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SUMMARY

A major virulence factor of the malaria parasite
Plasmodium falciparum is erythrocyte membrane
protein 1 (PfEMP1), a variant protein expressed on
the infected erythrocyte surface. PfEMP1 is respon-
sible for adherence of infected erythrocytes to
the endothelium and plays an important role in
pathogenesis. Mutually exclusive transcription and
switched expression of one of 60 var genes encoding
PfEMP1 in each parasite genome provides a mecha-
nism for antigenic variation. We report the identifica-
tion of a parasite protein, designated PfSET10, which
localizes exclusively to the perinuclear active var
gene expression site. PfSET10 is a histone 3 lysine
4 methyltransferase required to maintain the active
var gene in a poised state during division for reactiva-
tion in daughter parasites, and as such is required for
P. falciparum antigenic variation. PfSET10 likely
maintains the transcriptionally permissive chromatin
environment of the active var promoter and thus
retains memory for heritable transmission of epige-
netic information during parasite division.

INTRODUCTION

Malaria, an important infectious disease of humans, causes

clinical cases in 300–500 million people and up to 1 million

deaths per year. Plasmodium falciparum accounts for most of

the burden of infection, and virulence is linked to the ability of

infected erythrocytes to sequester in and obstruct the micro-

vasculature of a variety of organs (MacPherson et al., 1985).

Sequestration avoids destruction of the parasitized erythrocytes

by the reticuloendothelial system and allows the microaerophilic

parasite tomature in a relatively hypoxic environment (Raventos-

Suarez et al., 1985). Moreover, this often leads to perturbation or

complete obstruction of blood flow in the microcirculation. This
Ce
abnormal circulatory behavior for red blood cells is related to

parasite-induced alterations of adhesive properties and is key

to the survival and pathogenicity of P. falciparum (Leech et al.,

1984). Parasite-infected erythrocytes can adhere to platelets,

vascular endothelial cells, and other erythrocytes (Barnwell,

1989; Berendt et al., 1989; Cooke and Coppel, 1995; Ocken-

house et al., 1992; Rogerson et al., 1995; Wahlgren et al., 1994).

The major virulence factor of P. falciparum is erythrocyte

membrane protein 1 (PfEMP1), a protein expressed by the para-

site on the surface of infected erythrocytes (Baruch et al., 1995;

Su et al., 1995). This protein is responsible for adherence of

P. falciparum-infected erythrocytes to receptors on endothelial

cells and plays an important role in pathogenesis (Bull et al.,

1998; Newbold et al., 1997). PfEMP1 proteins are encoded by

approximately 60 var genes per genome and are located in sub-

telomeric and central regions of chromosomes (Gardner et al.,

2002). Mutual exclusive transcription and switching to activate

a different var gene provides the basis for antigenic variation

and expression of ligandswith differing receptor-binding proper-

ties (Baruch et al., 1995; Smith et al., 1995; Su et al., 1995).

The var gene repertoire resides at the nuclear periphery in

clusters of chromosomes (Freitas-Junior et al., 2000), where

activation involves chromatin alterations (Voss et al., 2006) and

repositioning of a specific var gene to a perinuclear location

permissive for transcription (var gene expression site) character-

ized by histone marks H3K4me3 and H3K9ac and the presence

of H2.AZ (Duraisingh et al., 2005; Dzikowski et al., 2007; Freitas-

Junior et al., 2005; Howitt et al., 2009; Lopez-Rubio et al., 2007;

Ralph et al., 2005; Petter et al., 2011), while repressed var genes

are characterized by the conserved histonemark for heterochro-

matin, H3K9me3 (Lopez-Rubio et al., 2007).

The var gene promoter paired with the promoter found within

the var intron are key elements in nucleation of transcriptional

silencing, activation, and maintenance of allelic var gene

exclusion (Dzikowski et al., 2006; Voss et al., 2006). The identity

and molecular function of nuclear factors regulating chromatin

modifications at the var promoter is not well understood.

Although the P. falciparum genome contains a large repertoire

of putative chromatin-modifying proteins, to date only a handful

of nuclear factors have been characterized (Cui and Miao, 2010).
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Figure 1. PfSET10 Localizes to a Compartment in the Nuclear Periphery

(A) PfSET10 (PFL1010c) was tagged with 3-HA epitopes, and anti-HA antibodies detected a 260 kDa protein. 3D7 served as control and Hsp70 as a loading

control.

(B) Transcription analysis of PfSET10HA and PfSET10GFP in the intraerythrocytic life stages. Small inset shows PfSET10 protein expression in R, rings;

T, trophozoites; S, schizonts. Data are represented as mean ± SEM of two independent experiments.

(C) PfSET10-HA was detected using anti-HA antibodies in IFA and shown to localize to a compartment of the nuclear periphery. First row, Ea R early ring; second

row, La R, late ring; third row, T, trophozoite; fourth row, S, schizont; each row shows PfSET10 (green); DAPI staining (blue); PfSET10 and DAPI merged; PfSET10,

DAPI and brightfield image.

(D) Immunoelectron microscopy localization of PfSET10 in 3D7SET10-HA schizonts using anti-HA antibodies. White arrow points to gold particles localizing with

PfSET10. Nucleus is circled by a white dashed line. N, nucleus; Cy, cytoplasm.

(E) PfSET10 is located in the nuclear fraction. Shown are the cytoplasmic (Cy) and nuclear (Nu) fractions probed with anti-HA (upper panel) or anti-H3 antibodies

(middle panel). Subsequent tracks show differential solubilisation of the nuclear fraction using 0.1 M and 1 M KCl and the insoluble fraction (P). The bottom panel

shows a Coomassie-stained gel as a loading control. See also Figure S1.
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This includes two silent information regulators (PfSirA and

PfSirB) that play a key role in deacetylation of histone H3 and

silencing of var genes (Duraisingh et al., 2005; Tonkin et al.,

2009). Additionally, P. falciparum heterochromatin protein 1

(PfHP1) is a major component of heterochromatin in the

perinuclear chromosome end clusters that binds specifically to

H3K9me3 (Flueck et al., 2009).

Here, we report identification of a regulator of var gene activa-

tion in P. falciparum named PfSET10. PfSET10 was confined to

a location in a euchromatic region of the nuclear periphery corre-

sponding to the active var gene expression site. PfSET10

exhibits histone H3 lysine 4 methyltransferase activity, and our

data indicate that PfSET10 is responsible for maintaining the

var gene in the poised stage for re-activation in daughter cells.

RESULTS

PfSET10 Localizes to a Site at the Nuclear Periphery
Previously, we identified a candidate regulator of var gene acti-

vation in P. falciparum (Volz et al., 2010), which we named

PfSET10 (PFL1010c) and generated transgenic parasites by

tagging the endogenous protein with GFP (Volz et al., 2010) or

HA (Figures 1A, 1B and S1A). The HA-tagged PfSET10 had an
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approximate size of 260 kDa (Figure 1A). PfSET10 is transcribed

throughout the intraerythrocytic life cycle, peaking during early

and late stages (Figure 1B) in 3D7SET10-HA and 3D7SET10-

GFP parasites (Figure 1B). Western analysis showed modest

PfSET10 protein expression during ring stage compared to later

stages (Figure 1B). This was supported by immunofluorescence

assays (IFA) demonstrating no detectable PfSET10 protein in

early ring stage but expression in a discrete perinuclear spot in

each nucleus of later stage parasites (Figure 1C). Immunoelec-

tron microscopy showed regions of electron-dense material at

each nuclear periphery consistent with heterochromatin (Ralph

et al., 2005), while PfSET10 localized to a heterochromatin-free

region (Figures 1D and S1B). Subcellular fractionation of para-

sites confirmed PfSET10 was associated with nuclear chromatin

(Figure 1E), similar to histone H3.

PfSET10 Localizes to the var Gene Expression Site
Current evidence suggests that var gene activation involves

translocation of the locus to a specific region at the nuclear

periphery (Duraisingh et al., 2005; Ralph et al., 2005; Voss

et al., 2006; Dzikowski et al., 2007). The presence of PfSET10

in a subcompartment of the perinucleus suggested it could be

a regulator of the active var in the expression site. We used
.



Figure 2. PfSET10 Colocalizes to the Activated var Gene

(A) IFA-FISH of 3D7SET10-HA, in which var2csa (PFL0030c) activation has been selected by CSA adherence (‘‘on’’) (bottom panel). Unselected 3D7SET10-HA

(top panel) has var2csa ‘‘off.’’ The localization of var2csa (green) and PfSET10 (red) is shown with both merged with the nucleus stained by DAPI (blue).Scale bars

are equivalent to 0.5 mm. Independently, another var gene (PFL0020w) has been selected for activation by ICAM adherence (‘‘on’’), and sample distributions

(PFL0030c ‘‘on’’ n = 200; ‘‘off’’ n = 173; PFL0020w ‘‘on’’ n = 122; ‘‘off’’ n = 111) are plotted using a standard Tukey boxplot; * stands for p < 0.000.

(B) PfHP1 does not localize with active var2csa (‘‘on’’). The var2csa gene (red) location is shown with respect to PfHP1 protein (green). Right panel shows

the distribution of PfHP1 signal numbers detected in 150 nuclei. Sample distributions (‘‘on’’ n = 150; ‘‘off’’ n = 137) are plotted below using a standard Tukey

boxplot; * stands for p < 0.000.

(C and D) (C) PfHP1 (red) and (D) histone mark H3K9me3 (red,), known markers of silent var gene clusters and PfSET10 (green), do not colocalize in the nucleus

stained with DAPI (blue). See also Figure S2.
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IFA-fluorescent in situ hybridization (IFA-FISH) (Flueck et al.,

2009) to determine if PfSET10 colocalized with the active/ poised

var gene (Figure 2). 3D7SET10-HA parasites were selected

for expression of two var genes, var2CSA (PFL0030c) or

PFL0020w (‘‘on’’), the genes encoding a PfEMP1 specifying

adherence to chondroitin sulfate A (CSA) (Salanti et al., 2003)

and intercellular adhesion molecule-1 (ICAM) (Petter et al.,
Ce
2011) respectively. As control, we used unselected 3D7SET10-

HA (‘‘off’’) parasites, in most of which var2CSA and PFL0020w

were expected to be silent (‘‘off’’). Predominant var2csa and

PFL0020w transcription in 3D7SET10-HA/CSA was confirmed

by qRT-PCR (Figure S2A). The analysis was performed in late

ring/early trophozoites stages, in which the previously active

var gene enters the poised state, when PfSET10 was expressed
ll Host & Microbe 11, 7–18, January 19, 2012 ª2012 Elsevier Inc. 9
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in a single perinuclear spot. The distance between PfSET10 and

var2csa and PFL0020w loci was measured to achieve unbiased

results (Figures 2A and S2B) and found to be significantly smaller

in parasites where the var gene was active (‘‘on’’) (Kolmogorov-

Smirnov test: ‘‘on’’ distribution is shifted to smaller distances

compared to ‘‘off’’, with p value = 0.9952).

To define the position of silenced var gene clusters with

respect to PfSET10 expression, we used antibodies to PfHP1,

a protein localizing with chromosome end clusters and histone

mark H3K9me3, which are both associated with silenced var

gene clusters (Flueck et al., 2009). PfHP1 and the histone mark

H3K9me3 showed no overlap with PfSET10 expression (Figures

2C and 2D). The association of PfHP1 with the silent var gene

was confirmed by IFA-FISH on CSA selected (var2csa ‘‘on’’)

and nonselected (var2csa ‘‘off’’) 3D7HP1-GFP (Figure 2B). The

distance between PfHP1 and the var2csa locus was measured

to achieve unbiased results (Figures 2B and S2B) and was signif-

icantly smaller in parasites where the var gene was silent (‘‘off’’).

Also the distance to the second nearest PfHP1 demarcated

telomere cluster was significantly smaller (Figures 2B and

S2B). Taken together, these results show that PfSET10 localizes

to a perinuclear compartment of the nucleus shared by the active

var gene.

PfSET10 Is a Histone Lysine 4 Methyltransferase
PfSET10 shows homology to histone lysine methyltransferases

(HKMT) of the SET domain-containing protein family (Figure S3A)

(Cui et al., 2008; Dillon et al., 2005). The SET domain distin-

guishes substrates and performs the catalytic activity (Trievel

et al., 2002). Site-specific histone methylation serves either

transcriptional gene activation or silencing and is dynamically

regulated by interplay of HKMTs and histone lysine demethy-

lases. PfSET10 is conserved within the Apicomplexan lineage;

however, multiple sequence alignment based on structural infor-

mation of PfSET10 revealed no similarity of the PfSET10 SET

domain to any other known HKMT SET domain (Figure S3A).

As well as a SET domain, PfSET10 contains a plant-like homeo-

domain (PHD) (Figure S3B), a structural motif involved in recog-

nition of methylated or unmodified histone H3 (Mellor, 2006). The

PHD finger domain displays highest similarity to uncharacterized

PHD finger domains of Arabidopsis thaliana and Toxoplasma

gondii (Figure S3B). Interestingly, PfSET10 PHD finger domain

shares a number of amino acid residues with PHD finger

domains that preferentially bind nonmethylated histone H3 (Fig-

ure S3B) (Lan et al., 2007; Org et al., 2008).

To determine the potential histone-binding properties of the

PfSET10 PHD finger domain, we expressed and purified the

PfSET10 SET/PHD (SET/PHD) domains including a control,

which lacked the PHD finger (SET10/DPHD), using cell-free

wheat germ expression (Figures 3A and S3C) (Tsuboi et al.,

2010). In Far Western analysis using P. falciparum histone

extracts aswell as a histone peptide-binding assay, recombinant

SET/PHD domain (Figures 3B and 3C) preferentially binds to

histone H3 with highest affinity for the nonmethylated andmono-

methylated lysine 4 residue, which decreased upon di- and

trimethylation or methylation of H3K9 (Figures 3B and 3C). Since

the SET domain alone does not exert similar binding activity, the

PHD finger was sufficient for H3 tail binding. PfSET10 binding to

histone H2A cannot be excluded since histone H3 and H2A
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comigrate in the gel (Figure 3B) and PfSET10 colocalizes in IFA

with histone H2A, but not H2.AZ (Figure 3D).

To determine if PfSET10 is a HKMT, we tested methyl-

transferase activity of the recombinant SET/PHD protein and

amutant form of the SET domain (DSET/PHD) (Figure S3C) using

histone peptides, nucleosomes, or recombinant histones as

substrates. The recombinant SET/PHD protein showed no

detectable methyltransferase activity (data not shown). This

observation indicated that PfSET10 may only be active as full-

length protein or when present in a multiprotein complex (Briggs

et al., 2001; Krogan et al., 2002; Nagy et al., 2002; Roguev

et al., 2001). Therefore PfSET10 was immunoprecipitated from

the 3D7SET10-HA parasites. Using recombinant histones as

substrates, we were able to detect specific histone H3 methyla-

tion (Figure 3E) at an approximately 5-fold higher level compared

to control (HA precipitate from 3D7), while methyltransferase

activity toward histone H4 was considerably lower. Methylated

lysines were detected with specific antibodies, and this indi-

cated that incubation with PfSET10 increased di- and trimethyla-

tion of H3K4 (Figure 3E). PfSET10 also colocalized with the

H3K4me1, me2, and me3 marks in the perinuclear region, which

is also marked by H3K9ac (Figure 3F). While we cannot eliminate

the possibility that enzymatic activity resides in another protein

in the PfSET10 complex, sequence homology to the HKMT

of the SET domain-containing protein family strongly indicate

that PfSET10 preferentially targets and methylates lysine 4 (K4)

on H3.

PfSET10 Interacts with PfActin-1
To identify proteins that are associated with PfSET10 in the

var gene expression site, we performed immunoprecipitations

on 3D7SET10-HA and 3D7 (negative control) using anti-HA

antibody and identified associated proteins by LC-MS/MS

(Figures 4, S4A, S4B, and Table S2). While a number of nuclear

proteins were identified, including histone H2A (Figures 3B, 3D,

and 4A), the presence of PfActin-1 was of interest, as it can be

involved in gene transcription control through chromatin remod-

eling and directing movements of gene loci toward a target

region (Visa and Percipalle, 2010). While PfActin-1 was distrib-

uted in speckles throughout the nucleus (Figure S4C), it showed

colocalization with PfSET10 during late ring/early trophozoite

stages (Figures 4B and S4C). The association of PfSET10 and

PfActin-1 was confirmed by immunoprecipitation and immuno-

blot analysis (Figure 4B). These results indicate that PfActin-1

is a component of the var gene expression site.

C-Terminal GFP Tagging Compromises PfSET10
Function
To determine PfSET10 function in vivo and its potential involve-

ment in var gene regulation, we attempted to disrupt the gene

via homologous recombination (Figure S5A) and in parallel via

a recently established conditional knockout system by which

the expression of candidate proteins can be controlled (Figures

S5B and S5C) (Armstrong and Goldberg, 2007). Interestingly,

we were not able to disrupt the pfset10 locus or destabilize

PfSET10 expression. This indicated that PfSET10 was refractory

to deletion, suggesting it is essential for parasite survival.

Initially, the endogenous PfSET10 protein had been fused to

GFP for live cell imaging analysis (Volz et al., 2010); however,
c.



Figure 3. PfSET10 Is a Histone 3 Lysine 4 Methyltransferase

(A) Structure of PfSET10 showing the SET and PHD finger domains. Below are SET/PHD and SET/DPHD domains expressed as recombinant proteins with

His tags.

(B) Far Western blot of P. falciparum histone extract using SET/PHD recombinant protein to show binding to histone H3 or potentially H2A (detected by anti-His

antibodies; first panel). Subsequent panels are immunoblots of input material detecting H2A, H2A.Z, H2B, H3, and H4 with specific antibodies.

(C) Binding of SET/PHD to histone H3 and modified histone 3 peptides. SET/DPHD is shown as a negative control.

(D) Colocalization of histone H2A (two upper panels), but not H2A.Z (two lower panels) with PfSET10. The histones (red) were detected using specific antibodies

and colocalized with PfSET10 (green) using anti-HA antibodies. Nucleus position is shown by DAPI.

(E) Immunoprecipitated PfSET10-HA has H3 methyltransferase activity in vitro. Recombinant human H3 and H4 were tested as substrates using radiolabeled

SAM as methyl donor. The upper panels show the fluorograph in which H3 is preferentially labeled compared to H4. ‘‘C’’ is the immunoprecipitation from control

parasites 3D7 while ‘‘HA’’ was from 3D7SET10HA. The bottom panels show a Coomassie-stained gel as a loading control. Data are represented as mean ± SEM

of eight and six independent experiments of the activation assay using H3 and H4 as substrates, respectively. Reactions were also measured in a scintillation

counter (middle panel). Methylated histone was detected using specific antibodies for the indicated histone marks (right panel).

(F) Colocalization of histone H3 marks with PfSET10. Shown are from top to bottom: H3K4m1, H3K4m2, H3K4m3, and H3K9ac. The histone marks (red) were

detected using specific antibodies and colocalized with PfSET10-HA (green) using anti-HA antibodies. Nucleus position is shown by DAPI staining. See also

Figure S3.

Cell Host & Microbe
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we observed in at least two 3D7SET10-GFP parasite clones

a growth phenotype compared to 3D7 and 3D7SET10-HA, sug-

gesting the GFP tag had affected its function (Figure S5D). Since

PfSET10 appeared refractory to genetic knockout or knockdown
Cell
approaches, the phenotypic analysis of 3D7SET10-GFP para-

sites presented an opportunity to shed light on PfSET10 func-

tion. Localization studies implied that PfSET10 had a role in var

gene regulation, so in order to determine potentially altered var
Host & Microbe 11, 7–18, January 19, 2012 ª2012 Elsevier Inc. 11



Figure 4. Identification of Proteins that Localize to the Active var Gene Expression Site

(A) Shown are proteins uniquely identified in the 3D7SET10-HA pull-down along with the number of unique peptides obtained and the percent of coverage. The

PlasmoDB accession numbers of the genes identified are shown along with their functional annotation.

(B) IFA of PfSET10 (green) and PfActin-1 (red) with the nucleus (blue) stained with DAPI. First row, La R, late ring, second row, Ea T, early trophozoite. The right

panels show immunoprecipitation of 3D7SET10-HAwith anti-HA antibodies and detection of PfSET10-HAwith anti-HA antibodies (left) and detection of PfActin-1

with PfActin-1 antibodies (right). See also Figure S4.
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gene expression, 3D7SET10-GFP, 3D7, and 3D7SET10-HA

parasites were selected for adherence to CSA to obtain those

expressing var2csa. No changes in transcription of var genes

other than var2csa was observed, indicating mutually exclusive

expression in 3D7SET10-GFP remained intact (Figure 5A).

However, we consistently observed an increased level of

var2csa transcripts in 3D7SET10-GFP compared to 3D7 and

3D7SET10-HA (Figure 5A and data not shown). Increased

var2csa transcription was further confirmed through the intraer-

ythrocytic life cycle in 3D7SET10-GFP (Figure 5B). At ring stage

(6–18 hr post invasion [p.i.]), we observed increased var2csa

transcript in 3D7SET10-GFP, confirming the previous results.

Strikingly, higher var2csa transcript levels were also observed

at later stages (32–48 hr p.i.) in 3D7SET10-GFP parasites, while

in 3D7 var2csa transcription was maintained in the typically

quiescent poised state (Figure 5B).

The var2csa gene transcription that we have observed in late

stages of 3D7SET10-GFP parasites suggests that chromatin

around the gene must be accessible to the transcription

machinery, similarly to that observed during ring stage at

the active var locus. We performed chromatin-immunoprecipita-

tion (ChIP) to determine the distribution of histone marks
12 Cell Host & Microbe 11, 7–18, January 19, 2012 ª2012 Elsevier In
H3K4me2, H3K4me3, and H3K9ac, which are known marks for

gene activation (Cui andMiao, 2010). In our control (3D7 parental

parasites), which had been selected for var2csa expression,

the level of these histone marks in the promoter region of the

var2CSA gene was comparable to that observed for a euchro-

matic gene (gbp130) and higher than that of a silent var gene

(PFL1960w) in ring and schizont stage parasites, respectively

(Figure S6A). Moreover, H3K4me2 and me3 in the promoter

of var2csa were enriched in 3D7SET10-GFP compared to

the control (Figures 5C and S6B), with H3K9ac levels similar

in both lines (Figure 5D). Therefore, the methylation levels of

H3K4 of the poised var promoter are perturbed in 3D7/

PfSET10GFP parasites, and this may account for the increased

var gene expression pattern.

DISCUSSION

In P. falciparum, the nucleus is compartmentalized into hetero-

chromatic and euchromatic regions, which distribution dynami-

cally changes throughout the intraerythrocytic life cycle (Weiner

et al., 2011). An intriguing feature in the P. falciparum nucleus is

the presence of a zone of relaxed euchromatin within the nuclear
c.



Figure 5. Var2csa Gene (PFL0030c) Is Dysregulated in 3D7SET10-GFP

(A) Quantitation of var gene transcripts for var in 3D7-CS, 3D7SET10-HA/CS, and 3D7SET10-GFP/CS parasites. Data are represented as mean ± SEM of two

independent experiments.

(B) Quantitation of var2csa (PFL0030c) transcripts through the 48 hr cycle of 3D7-CS (control) versus 3D7SET10-GFP/CS compared to a silent var gene

(PFL0020w). Data are represented as mean ± SEM of three independent experiments.

(C and D) (C) ChIP detecting the H3K4me3mark in the var2csa (PFL0030c) gene compared to a silent var gene (PFL1960w) and gbp130 gene as control. (D) ChIP

detecting the H3K9ac mark as for (C). 3D7-CS served as wild-type control. Primer positions along the loci are indicated in relation to the start codon (ATG). See

also Figures S5 and S6. Data in (C)are represented as mean ± SEM of two independent experiments and in (D) of three independent experiments.
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periphery (Ralph et al., 2005). It has been speculated that this site

may be specifically associated with transcription of the selected

var gene from the 60 members of this multicopy virulence gene

family (Duraisingh et al., 2005; Ralph et al., 2005; Voss et al.,

2006). To date, this ‘‘expression site’’ was ill-defined and the

molecular details of the mechanisms responsible for var gene

translocation, activation, and poising remain almost completely

unknown. In this study we have identified a protein, which we

called PfSET10, that exclusively resides in this perinuclear

expression site within an apparent euchromatic region. In

contrast, we also confirmed that an inactive var gene was

located within a chromosome end cluster marked by the pres-

ence of PfHP1 at the nuclear periphery. PfHP1 is involved in

virulence gene silencing by maintaining a heterochromatic envi-

ronment and establishing boundaries through its binding to

histonemark H3K9me3 (Flueck et al., 2009). The active or poised

var2csa gene did not colocalize with PfHP1 or the histone mark

H3K9me3.

It is known from studies in eukaryotes, that transcriptionally

active genes associate with so-called transcription factories

(Osborne et al., 2004), which contain components of the tran-

scription machinery such as RNA polymerase (Brown et al.,

1999; Brown et al., 1997; Schübeler et al., 2000; Wang et al.,

2004). Although human derived HeLa cells contain thousands

of such transcription factories, numbers are restricted and

several genes are translocated to the same site for transcription

(Jackson et al., 1993). It is intriguing to speculate that the var

gene transcription site, in which PfSET10 resides, might repre-

sent such a transcription factory to which var genes are translo-

cated for activation.

As for var genes, members of the rifin, stevor, and Pfmc-2TM

multigene families of P. falciparum undergo switched expres-

sion, indicating a potential role in antigenic variation (Kyes

et al., 1999; Lavazec et al., 2007; Niang et al., 2009). Interest-

ingly, it has recently been demonstrated, that a transcriptionally

active episomal rifin promoter colocalizes with an active var

promoter (Howitt et al., 2009). This indicates that members of

the rifinmultigene family may also translocate to this subnuclear

expression site similar to the active var, and that possibly the

expression site marked by PfSET10 is exclusively required for

the transcription of virulence genes. At this stage, large-scale

investigations into P.falciparum nuclear architecture, gene

regulation, and movement are needed to clarify which set of

genes translocate to the var gene/ PfSET10 transcription site

for activation.

Interestingly, we identified PfActin-1 as a potential PfSET10-

interacting protein. Nuclear actin can be part of the chromatin

remodeling complex, involved in long-range chromatin organiza-

tion and associated with the transcription machinery (Visa and

Percipalle, 2010) or alternatively, together with myosin, may

provide a molecular motor that steers gene loci toward the tran-

scription site (Chuang et al., 2006; Dundr et al., 2007).

We have shown that PfSET10 has methyltransferase activity

toward histone H3 lysine 4. In P. falciparum, three other SET-

domain proteins have been predicted to have H3K4 methyl-

transferase activity, PfSET1 (PFF1440w), PfSET4 (PFI0485c),

and PfSET6 (PF13_0293) (Cui et al., 2008). Localization studies

in P. falciparum revealed that PfSET4 was present throughout

the nucleus, while PfSET6 appeared to localize to the nucleolus
14 Cell Host & Microbe 11, 7–18, January 19, 2012 ª2012 Elsevier In
(Volz et al., 2010). This observation suggests that P. falciparum

H3K4 methylation may be performed in specific nuclear sub-

compartments by different HKMTs. Interestingly, in Saccharo-

myces cerevisiae, SET1 is the only enzyme responsible for

H3K4methylation (Briggs et al., 2001; Roguev et al., 2001), while

in mammals at least ten known or predicted H3K4 methyltrans-

ferases exist. Deletion and phenotype analysis revealed that

methyltransferases of the MLL family are not redundant in

function; in contrast, they are specialized and differentially

expressed being recruited to different gene loci (Glaser et al.,

2006; Lee et al., 2006; Yu et al., 1995).

In various organisms, di- and trimethylation of the H3K4 site

are enriched at actively transcribed genes (Bernstein et al.,

2002; Santos-Rosa et al., 2002). In S. cerevisiae, poised genes

are largely dimethylated at H3K4 (Ng et al., 2003; Pokholok

et al., 2005; Santos-Rosa et al., 2002), while in vertebrates dime-

thylated H3K4 correlates with trimethylated H3K4 in highly active

genes (Bernstein et al., 2005; Schneider et al., 2004). Genome-

wide analysis of intraerythrocytic P. falciparum stages revealed

that H3K4me3 was predominant at the intergenic regions,

increasing in trophozoite and schizont stage parasites, in which

transcription peaks (Bártfai et al., 2010).

In P. falciparum, the H3K4 mark colocalizes almost perfectly

with the histone variant H2A.Z and histone H3K9ac (Bártfai

et al., 2010). Interestingly, the histone variant H2A.Z is absent

from subtelomeric and chromosome internal heterochromatic

islands, in which var genes reside, and is complemented by

H2A occupancy (Bártfai et al., 2010). Importantly in this context,

transcriptional activation of a var gene requires a histone variant

exchange at its promoter, during which H2A is replaced by

H2A.Z (Petter et al., 2011). With the initiation of the S phase-

dependent silencing of var genes, H2A.Z is lost from the

promoter (Petter et al., 2011) possibly through deposition

of newly synthesized canonical histones (Groth et al., 2007).

While histones can be already largely acetylated prior to nucleo-

some assembly (Corpet and Almouzni, 2009), they generally

lack methylation marks (Loyola et al., 2006). In our study, we

observed that H3K4me3 levels, besides H3K4me2 and

H3K9ac levels, are similarly high on an active compared to

a ‘‘poised’’ var promoter, which is marked for reactivation in

the next generation. This is consistent with the hypothesis that

PfSET10 is the HKMT responsible for H3K4 methylation of the

newly assembled nucleosome at the var promoter following

replication, thereby maintaining a poised var promoter state.

The recruitment of PfSET10 to its target site may be determined

through DNA-specific binding factors, components of the tran-

scription machinery or RNA (Ruthenburg et al., 2007), and with

its PHD finger binding the unmethylated form of lysine 4 of

a freshly deposited histone H3.

Previous studies have demonstrated that proteins specific for

var gene regulation can be either amenable or refractory to

genetic deletion (Duraisingh et al., 2005; Flueck et al., 2009;

Tonkin et al., 2009). PfSET10 appears to be essential for parasite

survival, since we were unable to obtain parasites in which

PfSET10 has been disrupted. PfSET10 marks a transcription

site and appears responsible for H3K4 methylation. Although it

is not known at this stage how many genes utilize this site for

transcription, PfSET10 removal would likely cause parasite

lethality if expression of essential proteins is affected.
c.



Figure 6. A Proposed Model for the Role of PfSET10 in Regulation of the Active var Gene in the Expression Site at the Nuclear Periphery

(A) PfSET10 localizes to the subnuclear region into which var genes are translocated for expression. Cy, cytoplasm in light brown; N, nucleus; the white area

represents the euchromatic central part and subnuclear var gene expression site, while the gray area represents the heterochromatic nuclear periphery. A black

square highlights the subnuclear expression site in which PfSET10 resides.

(B) Schematic presentation of histone H3 epigenetic modifications involved in var gene regulation and the proposed role of PfSET10. Var gene transcription

associates with an open chromatin structure characterized by H3K4 trimethylation, H3K9 acetylation, and histone variant H2AZ. S phase dependent silencing of

var genes is consistent with loss of histone variant H2AZ from the active var promoter. After replication, canonical histones such as histone H2A and H3 are

incorporated to the var promoter providing a window of opportunity for switching and silencing. For poising, PfSET10 binds to non-or monomethylated H3K4,

where it most likely sets the di- and trimethyl mark. This epigenetic profile is maintained during division and likely enables activation in daughter cells. Histone

H2.AZ is deposited at the var promoter during ring stage. Var gene silencing involves movement of the var gene locus out of the expression site, deacetylation

likely mediated by SIR2 homologs and H3K9 trimethylation by a yet unknown HKMT. PfSIP2 and PfHP1 are required for formation of stable heterochromatin. The

color code used represents green for activation, yellow for poising and red for silencing.
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Alternatively, absence of PfSET10may lead to alterations in local

chromatin structure, which in turn might affect chromosome

organization and function. Already, the tagging of GFP to the

endogenous pfset10 locus led to changes in chromatin structure

at the active and poised var gene locus and to altered levels of

H3K4 methylation. Since the localization of the PfSET10-GFP

is comparable to that of the HA-tagged protein, this increased

H3K4 methylation could be the result of increased activity of

the tagged PfSET10 and might account for the altered var

gene transcription pattern. Alternatively, the GFP-tag of PfSET10

could interfere with the binding of a yet unknown transcriptional

repressor, leading to a higher level of var transcription and

consequently higher level of H3K4 methylation.

Modifications of core histones are involved in chromatin

remodeling and gene regulation. Methylation of histones is

thought to be important for heritable transmission of epigenetic

information (memory) through cell division (Muramoto et al.,

2010). PfSET10 is a P. falciparum histone 3 lysine 4 methyltrans-

ferase that defines the transcriptional zone into which a var gene

is translocated for activation (Figure 6). The ‘‘active’’ var gene is

activated in early ring stages and the resulting transcript trans-

lated into PfEMP1, followed by translocation to the infected

erythrocyte membrane surface. This var gene is maintained in

a poised state during cell division, ready for activation in the

daughter cells of the next P. falciparum cycle. PfSET10 is likely

required for the maintenance of the transcriptionally permissive

chromatin environment of the active var promoter through

division, by methylating the freshly incorporated histone H3,

and involved in memory for the heritable transmission of epige-

netic information during cell division. Our study has identified

PfSET10 as a component of the var gene expression site and

identifies it as an important regulator of virulence and pheno-

typic variation in P. falciparum, an important infectious agent

of humans.
Cell
EXPERIMENTAL PROCEDURES

See a detailed version in Supplemental Information.

Parasite Culture and Transfection

PCR amplification was performed on P. falciparum strain 3D7 genomic DNA

to obtain Pfset10 30, which was cloned into a hemagglutinin (HA) vector,

containing the human dihydrofolate reductase (hdhfr) gene (Crabb and

Cowman, 1996; Fidock and Wellems, 1997), or into the GFP-FKBP-fusion or

HA-FKBP-fusion vector, respectively, for conditional knockout construct

generation (Armstrong and Goldberg, 2007; Fidock and Wellems, 1997). For

gene deletion, PCR amplification was performed to obtain Pfset10 50 and
Pfset10 30 fragments, which were cloned to the pCC4 vector (Maier et al.,

2008). Primers are listed in Table S1.

P. falciparum 3D7 parasites were cultured and transfected as described

(Crabb and Cowman, 1996; Armstrong and Goldberg, 2007). Integration of

the 30 gene replacement constructs was by homologous recombination

(Figures S1 and S5). 3D7SET10-HA and 3D7 samples were analyzed by

western blot, and PFSET10-HA was detected with anti-HA antibody.

Recombinant Protein Expression

The PfSET10 fragment containing SET and PHD finger domains was codon-

optimized for wheat and synthesized (Epoch Biolabs, Inc.) and expressed in

a wheat germ cell-free expression system (Cell-Free Sciences) (Tsuboi et al.,

2010). The in vitro histone peptide-binding assay was performed with a

Biotinylated Protein-Protein Pull-Down Kit (Pierce).

Far Western

P. falciparum histones were run on a 4%–12%Bis-Tris gel, and the membrane

was incubated with 2 mg/ml of recombinant protein and anti-His and

secondary antibody, then detected using Amersham ECL Western Blotting

Detection Reagent (GE Healthcare).

HMKT Assay

To purify HA-tagged, full-length PfSET10 protein from 3D7SET10-HA and 3D7

parasites, 23 109 late-stage parasites were harvested, and cell extracts were

prepared. HA-tagged PfSET10 was purified by anti-HA beads (Sigma). The

in vitro histone methyltransferase assay was performed as described (Finger-

man et al., 2008).
Host & Microbe 11, 7–18, January 19, 2012 ª2012 Elsevier Inc. 15
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Nuclear Fractionation

Nuclear and cytoplasmic protein fractions from 3D7SET10-HA parasites were

obtained as described (Voss et al., 2002), analyzed by western blot, and

PfSET10-HA was detected with anti-HA antibody.

Fluorescence Microscopy, Combined IFA/FISH and Transmission

Electron Microscopy

Methanol-fixed cells were analyzed using mouse anti-HA 3F10 (Roche), anti-

H3K4m1 (Abcam, ab8895), anti-H3K4m2 (Abcam, ab7766), anti-H3K4m3

(upstate, 05-745), anti-H3K9ac (upstate, 06-942), anti-H3K9m3 (Abcam,

ab8898), anti-histone H2A (abcam, ab18255), anti-PfH2.AZ (Petter et al.,

2011), anti-PfHP1 (Petter et al., 2011), anti-PfActin-1 (Riglar et al., 2011), and

Alexa Fluor 488 conjugated anti-mouse IgG (Molecular Probes). IFA/FISH

was carried out as described (Flueck et al., 2009). Statistical analysis was per-

formed using a two-sided, two-sample Kolmogorov-Smirnov test. Immunoe-

lectron microscopy was performed on 3D7SET10-HA schizonts, which were

fixed (4% formaldehyde, 0.1% glutaraldehyde), dehydrated, and embedded

in LR Gold resin (Electron Microscopy Sciences, Fort Washington, PA).

Chromatin Immunoprecipitation (ChIP) and Transcriptional Profiling

ChIP analysis was performed as described (Flueck et al., 2009). Primers are

listed in Table S1. RNA was harvested by cell lysis in TRIzol (Invitrogen),

purified as described (Kyes et al., 2000), and cDNA was generated using

Superscript III Reverse Transcriptase (Invitrogen). Quantitative RT-PCR was

performed as described (Duffy et al., 2009; Petter et al., 2011). Primers are

listed in Table S1.

Protein Pull-Down

HA-tagged, full-length PfSET10 protein and interacting proteins from 3D7/

PfSET10HA and control line 3D7 were purified using anti-HA beads (Sigma).

Proteins were separated on a SDS-PAGE and stained in colloidal Coomassie.

Protein bands were excised and submitted for LC-MS/MS analysis. After

separation of the pull-down fraction in SDS-PAGE, membranes were probed

with either anti-HA 3F10 (Roche) or anti-PfActin-1 (Riglar et al., 2011).

CSA Binding Assay

Enrichment of parasites expressing var2csa PfEMP1 or PFL0020w PfEMP1

through subsequent CSA- or ICAM-binding assays was performed as

described (Duraisingh et al., 2005).

SUPPLEMENTAL INFORMATION

Supplemental Information includes six figures, two tables, Supplemental

Experimental Procedures, and Supplemental References and can be found

online with this article at doi:10.1016/j.chom.2011.11.011.
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Org, T., Chignola, F., Hetényi, C., Gaetani, M., Rebane, A., Liiv, I., Maran, U.,

Mollica, L., Bottomley, M.J., Musco, G., and Peterson, P. (2008). The autoim-

mune regulator PHD finger binds to non-methylated histone H3K4 to activate

gene expression. EMBO Rep. 9, 370–376.

Osborne, C.S., Chakalova, L., Brown, K.E., Carter, D., Horton, A., Debrand, E.,

Goyenechea, B., Mitchell, J.A., Lopes, S., Reik, W., and Fraser, P. (2004).

Active genes dynamically colocalize to shared sites of ongoing transcription.

Nat. Genet. 36, 1065–1071.

Petter, M., Lee, C.C., Byrne, T.J., Boysen, K.E., Volz, J., Ralph, S.A., Cowman,

A.F., Brown, G.V., and Duffy, M.F. (2011). Expression of P. falciparum var

genes involves exchange of the histone variant H2A.Z at the promoter. PLoS

Pathog. 7, e1001292.

Pokholok, D.K., Harbison, C.T., Levine, S., Cole, M., Hannett, N.M., Lee, T.I.,

Bell, G.W., Walker, K., Rolfe, P.A., Herbolsheimer, E., et al. (2005). Genome-

wide map of nucleosome acetylation and methylation in yeast. Cell 122,

517–527.

Ralph, S.A., Scheidig-Benatar, C., and Scherf, A. (2005). Antigenic variation in

Plasmodium falciparum is associated with movement of var loci between

subnuclear locations. Proc. Natl. Acad. Sci. USA 102, 5414–5419.

Raventos-Suarez, C., Kaul, D.K., Macaluso, F., and Nagel, R.L. (1985).

Membrane knobs are required for the microcirculatory obstruction induced

by Plasmodium falciparum-infected erythrocytes. Proc. Natl. Acad. Sci. USA

82, 3829–3833.

Riglar, D.T., Richard, D., Wilson, D.W., Boyle, M.J., Dekiwadia, C., Turnbull, L.,

Angrisano, F., Marapana, D.S., Rogers, K.L., Whitchurch, C.B., et al. (2011).

Super-resolution dissection of coordinated events during malaria parasite

invasion of the human erythrocyte. Cell Host Microbe 9, 9–20.

Rogerson, S.J., Chaiyaroj, S.C., Ng, K., Reeder, J.C., and Brown, G.V. (1995).

Chondroitin sulfate A is a cell surface receptor for Plasmodium falciparum-

infected erythrocytes. J. Exp. Med. 182, 15–20.
Host & Microbe 11, 7–18, January 19, 2012 ª2012 Elsevier Inc. 17



Cell Host & Microbe

PfSET10 and var Gene Poising in P. falciparum
Roguev, A., Schaft, D., Shevchenko, A., Pijnappel, W.W., Wilm, M., Aasland,

R., and Stewart, A.F. (2001). The Saccharomyces cerevisiae Set1 complex

includes an Ash2 homologue and methylates histone 3 lysine 4. EMBO J.

20, 7137–7148.

Ruthenburg, A.J., Allis, C.D., andWysocka, J. (2007). Methylation of lysine 4 on

histone H3: intricacy of writing and reading a single epigenetic mark. Mol. Cell

25, 15–30.

Salanti, A., Staalsoe, T., Lavstsen, T., Jensen, A.T., Sowa, M.P., Arnot, D.E.,

Hviid, L., and Theander, T.G. (2003). Selective upregulation of a single

distinctly structured var gene in chondroitin sulphate A-adhering Plasmodium

falciparum involved in pregnancy-associated malaria. Mol. Microbiol. 49,

179–191.

Santos-Rosa, H., Schneider, R., Bannister, A.J., Sherriff, J., Bernstein, B.E.,

Emre, N.C., Schreiber, S.L., Mellor, J., and Kouzarides, T. (2002). Active genes

are tri-methylated at K4 of histone H3. Nature 419, 407–411.

Schneider, R., Bannister, A.J., Myers, F.A., Thorne, A.W., Crane-Robinson, C.,

and Kouzarides, T. (2004). Histone H3 lysine 4 methylation patterns in higher

eukaryotic genes. Nat. Cell Biol. 6, 73–77.
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