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1. INTRODUCTION 

Many of the decision making processes appearing in economics, engineer- 
ing, planning, etc., are in nature dynamic. A great deal of work has been done 
studying them and as a result of many investigations, the discipline of 
dynamic programming and adaptive processes developed by Bellman in [l-3] 
has become one of the most powerful techniques to be applied to such 
processes. However, when in the process there are several groups or players 
facing competition during the period of time under consideration, some 
extensions of the theory might be seen to be necessary. 

In this paper, we are concerned with dynamic or multistage processes 
where the competition is taking place at each step and its result will determine 
the forthcoming steps. One of the easier (but very realistic) dynamic situations 
occurs when the different groups in the competition perform their actual 
moves, or make their decisions in an ordered sequence, one after the other. 
We call such an abstract process a univalent game of protocol. The purpose 
of our first sections is to study such processes. In the first one we introduce 
an existence theorem regarding stable points which are seen as dynamic 
solutions of the dynamic competition. They are very general and are related 
with the concept of competitive structure. The next two sections present 
some decomposition techniques which are also useful for computational 
purposes. 

More general and complicated situations arise when more than one player 
at each time determine the continuation of the competitive process. In order 
to distinguish this more general case from the previous one, we call it multi- 
valent game of protocol. In the last section we study two-person games of 
protocol which of course are bivalent. In order to do this we extend some 
results on two-person games derived by Shapley in [7]. 
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2. UNIVALENT GAMES OF PROTOCOL 

Following the comments made in the introduction we now are going to 
define a univalent n-person game of protocol. 

Let T = (1, 2,..., t*} be a discrete time set during which the game is 
taking place and N = {I,..., n} be the set of players. The strategy sets, which 
are nonempty are given recursively. The first one is D, and for each a1 E Z1, 
the strategy set at the second step is Za(ul) which depends upon a1 E J?. For 
t E T the set D(ol, 02,..., &-l ) is the strategy set at time t depending on all 
the previous choices a(t - 1) = (ul,..., 17-l) satisfying us E .D(u(s - 1)) for 
each s < t. Given a u(t) we say that t is its length which we denote by j o / . 
Let S’(t) be the set of all u(t) having length t. For convenience we can consider 
the first set of strategies depending on a previous point, that is to say 
,Z’ = Z(u”) where u” = o is the empty set. From the sets 9(t) we derive the 
following useful sets 

c!s+ = (j 9(t), 
t*--1 

3- = (J 3(t). 
f=l t=o 

Consider the shift operator 

defined by 

tqu(t)) = u(t - 1) 

for any u(t) = (u(t - l), u”) in 3+. 0 maps 3(t) onto s(t - 1) and its 
s-composition 0, = 19 0 ... 0 0 (s-times) maps Y(t) onto s(t - s) when t > s. 
By definition 0, is the identity map. 

The actual game structure is obtained from the scheme given above by 
assigning the strategy set to the players. For this, let ‘Si- with ie N be a 
partition of 9-. For each u E 9Yi- having length 1 u / = t, the strategy sets 
for the t + 1 step for player j E N is given by 

z!“‘+l(u) = /$fJ+l(u) if j # i, if j = i. 

Thus, the global strategy set for player i E N is 

/iTi = )( L++l(u). 
os9ti- 

Clearly a u = (aI ,..., u,) E XisN .& determines uniquely one element 
u(t*) E s(t*). The payoff functions Ai are real functions defined on yf(t*). 
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Hence, we have a global normal n-person game 

corresponding to our protocol game. We refer to both indistinctly since no 
confusion will arise. For simplicity we assume here that all the strategy 
sets are finite sets, but we point out that all the results can be obtained with 
some slight modifications in more general cases. 

As an example of a game of protocol, we have the case when an n-person 
game in a normal form is played during a period of time, where at each time 
only one player makes the actual choice, having been informed of all the 
previous choices. 

Following the ideas in [4] and [5] let us introduce a quasistatic simple 
structure function e: 9 x N -+ PiN in the game of protocol, which assigns 
for each (a, i) E 9 x N a subset e(a, i) C N of players, such that e(a, i) = ,B 
if (T E 9’- and is either o or {j} if u E ‘3- and j # i. 

The intuitive meaning of such a structure function is given by regarding 
the player j E N in {j} = e(o, i) as a player that player i E N does not wish 
to depend on, in the next step after u E 9 or, in other words, the player 
i E N considers the player j E N as antagonistic at the step given by u E 3- 
in the dynamic competition. 

Thus, for convenience we can write the global strategy set of a player from 
another player’s point of view. Introducing the set 

ei(i) = {u E gi-: j E e(u, i)> C gj-, 

which is empty if j = i, then calling 

and 

&i(i) = X ,Wl+l(u) 
oee&) 

we have 

‘qf, i) = )( Z~ol+l(u), 
o&,---e,(i) 

Zj = Z?(i) X Zi(f, i). 

The first factor in the last expression takes into account all those places in 
the game of protocol where player j E N does not wish to depend upon i E N 
and the second are all the remaining strategy sets on those positions where the 
players are considered to be indifferent by player j E N. The introduction off 
indicates the indz&ent coalition concept’s extension of that in [5]. 

I’, = (r, e) is the game of protocol r having the quasistatic (q.s.) simple 
structure function e. 
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A suitable concept of solution for a game of protocol I’, is an e,,-quasistatic 
simple stable point, or concisely em-q.s. point, which is defined as a joint 
strategy cl*,..., on* such that 

for each player i E N. Here, the sets involved in the expression are 

which satisfy 

In the case that all the sets e(a, i) are empty an e,-q.s. point becomes the 
usual equilibrium point in extensive game in pure strategies. 

Next we are concerned with the existence of such an e,-q.s. point for any 
given q.s. structure function with an arbitrary labeling. Indeed, the result 
given below, which is obtained applying a conceptually dynamic programming 
technique as those very fruitful introduced by Bellman in [l] and [2], impli- 
citly also contributes a constructive algorithm for the construction of such a 
point. 

THEOREM 1. Any game of protocol I’, with any p.s. structure function e, 
has an enz-q.s. point u* = (ul* ,..., un*). 

Proof. We proceed by induction on the length of the time set. In order 
to do this, let i, be that player such that u” E 9; , then 

Now for each ui E Z1, we define its truncation game of protocol ,J, 
which is given by the time set ,IT = {l,..., t* - l} and with strategy sets 

&q7(t - 1)) = zt+lo’$71, Ti,..., .t-1) 

for each (ul, T(t - 1)) E 9+. Thus ol9(t) for t E ,T is the set of 7 such that 
Bt(&, 7) = ol and of course (ul, T) E %(t + 1). For simplicity we identify in 
the truncation scheme T with (ur, T). 
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Hence we have 

p(0) = {u’} and ,19- = 8- n {p E 3-: d&) = ~1, s 3 O} 

and analogously for ,,I9 f. The q.s. structure function in .S is just the restric- 
tion of the original one. Then, at once, we have 

and 

olej(i) = u12.f- n ej(i). 

Therefore. 

= ,$Ji) X olL;(f, i). 

The payoff function in the truncation are naturally given as 

&(*) = AJul, *). 

Clearly we have 

It is obvious that if t* is one then there is an e,-q.s, point. Now assuming 
that in ,,Jthere is an e,-q.s. point Olu*,..., ,+u.,*, define the point u*,..., ula* as 

if i # i. , and 
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where u*l is any point in Z1 such that 

We wish to prove that ur*,..., u,* is indeed an e,-q.s. point in the original 
game of protocol. 

Let us begin with player ia . We have 

Z min 
.*l~N-(i,)($)~o*‘” N-til,(io) u*lA&*‘u< ’ o*~~N-~~,~(~IJ), o*l~$..~iio)(f’ i,)] 

= min 
uN-(i,r(tO)eCN-(i,,(i,) 

A&J,*, 9 %-ri,,(io), &,a w 

The first equality is simply derived by splitting the maximum on a Cartesian 
product set. The second one is due to the definition of e,-q.s. points in the 
truncation games +I’. The next is by definition of u*l and the last one is 
completely clear. 

Now let i E N be a player such that ia & e(u”, i); then u*r is a component of 
u$+)(f, i). Therefore, 
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Here, the second equality is due to the definition of e,,,-q.s. points in the 
truncation games and the others are different ways to write the expressions. 

Finally, it remains to analyse the equality for each player i E N when 
i,, E e(c+‘, i). In this case we can write 

and Z1 is a component of&(;). But before we go explicitly into the computa- 
tion, let us deduce a relation in a zero-sum two-person game of protocol I’s 
which will be of help for the following analysis. 

Consider r’s given by N = (1,2}, T = {1,2}, Ga- = {u”} and gl- = .Z1. 
All the antagonistic coalitions given by e are empty. The payoff functions 
A = A, = -A, . Define 

V- = max min A(u, , u2) 
O1’.q (r.@* 

and 

We now prove that v+ = v,_ . 
We remind that 

Consider the strategy Or given by {3}O+z1 such that 

for each ur. Then, we have that for any u2 E Z2 

and therefore 

V+ < min max A(ur , u’) = min 
de,?? oleq olszl 2A(6”) 

= p&i A(G, , u2) < D- , 
e a 

which implies v- = v+ . 
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Having this auxiliary result, for any player i E N with i, E e(uO, i), we have 

max min U,EZi QL($)E~NN-{r)(i) 

= max min min U,EBi O$,(Z)E~f,(i) uN-(i,,i)(‘)E”N-(i,,i)(i) 

The first two and the last equalities are clear. The last but one is due to 
the definition of e,-q.s. points in the truncation games. The remaining one is 
nothing else than the application of the previous auxiliary result to the zero- 
sum game of protocol with length two and players {io, i} with global strategies 
J7 and ,Zi respectively and the payoff given inside the parentheses. 

By the induction principle, the joint point ur*,..., a,* is indeed an e,-q.s. 
point. Q.E.D. 

3. TRUNCATION AND DIFFERENCE GAMES OF PROTOCOL 

Having the existence of such points, we would now like to present some 
properties that they have. 

For any given u E 9 one can analogously define as in the proof of the 
theorem the truncation game J. Calling ,gi- = 9 - $!Yi the da@rence set, 
then we have that the global strategy set can be written as 

Zj = Jj(i) X ,Zj(f, i) X )( Z:‘Tl+l(T) X X L?w+l(7) 
r&?(i)A,9, ~~,~~[ej(i)n,~,l 

and calling ~Z;(i) and “Zj(f, i) the third and fourth terms respectively, we 
concisely have 



GAMES OF PROTOCOL 265 

On the other hand, for each U7 = r E XieN Jj one can define the difference 
protocol game $(T), where all the strategy sets are as in the original game 
except all those Z171-t1(7) such that O,(T) = u for some s > 0, which now are 
changed to .L’&1+1(7) = (m}. Therefore, the sets 

“Zj = “.zj(i) x “Zj(f, i) 

represent the global strategy sets in J(T). 
By attaching the payoff value 

to the end point represented by (T in ,,r(T) and all the original vahres at the 
remaining end points, the difference game becomes well defined. We empha- 
size that it depends on .T = r. The new simple structure function is the 
restriction on $3 and it is empty at u and all its derivations. 

Thus, we have the following result: 

THEOREM 2. Given an u E 9, if 

,p* = L&*,-v .un*> and au* = 
( 
cu * 1 ,*.a, %a*) 

are em-q.s. points in $ and ,T(,u*) respectively, then their composition 
u* = (uI*,..., CT,*) is an e,-p.s. point in the original game of protocol. 

Proof. By the previous global strategy sets decomposition, we have for 
player i E N, 

= max min min max 
ooi~uZi ,piEgZi ouN-(i)(i)Eu~N_(i)(i) ooN-(i)(i)E,~~-{i)(i) 

qui , out , “uN-di), ouN-fi)(i), “d--rd(f3 ih .d-df, 91 
= max min { max min 

oOiGozd *UN-(a)(i)E”~N-(j)(i) OUiEoxi ~“N-(i)(i)E,~N-(i)(i) 

where the last equality was obtained by applying in a similar way as in the 
proof of Theorem 1, the maximim theorem to a zero-sum two-person game 
of protocol pointed at o arising naturally from the expression given above. 

But, the amount inside the parentheses equals A,(u*(t*)) if es(u*(t*)) # u 
for all s and 9Ai(u, ,,u*) if OU* determines u or equivalently if Os(u*(t*)) = u 
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for some s, since ,,u* is an e,-qs. point in ,I? Here, a*(t*) is the end point 
determined by u* = (,u*, OU*). 

Therefore, using also the definition of “a*, it follows that 

= max min min 
oui~ozi uON-(i}(i)E”~N-(i)(i) ouN-{i)(i)E,~NN-(i)(i) 

= min 
uUN-(i)(i)Eu~N-(i)(i) cJAi[U, &J*, uui*, ucv-~iJ(i), “&df, 91 

= min min 
uUN-(~)(i)Eo~N-(~)(~) ouN-(i)(i)E,~N-(i)(i) 

= min 
qJ-(i)(i)E~N-(i](i) 

which implies that CT* is indeed an e,-q.s. point in the original game of 
protocol. Q.E.D. 

Finally, it is not difficult to prove the property in the next result. 

THEOREM 3. If  the restriction ok* of any e,-q.s. point u* in r is an e,-q.s. 
point in I’(u), then OU* is an e,-q. s. point in the difference game J(,+r*) 

Proof. Indeed from the first expression of I1 given in the proof of the 
previous Theorem, the amount in the parentheses equals the corresponding 
minimum. Therefore since 1i = I, , we obtain the needed equality in game 
J(,u*) for the payoff of each player. Q.E.D. 

It is interesting to point out that the projection ,u* of an e,-q.s. point does 
not necessarily lead to an enz-q.s. point in the truncation game. Indeed, 
consider the following two-person game of protocol r given by .V = {I, 2}, 
Z2(u1) = { 1,2) and payoff functions A, = A, = A: 

where 

A(1, 1) = 2, A(1,2) = A(2, 1) = A(2,2) = 1, 

c?Fl = {u”} and 9, = 21. 
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The structure function is given by e(ul, 1) = (2) for each u1 E J? and all 
the others empty. Thus, the joint strategy 3 = 1, G2(1) = 2, 32) = 1 is 
clearly an e,-q.s. point in r, but 3(l) is not an e,-q.s. point in the truncation 
game ,J. 

4. BIVALENT TWO-PERSON GAMES OF PROTOCOL 

Having already studied some properties for the univalent games of protocol 
in the previous sections, we would now like to extend the theory to more 
general situations where more than one player determine the forthcoming 
situations in the dynamic competition scheme. However, since we cannot 
expect to obtain important results in the general case, due to the fact that 
e,-q.s. points no longer exist, we draw our attention only to zero-sum two- 
person bivalent games of protocol where both players determine the future 
of the game. It is clear that in such games the structure function is naturally 
given and therefore could be disregarded. 

The definition of such games is similar to the univalent ones but now the 
strategy sets are given recursively by Q(a(t - 1)) where 

o(t - 1) = (ul(t - l), ua(t - 1)) 

have both components and 

2(u(t - 1)) = &yu(t - 1)) x &yu(t - 1)). 

The first strategy sets are 

The payoff function A is defined on the set of end points u(t*). 
Even in the most simple case when t * = 1, the minimax theorem does not 

hold in pure strategies. Nevertheless, under sane restrictive conditions we 
already know that a saddle point exists. Shapley in [7] has investigated such 
games and he proved that under the condition that all 2 x 2 submatrices 
have a saddle point, then the original game has a saddle point too. We call 
such a condition Shapley’s condition or briefly S-condition. In the proof he 
uses the existence of the value in mixed strategies. We are going to present 
his result with a new proof which does not require any information about the 
mixed extension. In order to do so, we need the following: 

LEMMA 4. The game r = (Zl , .X22; A) satisJies the S-condition. Let p be 
an arbitrary number. If for each j E S E Z2 there is an i E .Zl such that A(i, j) > p, 
then there is an i E Zl such that for all j E S, aij > p, 
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Proof. We will prove it by induction on the number of elements of 
5’: 1 S j . If j S 1 = 1, the result is clear. Let R = S u {js+l} where 
s = {jl )..., ; j }. By induction, there is an 1  ̂E Zr such that for each 

j E s: A&j) > p. 

Let i+l be such that A(i,+, ,js+J > CL. If is+r = 2* or ,4(&j,,,) > p, choose 
i = 2 ;̂ otherwise when i,+l # 2” and A(?, j,,,) < p consider for j E S the 2 x 2 
game 

4,+, ,i) A(i,+, ,h+d > P 
A(& j) > CL 4 A,,) < P * 

The strategies (2 ,̂ j,,,) and (e ,̂ j) cannot be saddle points. However, by hypoth- 
esis it has a saddle point. If (i,+l , j) is a saddle point then 

4+1 ,i) 3 4 j) > p. 

On the other hand, if (is+r , js+J is a saddle point, we have 

A(is+l ,A 3 4is+l , A+J > CL? 

and therefore 

A(i,+, ,j) > CL 

for all j E R. 

As a consequence of this result, we now derive the following: 

Q.E.D. 

THEOREM 5. Any game r satisfying the S-condition has a saddle point. 

Proof. Let i, E Zr be a maximum strategy and n/r, E .X1 the set of j E Za 
such that A(&, j) = zli , where or is the maximum values in pure strategies. 

If there is a j E n/r, such that for each i E .Zl: 

4, , j> 2 4ij) 

for all i E Zr , then (iO , j,) is a saddle point. Otherwise, assume that for each 
j E MO there is an i E .Zr such that 

A(i, j) > A(& , j) = q . 

Therefore, by the previous lemma, applied to MO , there is an ~6 ,,Yr 
such that for any j E MO 

A(i, j) > vl . 
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On the other hand, by definition of n/r, we have 

&I ,i) > Ul 

for all j $ M, . Consider the 2 x 2 game 

46 j) J&j) 
4, ,I) = ~1 4, ,i) > a, 

with j $ M, . Clearly, (is , j) and (is , j) cannot be saddle points. If (i, j) is a 
saddle point, then 

A&j) 2 A(&?) > al 

and on the other hand if (i, j) is 

4&j) 3 4 , j) > q. 

In both cases, A(i, j) > v1 , and therefore there is an i E Z; such that 
A(i, j) > q for all j E Zs , which is impossible by virtue of the definition 
of ;s . Q.E.D. 

Now we want to go further into our analysis and we will study the dynamic 
situation. We study the case when t* = 2. 

In such a case the global description of our game of protocol can be given by 

where 

and the payoff function becomes defined in a natural way. For any & c Z1, 
let M-(ul) and M+(d) be the set of maximin and minimax strategies 
respectively in the truncation of J. 

For a ul, let p2 E AZ-(&) x M+(ul), thus (ul, p2) determines an end point. 
Now let uil, 6r1 and u21, 6,l be corresponding strategies for the first and 
second player at time t = 1 respectively. We have four combinations of the 
form u1 E Z1, namely: 

cull, 4, (all, 029, (a:, a$), (O,‘, 02). 

If we choose a p2 E M-(d) x M+(d) f or each u1 of this form we also have 
four end points. Each one of these end points determines a projection in both 
players strategy set. Thus we can have four different projections for each 
player. By combining all these entries we can obtain a matrix which may be 
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4 x 4 with entries in terms of the payoff function. We call such a matrix 
associated to (urr, -rr , o ) (aal, 6,‘) and the corresponding choices p2. 

We say that the game of protocol r has the weak Shapley condition or 
shortly SW-condition if the associated matrix for any (urr, &I), (uzl, Gal) 
possesses the S-condition. 

Thus, we present the following result: 

THEOREM 6. If  for any ~9, ~ J satisfies the S-condition and T satisjes the 

SW-condition, then the game of protocol r with time length 2 has a saddle 
point. 

Proof. Each truncation ,,J has a saddle point by virtue of Theorem 5, 
with value I. Now given (u rl, &‘), (ual, 6,l) consider for any choice of 
maximin and minimax strategies the associated matrix. Since it satisfies the 
SW-condition it has a saddle point. Now if this occurs at one point (9, p”) 
where p2 was chosen in AL-(ul) x M+(ul), then 

for 

71 
l- - ql, 011 and 7a1 = ual, aal. 

Indeed, in order to see it, suppose that 6l = (ull, ur’) and p2 corresponding 
to it is p2 = (p12, pz2). Consider the row with fixed url, p12 then o(ull, u21) is 
the minimum value of this row. In particular 

where p22 is the choice in M-(a,l, Gal). But by definition of $ull, 17,~) in the 
truncation ~oll,ila~r, we have 

ACUll, 02l, PI29 P2") d %Jll, 427 

for each p12 E A’r2(ur1, G21), and therefore 

u(u,l, u2’) < V(Ull, G,l). 

Similarly for the other inequality. In the case that the saddle point in the 
associated matrix does not occur at one point (6l”, p2) where p2 was not 
chosen in A&(&) x M+(u’), one can easily observe that the value of the payoff 
function A(@, p2) has to be equal to ~(6~1, &,l) and again it is easy to prove 
that the relation (*) holds true. Therefore, we have proven that the game 

where the payoff function is given by ~(url, u2r) satisfies the S-condition. 
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Consequently it has a saddle point (&l, (Tzr) or equivalently 

On the other hand, by replacing V(U 11, ua2) the first amount has the expres- 
sion 

where the last equality is the consequence of applying the minimax theorem 
to a suitable univalent two-person game of protocol having the payoff function 
described in the parentheses. 

Similarly, the second amount equals the minimax in the global game. 
Q.E.D. 

The general case having t* arbitrary could be carried out in a similar 
fashion as that just presented. No difficulties should arise. 
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