR

upon glucose starvation in the same panel of cells. Although

the capacity of the p5325,26 mutant to transcriptionally activate

most p53 target genes is severely compromised, it can enhance

OXPHOS to an extent similar to that induced by wild-type p53

and significantly better than p5325,26,53,54 (Figure 2E). Together,
ors
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Figure 2. p53 Transactivation Potential Is Critical for Cell Survival and OXPHOS under Metabolic Stress

(A) Schematic view of p53 TAD mutants used in this study. DBD, DNA-binding domain; OD, oligomerization domain.

(B) Left: in HrasV12 MEFs homozygous for each p53 allele, efficiency of Ad-Cre-mediated recombination of the LSL element to induce wild-type or mutant p53

expression was determined by p53 immunofluorescence staining and counting the percentage of p53-positive cells out of 200 DAPI-positive cells in each

experiment. Right: p53 protein levels in HrasV12-expressing MEFs of different p53 genotypes. b Actin served as loading control.

(C) Relative survival by direct cell counts of HrasV12 MEFs expressing wild-type p53, p53 TAD mutants, or no p53 in 1 mM glucose normalized to cell survival in

25 mM glucose after 72 hr. The ratio of HrasV12;p53+/+ MEFs is set to 1.0.

(D) Relative survival by SRB staining of HrasV12;p53+/+, HRasV12;p53�/�, and HRasV12;p53R172H/R172H MEFs cultured in 1 mM glucose normalized to cell

survival in 25 mM glucose after 72 hr. The ratio of HrasV12;p53+/+ MEFs is set to 1.0.

(E) Relative OCRs of HrasV12MEFs expressing wild-type p53 or different p53 TADmutants, determined by the Seahorse XF assay. Results represent normalized

OCRs (OCR of Ad-Cre-infected HrasV12;p53LSL/LSL MEFs to OCR of the same Ad-Empty-infected HrasV12;p53LSL/LSL MEF line). Solid bars show basal OCR

measurements and hatched bars show OCR measurements after adding FCCP.

Histogram results in all panels represent the mean ± SEM. p values from Student’s t test are indicated. N.S., not significant.
these findings suggest that transcriptional activation is critical

for p53-mediated cell survival and for OXPHOS induction upon

glucose deprivation and that the selective transactivation

retained by the p5325,26 mutant suffices for promoting these

responses.

Gene Expression Profiling Uncovers Key p53 Target
Genes Involved in Metabolic Regulation
Because p5325,26 activates only a small subset of p53-depen-

dent genes, yet retains full biological activity in pro-survival

and OXPHOS regulation, we used it to hone in on the most

relevant p53 target genes for metabolic homeostasis. We per-

formed transcriptomic analysis of oncogenic HrasV12-ex-

pressing MEFs expressing each of the TAD mutants (Figure 3A)

(Brady et al., 2011). To identify the small subset of p53 target

genes still activated efficiently by p5325,26, we used signifi-

cance analysis of microarrays (SAM) with a false discovery

rate of 1% (Tusher et al., 2001) to compare the gene expres-

sion profiles of HrasV12;p5325,26/25,26 and HrasV12;p53�/�
Cell R
MEFs, as well as those of HrasV12;p53+/+ and HrasV12;p53�/�

MEFs. We derived lists of genes induced at least two-fold by

p5325,26 and wild-type p53 and then interrogated which genes

were activated by p5325,26 to an extent at least 70% of that

seen with wild-type p53. We thus identified a list of 50 unique

genes.

We performed Gene Ontology-based functional enrichment

analysis using the PANTHER Classification System. Intriguingly,

the most enriched biological processes were the energy ho-

meostasis-related Acyl-CoA metabolic process (p = 0.001),

with multiple other metabolism-related functional groups also

being significantly enriched (Figure 3B). Acyl-CoA is an interme-

diate formed during fatty acid catabolism, upon attachment of

coenzyme A to long-chain fatty acids. During FAO, acyl-CoA

is broken down in the mitochondria through b oxidation to pro-

duce acetyl-CoA, NADH, and FADH2, which can be channeled

into the tricarboxylic acid cycle and electron transport chain

for ATP production, thus providing an important energy-gener-

ating strategy upon glucose starvation. p53 has a documented
eports 10, 1096–1109, February 24, 2015 ª2015 The Authors 1099
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Figure 3. Gene Expression Profiling to Iden-

tify Genes Activated by Both Wild-Type p53

and p5325,26 in HrasV12 MEFs

(A) Experimental scheme. Primary MEFs homo-

zygous for the various LSL p53 TAD mutant alleles

were retrovirally transduced with HrasV12, then

infected with Ad-Cre to recombine the LSL

element and express the p53 alleles. Empty ade-

noviruses (Ad-Empty) were used to generate p53

null control MEFs. Wild-type (p53+/+) and p53�/�

MEFs provided additional controls.

(B) Top enriched biological processes (p < 0.05) by

PANTHER analysis of the top 50 unique genes

identified as being efficiently activated by both

wild-type p53 and p5325,26. The p values are

calculated by the binominal statistic.

(C) Heatmap analysis of Acad11 (two probe sets)

and Hmgcll1 (one probe set), genes within the

Acyl-CoA metabolic process category (bottom).

The numbers above the heatmaps represent the

different biological replicateswithin eachgenotypic

group of MEFs. Cpt1c (one probe set) and Lpin1

(two probe sets), which fail to meet the stringent

cutoff, are shown (top). Red and blue represent

higher and lower expression, respectively.
role in FAO (Goldstein and Rotter, 2012), and p53 activates

genes involved in FAO, including Cpt1c (carnitine palmitoyl-

transferase 1C), encoding a protein that stimulates the import

of fatty acids into mitochondria for b oxidation (Kerner and

Hoppel, 2000), and Lpin1, encoding Lipin 1, which cooperates

with peroxisome proliferator-activated receptor (PPAR) a and

PPARg coactivator-1a to activate FAO (Assaily et al., 2011).

Because FAO is a complex catabolic process, we reasoned

that Cpt1c and Lpin1 might not account for the full effect of

p53 on FAO. Moreover, although we found that Cpt1c and

Lpin1 exhibited a similar expression pattern to the top genes

identified by microarray analysis, displaying reasonably efficient

induction in HrasV12 MEFs by wild-type p53 and p5325,26 rela-

tive to p53-deficient cells, they did not pass the stringent filters

to be listed in the top 50 genes (Figure 3C, top). Interestingly,

one of the genes we identified in the Acyl-CoA metabolic pro-

cess group is Acad11, encoding a member of the acyl-CoA

dehydrogenase family (He et al., 2011), a group of enzymes

involved in b oxidation of fatty acids, suggesting that it could

contribute to p53 induction of FAO (Figure 3C, bottom). In addi-

tion, although not directly involved in FAO, the other gene in this

category, Hmgcll1, encodes an extramitochondrial hydroxyme-

thylglutaryl-CoA lyase, a key enzyme in ketogenesis, a process

by which acetyl-CoA is converted into ketone bodies mainly in

the liver, which are then dispersed to other tissues in the body

under conditions of starvation for energy production (Montgom-

ery et al., 2012).

Because these four genes are involved in fatty acid meta-

bolism, analysis of their p53-dependent regulation may help bet-

ter understand the pro-survival function of p53. We validated the

differential expression of Acad11, Hmgcll1, Cpt1c and Lpin1,

using quantitative RT-PCR (qRT-PCR) to examine their relative

expression levels in a panel of HrasV12 MEFs expressing

different p53 TAD mutants. MEFs with wild-type p53 showed
1100 Cell Reports 10, 1096–1109, February 24, 2015 ª2015 The Auth
robust induction of all these genes relative to p53-deficient

MEFs (Figure 4A). Moreover, p5325,26 activated Acad11 as

potently as wild-type p53 and efficiently induced Hmgcll1,

Cpt1c, and Lpin1 expression, albeit not quite to the same

extent as wild-type p53. In contrast, the transcriptionally dead

p5325,26,53,54 mutant failed to induce the expression of these

genes, indicating that their induction indeed depends on p53

transactivation.

Metabolic Target Genes Are Induced by p53 in Different
Cellular Contexts
To assess how generally these genes are regulated by p53, we

tested whether these genes are induced by p53 in other con-

texts. To assess p53 activation triggered by another type of

stress signal, we examined the expression of these genes in

wild-type p53 and p53 null MEFs treated with doxorubicin, a

genotoxic agent that activates p53 (Figure 4B). Doxorubicin

treatment robustly increased the expression of Acad11,

Hmgcll1, and Cpt1c in wild-type p53 MEFs compared with p53

null MEFs and in normal human fibroblasts expressing a control

small hairpin RNA (shRNA) relative to those expressing a p53

shRNA (Figure 4C). Lpin1 induction was not different in wild-

type and p53-deficient fibroblasts treated with DNA damage,

in contrast to the previously reported p53-dependent Lpin1 in-

duction by g irradiation in mouse hematopoietic cells (Assaily

et al., 2011), suggesting that the regulation of Lpin1 by p53 is

context dependent.

To determine whether Acad11 is induced by wild-type p53 and

p5325,26 in a different tumor cell type, we examined its expression

in cells derived fromnon-small-cell lung cancers (NSCLCs) arising

in KrasG12D;p53LSL-wt/LSL-wt or KrasG12D;p53LSL-25,26/LSL-25,26

mice harboring a latent KrasG12D allele (Johnson et al., 2001).

Expression of the p53 alleles was achieved by Ad-Cre infection

in vitro. Acad11, Cpt1c, and Hmgcll1 levels were efficiently
ors
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Figure 4. Induction of Metabolic Target

Genes Depends on p53 Transactivation

Function

(A) Validation of Acad11, Cpt1c, Hmgcll1, and

Lpin1 expression levels using qRT-PCR analysis

on HrasV12 MEFs homozygous for p53 mutant

alleles.

(B) qRT-PCR analysis of Acad11, Cpt1c, Hmgcll1,

and Lpin1 expression levels in p53+/+ and p53�/�

MEFs either left untreated or treatedwith 0.2 mg/ml

doxorubicin (dox) for 6 hr.

(C) qRT-PCR analysis of Acad11, Cpt1c, Hmgcll1,

and Lpin1 expression levels in normal human

fibroblasts expressing a p53 shRNA or control

shRNA. Cells were left untreated or treated with

0.2 mg/ml dox for 6 hr.

(D) qRT-PCR analysis of Acad11, Cpt1c, Hmgcll1,

and Lpin1 expression levels in KrasG12D-express-

ing mouse NSCLC cells of different p53 geno-

types. For all panels, colors represent the different

p53 genotypes.

(E) qRT-PCR analysis of Acad11, Cpt1c, Hmgcll1,

and Lpin1 expression levels inHrasV12;p53+/+ and

HRasV12;p53�/�MEFs cultured in normal glucose

(25mM), low glucose (1mM), or 0.2 mg/ml dox as a

positive control for p53 induction, for 6 hr.

For (A), (D), and (E), values are average quantities

of technical triplicates normalized to b actin ± c.v.

(coefficient of variation). For (B) and (C), the ratios

of treated/untreated normalized to b actin ± c.v.

are graphed. See also Figure S3.
induced by both wild-type p53 and p5325,26 in KrasG12D-express-

ing NSCLC cells (Figure 4D). In contrast, Lpin1was not efficiently

inducedby p5325,26 in this setting. Together, these data show that

a group of genes involved in fatty acid metabolism—Acad11,

Hmgcll1, and Cpt1c—are regulated by p53 in different cell types

and in response to both oncogenic stress andDNAdamage, sug-

gesting their general importance for p53 function.

To link the p53 transactivation-dependent induction of these

target genes to pro-survival function upon glucose starvation,

we examined whether glucose deprivation also induces expres-

sion of these genes. qRT-PCR analysis of HrasV12;p53+/+ and

HrasV12;p53�/� MEFs under both normal and low-glucose

conditions revealed that the p53-dependent induction of all

four metabolic target genes was comparable between the two

glucose conditions, indicating that glucose deprivation of onco-

genic Ras-expressing cells does not further induce metabolic

gene expression (Figure 4E). Accordingly, total p53 protein

levels and p53 serine 18 phosphorylation (serine 15 in humans)

were not altered by either low glucose or 2-DG treatment, as

they were by doxorubicin (Figure S3). Together, these findings

indicate that oncogenic Hras triggers p53-dependent expres-
Cell Reports 10, 1096–1109, F
sion of these metabolic target genes

and that glucose deprivation does not

further augment this induction. Thus,

p53 is poised to respond to glucose

limitation yet glucose deprivation does

not itself directly affect p53 activity

but instead some other cooperating
pathway, lending important insight into how p53 responds to

nutrient starvation.

p53-RegulatedMetabolismGenes AreDirect p53 Target
Genes
To determine whether these metabolism-related genes are

direct targets of p53, we leveraged a chromatin immunoprecip-

itation (ChIP)-sequencing (ChIP-seq) data set we generated

previously using wild-type MEFs treated with doxorubicin (Ken-

zelmann Broz et al., 2013). We associated p53-binding regions

with specific genes if within 10 kb of the gene, and these regions

were subjected to sequence analysis to identify p53 binding

elements (Menendez et al., 2009). These analyses revealed

p53 binding sites matching the RRRCWWGYYY(0-13bp)

RRRCWWGYYY consensus binding sequence in all four genes,

with Acad11, Cpt1c, and Lpin1 each bearing two sites and

Hmgcll1 bearing one (Figure 5A). Site 1 of Acad11, site 2 of

Cpt1c, and both sites of Lpin1 significantly match the p53

consensus binding sequence, with at least 7 of 10 matching

base pairs in each half-site and minimal spacers (0 or 1 base

pair) between half-sites. Notably, site 2 of Cpt1c and site 1 of
ebruary 24, 2015 ª2015 The Authors 1101
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Figure 5. ChIP Analysis of Direct p53 Binding to Metabolic Genes
(A) ChIP-seq profiles and identified peak-associated p53 binding sites for eachmetabolism-related gene. Exons are shown as blue boxes, and introns aremarked

by blue dashed lines. Inverted red triangles point to the called peaks. Arrows indicate the transcription start site (TSS). Uppercase letters in binding site represent

bases matching the consensus p53-binding sequence, and lowercase letters represent mismatches. Underlined letters highlight the critical bases in the p53

(legend continued on next page)
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Lpin1 match the previously published sites (site RE-A of Cpt1c

and 1A of Lpin1; Assaily et al., 2011; Sanchez-Macedo et al.,

2013), further validating our results. The other sites were more

degenerate relative to the consensus. Interestingly, within the

first ChIP-seq peak in Cpt1c, we only identified a half-site with

7 of 10 base pairs matching the consensus, consistent with

reports that half-sites can be bound and regulated by p53

(Menendez et al., 2009). p53 binding to all regions in these

genes containing predicted sites was confirmed by individual

ChIP-qPCR analyses in doxorubicin-treated wild-type MEFs

(Figure 5B). Collectively, our findings demonstrate that Acad11,

Hmgcll1, Cpt1c, and Lpin1 are direct p53 targets.

To evaluate whether p53 binding to Acad11 sites is retained

in HrasV12 MEFs under different glucose conditions, we

performed p53 ChIP on both HrasV12;p53+/+ and HrasV12;

p5325,26/25,26 MEFs. qPCR analysis demonstrated binding to

both sites by both wild-type p53 and p5325,26 in both normal

and low-glucose conditions (Figure S4). The 25,26 mutation

quantitatively affects binding to these sites, particularly binding

site 1, but without compromising the induction of Acad11,

suggesting that binding site 2 may be more important for

Acad11 induction in this setting (Figure 4). These findings sug-

gest that p53 directly binds to the Acad11 genomic locus to

induce its expression in the context of oncogenic Hras expres-

sion, and that p53 binding is not significantly altered by glucose

starvation, in keepingwith the observation thatAcad11 induction

by p53 is not altered by glucose starvation in this context

(Figure 4E).

p53-Regulated Metabolic Genes Are Evolutionarily
Conserved
Evolutionary conservation of a gene product provides key evi-

dence for an essential role in supporting normal cellular activities.

Because Acad11 is a previously undescribed p53 target gene

encoding a component involved in FAO, a process clearly

implicated in survival under metabolic stress, we analyzed its

evolutionary conservation. Interestingly, protein sequence align-

ment revealed Acad11 orthologs, with two conserved regions,

in D. melanogaster and C. elegans (Figures 6A and 6B). DNA

sequence analysis also revealed the presence of putative p53

binding sites in thepromoters of the fly andwormgenes, support-

ing the notion that these genes are regulated by p53 in simpler

eukaryotes (Figure 6C). Indeed, the CG6638 transcript is signifi-

cantly induced in flies expressing wild-type Dmp53, the fly p53

ortholog, compared with those carrying a Dmp53 null allele (Fig-

ure 6D) (Sogame et al., 2003). This observation suggests that

the regulation of Acad11 expression by p53 is evolutionarily

conserved, highlighting its functional relevance. Similarly, we

identified sequence conservation of Hmgcll1, Cpt1c, and Lpin1
response element. Gray lowercase letters represent spacers between the two ha

individual half-sites matching the consensus sequence, and the length of the sp

show the distance in base pairs from the TSS.

(B) qPCR analysis confirming enrichment of p53 binding at the sites shown in (A) af

dox-treated p53+/+ (red and blue bars, respectively) and p53�/� MEFs (negative

input were calculated for individual sites, then normalized to that of Nc6R, which

‘‘gene desert’’ region selected as a negative control.

See also Figure S4.

Cell R
proteins across species as well as putative p53-binding sites in

these genes in flies andworms, again suggesting the importance

of these genes for p53 function (Figure S5).

Acad11 Is a Component of p53 Pro-Survival Program
To gain new insight into p53 pro-survival function, we tested

whether Acad11 is required for survival upon glucose deprivation

by comparing the survival of HrasV12;p53+/+ MEFs expressing

Acad11 shRNAs with those expressing shGFP shRNAs upon

2-DG treatment. Acad11 knockdown rendered the cells more

sensitive to 2-DG treatment, indicating that Acad11 does in

fact contribute to the pro-survival function of p53 in this setting

(Figures 7A and 7B). In addition, as we showed that OXPHOS

is associated with p53 pro-survival function, we character-

ized the dependence of OXPHOS on Acad11. The OCR of

HrasV12;p53+/+ MEFs with attenuated Acad11 expression was

significantly diminished relative to the OCR in shGFP-expressing

cells, suggesting that Acad11 is a downstream mediator of p53

in promoting OXPHOS (Figure 7C). As a complementary

approach, we tested whether enforced expression of Acad11

is sufficient to protect cells from metabolic stress, by comparing

the survival of HrasV12;p53�/� MEFs overexpressing Acad11

with the survival of HrasV12;p53�/� MEFs overexpressing GFP

upon glucose starvation. Indeed, upon glucose starvation,

HrasV12;p53�/� MEFs overexpressing Acad11 displayed signif-

icantly improved survival relative to GFP-expressing control cells

(Figures 7D and 7E). Hmgcll1, but not Cpt1c, also promoted cell

survival in this context. Interestingly, combined overexpression

of Acad11 with other target gene(s) did not further improve sur-

vival, suggesting that these gene products may function in a

redundant fashion. Overexpression of Acad11 in HT1080 human

fibrosarcoma cells also significantly improved survival upon

glucose starvation (Figure S6). Collectively, these observations

suggest that Acad11 is an important component of the p53

pro-survival program.

In certain contexts, the p53-mediated pro-survival function

may promote tumor growth by leading to resistance tometabolic

stresses characteristic of tumor microenvironment. In support of

this notion, p53�/�HCT116 xenograft tumors display heightened

sensitivity to serine and glycine deprivation relative to p53+/+

HCT116 tumors (Maddocks et al., 2013). To examine whether

p53-deficient tumors are similarly sensitive to glucose limitation

in vivo, we established subcutaneous HrasV12;p53�/� MEF

xenograft tumors in nudemice and then compared tumor growth

uponmaintaining thesemice on a standard diet (44.2%carbohy-

drate) or on a low-carbohydrate, high-fat ketogenic diet (3.2%

carbohydrate), thus mimicking glucose starvation. We found

that the ketogenic diet significantly delayed early tumor growth

(Figure 7F). The difference in tumor growth was not due to
lf-sites. The position of the site (intronic or exonic), the number of base pairs in

acers between half-sites are summarized in red. The numbers above the sites

ter ChIP using either a p53-specific antibody or immunoglobulin G control, from

control, purple and green bars, respectively). Percentages of ChIP relative to

is set to 1%. The results are then plotted ± SEM. Nc6R represents a random
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general nutrient deficiency, as the average weights of themice in

the two cohorts were similar during the dietary treatment (Fig-

ure 7G). Together, these findings suggest that because of their

compromised FAO-promoting capacity, p53-deficient tumors

may be sensitive to metabolic insults inherent to the tumor

microenvironment.

DISCUSSION

Here, we examine the mechanisms underlying p53 pro-survival

function in neoplastic cells in response to glucose deprivation.

We find that oncogenic HrasV12-expressing MEFs with wild-

type p53 survive better than their p53 null counterparts upon

glucose starvation. In this context, p53 promotes OXPHOS by

promoting FAO, suggesting that the pro-survival effect is due

at least in part to positive regulation of the cellular energy supply

by p53. Consistent with its critical role in other p53-regulated

processes, including acute DNA damage responses and tumor

suppression, p53 transactivation function is also required for

promoting survival and OXPHOS upon glucose deprivation. To

gain mechanistic insight into p53 pro-survival function, we per-

formed microarray analysis on HrasV12-expressing MEFs

derived from knockin mice expressing various p53 TADmutants.

In particular, we leveraged cells expressing p5325,26, a TAD

mutant capable of promoting survival and OXPHOS upon

glucose starvation, despite being deficient for efficient transacti-

vation of most p53 target genes. This mutant remains capable,

however, of robustly activating a small subset of p53 genes

and therefore provides a useful tool for honing in on p53 target

genes involved in particular p53 biological functions retained

by this mutant (Brady et al., 2011; Jiang et al., 2011). Interest-

ingly, we found that metabolic regulation was the top enriched

function in the list of genes significantly induced by both wild-

type p53 and p5325,26. Within this category, we identified a group

of lipid metabolism-related genes, including both new (Acad11

and Hmgcll1) and known (Cpt1c and Lpin1) transcriptional tar-

gets of p53. As a new p53 target gene with a known function in

FAO, we analyzed Acad11 further and demonstrated that

Acad11 contributes to the p53-dependent functions of promot-

ing cell survival and OXPHOS upon glucose starvation. Our

studies thus reveal that Acad11 is an important p53 target

gene involved in p53 pro-survival function under metabolic

stress.
Figure 6. Regulation of Acad11 by p53 Is Evolutionarily Conserved

(A) The organization of the domains in the ACAD proteins is conserved across sp

the ACAD10_11_like domain, which is unique to the Acad10 and Acad11 mem

catalyzing intramolecular transfer of phosphate groups. Red denotes the ACAD_F

within the ACAD family of proteins inHomo sapiens,Musmusculus, andC. elegan

[IVD]) within the D. melanogaster homolog. The numbers above each protein den

(B) Protein sequence alignment of the ACAD_FadE2 domains in H. sapiens, M.

ClustalW2 program. Blue shading indicates the identities of residues between

Jalview, with darker blue signifying identity in more species.

(C) The genomic organization of the K09H11.1 (C. elegans Acad11 homolog) an

identified p53-binding sites within these loci. The number of base pairs in individ

between the two half-sites are summarized in red. The consensus p53-binding s

(D) qRT-PCR analysis of CG6638 expression in cells from wild-type or Dmp53 n

Levels represent mean quantities of technical triplicates from two independent se

are indicated. See also Figure S5.

Cell R
To survive deprivation of glucose, cells can use other sources

of energy-producing nutrients, such as fatty acids and gluco-

genic and ketogenic amino acids (Wolfe, 1998). FAO is a com-

plex process involving substrate activation, transport into the

mitochondria, and sequential removal of acetyl-CoA molecules,

which can enter the citric acid cycle for ATP production.

Although a role for p53 in FAO upon glucose starvation has

been shown (Assaily et al., 2011), the mechanisms by which

p53 regulates FAO are continually emerging (Goldstein and

Rotter, 2012), as exemplified by our identification of Acad11 as

a p53 target gene. Acad11 encodes a member of the acyl-CoA

dehydrogenase family and is highly expressed in adult human

brain, liver, heart, and kidney (He et al., 2011). Acad11 preferen-

tially uses very long-chain fatty acids as substrates, which are

abundant in neuronal tissues and are important for myelin syn-

thesis (He et al., 2011; Svennerholm and Ställberg-Stenhagen,

1968). Thus, Acad11 is likely important for energy homeostasis

not only in neoplastic cells, as we have shown, but also poten-

tially in these normal tissues. Interestingly, combined overex-

pression of Acad11 and other p53 target genes involved in fatty

acid metabolism did not further increase survival upon glucose

starvation, suggesting that these specific genes may function

in a redundant fashion and that that genes in other metabolic

pathways may also be important for mediating the full pro-sur-

vival effects of p53. Future analyses will further elaborate the

intricate network activated by p53 to protect cells from glucose

starvation.

Interestingly, our study suggests that the ability of p53 to

positively regulate FAO by transactivating specific targets could

also contribute to the survival of tumor cells in certain circum-

stances. Indeed, a pro-survival function for p53 in cancer has

been suggested by several recent studies. For example, by di-

recting de novo serine synthesis to GSH production upon

serine starvation and consequently limiting oxidative stress,

p53 can promote human colon carcinoma cell survival both

in vitro and in a xenograft model (Maddocks et al., 2013). Anal-

ysis of mice lacking the p53 antioxidant target gene Tigar

showed that Tigar supports intestinal adenoma development,

an observation supported by TIGAR overexpression during hu-

man colon cancer progression (Cheung et al., 2013). Further-

more, when challenged by prolonged nutrient starvation, p53

promotes a reduced but sustainable level of autophagic flux

by downregulating LC3 expression, facilitating tumor cell
ecies, as determined by the NCBI Conserved Domain Database. Blue denotes

bers of the ACAD protein family and has similarity to phosphotransferases

adE2 FAD-binding domain identified in FadE2-like Acyl-CoA dehydrogenases

s and the IVD FAD-binding domain (identified in isovaleryl-CoA dehydrogenase

ote amino acid positions.

musculus, and C. elegans and the IVD domain in D. melanogaster using the

proteins of different species, generated by the percentage identity option in

d CG6638 (D. melanogaster Acad11 homolog) loci and the sequences of the

ual half-sites matching the consensus sequence and the length of the spacers

equence is shown below.

ull D. melanogaster embryos.

ts of total RNAs normalized to RPL32 ± c.v. The p values from Student’s t test
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Figure 7. Acad11 Is Required for the Pro-Survival and OXPHOS-Promoting Functions of p53

(A) Knockdown of Acad11 was confirmed by western blotting (top) and qRT-PCR (bottom). b Actin served as loading control. qRT-PCR data represent the mean

quantities from technical triplicates normalized to b actin ± c.v.

(B) Fractions of surviving HrasV12;p53+/+ MEFs expressing Acad11 or GFP control shRNAs in the presence of 5 or 20 mM 2-DG compared with cell survival in

0 mM 2-DG, which is set to 100%, after 72 hr. Results represent the mean ± SEM of direct cell counts.

(C) Average OCR ± SEM of HrasV12;p53+/+ MEFs expressing Acad11 or GFP control shRNAs, by the Seahorse XF assay. (D) Relative survival of

HrasV12;p53�/� cells overexpressing Acad11, Hmgcll1, Cpt1c, (black boxes), GFP (open boxes), or the combination of Acad11 and another gene (black

boxes) in 1 mM glucose normalized to 25 mM glucose after 48 hr. Data are relative to the GFP control, which is set to 1.0. Results represent the mean ± SEM

by SRB staining.

(E) Overexpressed protein levels were assessed by western blotting using anti-HA and anti-Acad11 antibodies. b Actin serves as a loading control. Red triangles

point to the bands corresponding to the overexpressed proteins based on their molecular weight.

(F) Effect of glucose starvation on HrasV12;p53�/� xenograft tumor growth. Two weeks after tumor cell injection, mice were maintained on a ketogenic diet

(glucose-starved) or a regular diet. Average tumor volume ± SEM was plotted as a function of time starting from the first measurement.

(G) Average mouse weights ± SEM in both dietary groups on specific days are graphed.

The p values from Student’s t test are indicated. See also Figure S6.
survival (Scherz-Shouval et al., 2010). In addition, by inducing

autophagy and FAO, p53 protects xenograft tumors from meta-

bolic stress induced by metformin, an anti-diabetic agent that

lowers blood glucose levels (Buzzai et al., 2007). Finally,

Cpt1c also promotes tumor growth in breast and colon cancer
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xenograft models and in a neurofibromatosis type I genetically

engineered mouse model (Sanchez-Macedo et al., 2013; Zaugg

et al., 2011). Thus, multiple lines of evidence suggest that p53

may promote tumor cell survival under metabolic stress condi-

tions. Indeed, the retention of wild-type p53 in some human
ors



cancers suggests that p53 may promote tumor progression in

certain contexts (Kim et al., 2009; Lill et al., 2011).

Although a key function of p53 across evolution is in maintain-

ing germline integrity in response to genotoxic stress (Levine

et al., 2011), there is also evidence that the pro-survival activity

of p53 is an ancestral function. For example, the worm p53 or-

tholog CEP-1 is negatively regulated by AKT-1 and ABL-1 and

is thus integrated into pathways for sensing glucose and oxygen

availability (Belyi et al., 2010; Levine et al., 2011). Moreover, akin

to mammalian cells, ATP deficiency activates the AMPK-p53

pathway in flies, promoting G1 cell-cycle arrest (Mandal et al.,

2005). We recently also showed that p53 and its family members

p63 and p73, the ancestors of the family, participate together to

induce an autophagy gene expression program, suggesting that

metabolic regulation is an ancient function of the family that may

have arisen to help cope with nutrient stress (Kenzelmann Broz

et al., 2013). Accordingly, a recent study showed that TAp63, a

p63 isoform that retains a full transactivation domain, transcrip-

tionally activates the metabolic regulators Sirt1, AMPKa2, and

LKB1 and that TAp63-deficient MEFs displayed defects in FAO

(Su et al., 2012). Furthermore, TAp73 transactivates COX4, en-

coding cytochrome c subunit 4, and TAp73 deficiency leads to

attenuated oxygen consumption and ATP production (Rufini

et al., 2012). These observations collectively suggest that a

metabolic stress response program was built into the intricate

functional network regulated by the p53 family during evolution.

The fact that Acad11 is evolutionarily conserved in flies and

worms suggests its importance in this metabolic network.

There are critical clinical implications of p53 pro-survival

activity. The ability of p53 to limit ROS accumulation, through

mechanisms such as inducing TIGAR and channeling serine

metabolism toward GSH synthesis, highlights the increased

fitness and survival potential of tumor cells maintaining wild-

type p53 under metabolic stress. Thus, p53 deficiency, or inhibi-

tion of its downstream target genes involved in cell survival, such

as Acad11, may create a specific vulnerability that can be tar-

geted in therapies based on metabolic stress. Future investiga-

tion into the precise role of the p53 pro-survival program in

different tumor types and stages will further illuminate the biolog-

ical functions of p53 and reveal new opportunities for therapeutic

intervention.

EXPERIMENTAL PROCEDURES

Cell Culture

Cells were prepared and cultured as described (Johnson et al., 2005; Kenzel-

mann Broz et al., 2013). Infections of adenovirus (University of Iowa GTVR)

were performed as described (Brady et al., 2011). Lentiviral overexpression

vectors (pLEX-Acad11/Hmgcll1/Cpt1c/GFP) were constructed using the

pLEX-MCS vector (Thermo Scientific).

Microarray Analysis

Microarray experiments were performed and analyzed as described (Brady

et al., 2011). Class comparison analysis was performed using SAM (Tusher

et al., 2001).

qRT-PCR, ChIP, and Western Blotting

Total RNA isolation with Trizol reagent (Invitrogen) and qRT-PCR using SYBR

green (SA-Biosciences) and a 7900HT Fast Real-Time PCR machine (Applied

Biosystems) were performed as described (Brady et al., 2011). Drosophila
Cell R
mRNA was prepared as described (Link et al., 2013). ChIP and qPCR quanti-

fication was performed as described (Kenzelmann Broz et al., 2013). qPCR

primer sequences are listed in the Supplemental Information. Western blotting

was performed using standard protocols, with anti-p53 (CM5, Vector Labs,

1:1000), anti-phospho-p53Ser15 (9284, Cell Signaling, 1:1000), anti-Acad11

(E-15, Santa Cruz, 1:1000), anti-HA (HA.11, Covance, 1:2000) and anti-actin

(C-11, Santa Cruz, 1:1000) antibodies.

Protein Sequence Analysis

To analyze protein orthologs in different organisms, BLASTP (http://blast.ncbi.

nlm.nih.gov) searches using the human protein sequences as query se-

quences were performed. The protein sequences of the top hits were aligned

using the ClustalW2 tool.

Cell Survival Assays

For cell survival assays, 0.153 106 cells/well (24-well plates) or 53 103 to 23

104 cells/well (96-well plates) were plated in DMEM High Glucose (Invitrogen)

plus 10% fetal calf serum. Twelve to 24 hr later, cells were washed with PBS

and placed in DMEM No Glucose (Invitrogen) plus 10% dialyzed fetal bovine

serum (FBS) (Invitrogen) and different concentrations of glucose. A Coulter

Z1 particle counter (Beckman Coulter) (24-well) or sulforhodamine B (SRB)

staining (96-well) was used to quantitate cell number.

Seahorse XF Assay

Twenty thousand cellswere plated into eachwell of XF 96-well plates (Seahorse

Biosciences) inunbufferedDMEMwithoutglucose.XFanalyseswerecarriedout

usinganXF96extracellularanalyzer (SeahorseBiosciences).Aftermeasurement

of basal OCR, oligomycin (2.5 mg/mL; Sigma-Aldrich) and FCCP (5 mM; Sigma-

Aldrich) were sequentially added. The rawOCRs were normalized by plating ef-

ficiency. Todetermine the fraction ofOCRdue toFAO, theFAO-specific inhibitor

etomoxir (100 mM; Sigma-Aldrich) was added at the beginning of the assay.

In Vivo Xenograft Tumor Model

Growth of xenograft tumors from 2 3 106 HrasV12;p53�/� MEFs injected into

the flanks of nude mice was monitored by caliper measurements once tumors

became palpable (�2 weeks after cell injection). At the first tumor measure-

ment, half of the mice (n = 5; 10 tumors) were fed a regular diet and the other

half a ketogenic diet (Bio-Serv). All animal studies and care were performed un-

der the guidelines of the Stanford University Administrative Panel on Labora-

tory Animal Care.
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