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Abstract

The paper is concerned with re1ning two well-known approximations to the Reed–Frost epi-
demic process. The 1rst is the branching process approximation in the early stages of the epi-
demic; we extend its range of validity, and sharpen the estimates of the error incurred. The
second is the normal approximation to the distribution of the 1nal size of a large epidemic,
which we complement with a detailed local limit approximation. The latter, in particular, is
relevant if the approximations are to be used for statistical inference.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The Reed–Frost epidemic process {(S(n)(r); I (n)(r)); r¿ 0} is a discrete time S–I–
R model, in which the index n denotes the initial number of susceptibles S(n)(0) and
the initial number I (n)(0) of infectives is denoted by in. The process evolves according
to a Markovian recursion: given that S(n)(r) = s and I (n)(r) = i, then

S(n)(r + 1) ∼ Bi(s; (1 − q(n))i); I (n)(r + 1) := s − S(n)(r + 1) (1.1)
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with q(n) = n−1	, for some 1xed mean reproduction number 	¿ 0. The interpretation
of (1.1) is as follows. At any given time r, any pair of the n + in individuals may
come into contact, with the

( n+in
2

)
possible contact events being realized independently

with probability q(n). A susceptible who has been in contact with at least one infective
becomes an infective at time r+1; infectives at time r become ‘removed’ (immune and
no longer infectious) at time r +1. Thus the S(n)(r +1) susceptibles at time r +1 are
those of the s susceptibles at time r who escape contact with the i infectives present
at time r; those that do not escape infection become the I (n)(r + 1) infectives at time
r + 1.
The Reed–Frost model is one of the simplest epidemic models, and is used as a

template for constructing many more sophisticated variants. Despite this, its structure
is suGciently complicated that more tractable approximations are still needed, if its
behaviour is to be understood. In this paper, we are interested in the detail of two
simpler approximations to particular aspects of the process: the branching approximation
in the early stages, and the central limit theorem for the 1nal size (see [7]). Both are
used to provide approximate likelihoods for use in statistical analyses, though this is
only justi1able if the true and approximate likelihoods are known to be (suGciently)
close. This seems actually not to have so far been established (see [4] for supporting
arguments, and [2] for further applications of the approximate likelihoods or pseudo
likelihood methodology); our aim is to do so. In Section 2, we introduce a measure
of closeness which is tailored to the likelihood, and show that the epidemic process
and a branching process approximation to it are close in this sense until the number
of susceptibles has fallen by an amount of order O(n�), for any �¡ 2

3 ; this is actually
rather better than previous approximations in total variation, which were only proved
for �¡ 1=2 [1, 6]. We also establish that the likelihoods then agree to within a relative
error of order O(n−(1−3�=2)log2 n), except possibly on a set (identi1able from the data)
of very small asymptotic probability. In Section 3, we turn to the 1nal size, proving
that the relative error in approximating its point probabilities by a discretized normal
distribution is small enough to justify the use of the normal density to approximate the
true probabilities in likelihood calculations.

2. Relative closeness in the branching approximation

We begin by de1ning a concept of closeness designed for statistical applications. Let
P and Q be non-negative measures de1ned on a measurable space (X;F), and set

06 �(x) :=
dP
dQ

(x)6∞:

We say that P and Q are �-relatively close with tolerance �, RC(�; �) for short, if there
exists a set R∈F such that

P(Rc)6 �; Q(Rc)6 � and sup
x∈R

|log �(x)|6 �: (2.1)

We think of R as being the set of ‘typical’ outcomes, Rc as being the exceptional
set. Similarly, we say that sequences of measures (Pn; n¿ 1) and (Qn; n¿ 1) are
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asymptotically �n-relatively close with tolerance �n, ARC(�n; �n) for short, if Pn and
Qn are RC(�′n; �

′
n), and �′n = O(�n) and �′

n = O(�n) as n → ∞, and that sequences
(X (n); n¿ 1) and (Y (n); n¿ 1) of random elements with values in X are ARC(�n; �n) if
their probability distributions (L(X (n)); n¿ 1) and (L(Y (n)); n¿ 1) are ARC(�n; �n).
Note that if probability measures P and Q are RC(�; �), then dTV(P;Q)6 (e� − 1)+ �,
whereas, if dTV(P;Q) = �, then P and Q are RC(−log(1 − �=�); 2�) for any �¿�.
In statistical applications, one would typically have families of probability distribu-

tions {(P�
n; Q

�
n); �∈�} whose elements X (n) and Y (n) were ARC(�n; �n) uniformly in

�. Typically, P�
n would be the distribution of the actual model generating the data at

parameter value �, and Q�
n a simpler approximation to it; the closeness of the distri-

butions would then be used to justify a likelihood derived from the approximation Q�
n

being used for inference. To protect against large errors being introduced in this way,
one should keep �n extremely small; in this paper, we shall always arrange to have
�n = $(n), where $(n) denotes a generic quantity of order O(n−r) for all r ¿ 0.
In this respect, the notion of ARC is rather more Kexible than that of total variation

distance. By proving that dTV(L(X (n));L(Y (n)))=O(�n), it follows that X (n) and Y (n)

are ARC(−log(1 − �n=�n); �n) for any �n ¿ �n, but it is very much more useful to
know, as may often also be the case, that this is because, in fact, X (n) and Y (n) are
ARC(�n; �n) for very small �n.
If the random elements X (n) and Y (n) are processes, the notion of ARC(�n; �n) can be

extended to include the time interval over which closeness is to be measured. We then
say that X (n) and Y (n) are ARC(�n; �n) up to time T (n) if the elements �T (n) (X (n)) and
�T (n) (Y (n)) are ARC(�n; �n), where, for x=(x0; x1; : : :), we de1ne �t(x) := (x0; x1; : : : ; xt).
Stopping times can also be included in analogous fashion. Some further useful prop-
erties related to ARC are discussed in Appendix.
Our aim in this section is to show that the population of infectives in the Reed–

Frost epidemic process de1ned in (1.1) and a branching process with Poisson oLspring
distribution Po(	) are ARC(�n; $(n)) up to the time at which the n�th infection (birth)
occurs, for any �¡ 2

3 , where �n = O(n−(1−3�=2)log2 n). These two processes can be
expected to be initially close in distribution, since each infective contacts a binomi-
ally Bi(n+ in − 1; n−1	) ≈ Po(	) distributed number of other individuals before being
removed, and these are all infectives in the next generation if they were previously
susceptible, a very likely event in the early stages of an outbreak, when almost all
individuals are still susceptible. An elementary coupling argument, based on this idea
and using birthday problem asymptotics, suggests that the branching process approx-
imation should remain good as long as the number of infectives is of order o(n1=2).
Here, we wish to derive an approximation which goes substantially further. To do so,
we start by considering some simpler sequences of pairs of processes.

Lemma 2.1. Let (Zj1; j¿ 0) and (Zj2; j¿ 0) be sequences of independent random
variables, with Zj1 ∼ Bi(mn; pn) and Zj2 ∼ Po(mnpn), where mnpn6 	 and c1n6
mn6C1n for some c1 ¿ 0 and 	; C1 ¡∞. De;ne processes X (n) and Y (n) taking
values in Z by

X (n)
j+1 = X (n)

j − Zj1 and Y (n)
j+1 = Y (n)

j − Zj2; j¿ 0;
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where X (n)
0 = Y (n)

0 . Suppose that

T (n)6C2n=log
4 n for some C2 ¿ 0: (2.2)

Then X (n) and Y (n) are ARC(�n; $(n)) up to time T (n), where �n = T (n)n−1 log4 n.

Proof. For k = (k0; k1; : : : ; kT (n) )∈ZT (n)+1 satisfying k0¿ k1¿ · · · kT (n) ¿ 0, write rj =
kj−1 − kj, 16 j6T (n), and set X (n)

0 = Y (n)
0 = k0 a.s. Then

P[�T (n) (X (n)) = k]
P[�T (n) (Y (n)) = k]

= exp

 T (n)∑
j=1

log  j

 ;

where, with qn = 1 − pn,

 j =
Bi(mn; pn){rj}
Po(mnpn){rj} =

(
mn

rj

)
prj

n q
mn−rj
n

/
{e−mnpn(pnmn)rj =rj!};

so that
T (n)∑
j=1

log  j = T (n)mn(pn + log qn)

+
T (n)∑
j=1


rj−1∑
i=1

log(1 − i=mn)

 − rj log qn

 : (2.3)

The 1rst term in (2.3) is of order O(T (n)np2
n) =O(T (n)n−1) as n → ∞. Now de1ne

the set

Rn = {k ∈ZT (n)+1
+ : 06 ki−1 − ki6 log2 n; 16 i6T (n)}:

Clearly, because mnpn is uniformly bounded, and because of the ChernoL bounds for
binomial and Poisson random variables,

P[�T (n) (Y (n)) �∈ Rn] = $(n); P[�T (n) (X (n)) �∈ Rn] = $(n): (2.4)

Then, for k ∈Rn and rj = kj−1 − kj as before, the second term in (2.3) is uniformly of
order

T (n)∑
j=1

{m−1
n r2j + rjpn} =O(T (n)n−1 log4 n);

completing the proof.

Lemma 2.2. For each n¿ 1, de;ne processes X (n) and Y (n) taking values in Z by

X (n)
j+1 = X (n)

j − Z (n)
j1 and Y (n)

j+1 = Y (n)
j − Z (n)

j2 ; j¿ 0;

where X (n)
0 = Y (n)

0 a.s., and (Z (n)
j1 ; j¿ 0) and (Z (n)

j2 ; j¿ 0) are sequences of random

variables de;ned as follows. The Z (n)
j2 ∼Bi(mn; pn) are independent random variables,

with the sequences mn and pn as for Lemma 2.1. Then, for j¿ 0, conditionally on
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F
(n)
j := *(X (n)

0 ; Z (n)
01 ; : : : ; Z (n)

j−1;1), Z (n)
j1 is sampled independently from the binomial

Bi(Mnj; pn) distribution, where Mnj is F
(n)
j -measurable and satis;es 06mn − Mnj

6,(n) a.s. for all j¿ 0. If T (n) and ,(n) are such that

T (n)¿ (2	e)−2 log4 n; �n :=
√
T (n),(n)n−1 log2 n → 0 as n → ∞; (2.5)

then the processes X (n) and Y (n) are ARC(�n; $(n)) up to time T (n).

Proof. If ,(n) = 0, there is nothing to prove, so we assume henceforth that ,(n)¿ 1.
The proof then runs much as in the previous lemma, starting with

P[�T (n) (X (n)) = k]
P[�T (n) (Y (n)) = k]

=
T (n)∏
j=1

P[X (n)
j = kj|�j−1(X (n)) = (k0; : : : ; kj−1)]

P[Y (n)
j = kj|�j−1(Y (n)) = (k0; : : : ; kj−1)]

= exp

 T (n)∑
j=1

log  j

 ;

where now

 j =
Bi(mnj; pn){rj}
Bi(mn; pn){rj} =

(
mnj

rj

)
prj

n q
mnj−rj
n

/(
mn

rj

)
prj

n q
mn−rj
n

= qmnj−mn

(
mnj

rj

)/(
mn

rj

)
;

and mnj := Mn;j−1(k0; : : : ; kj−1). Hence

T (n)∑
j=1

log  j =
T (n)∑
j=1

(mnj − mn)(pn + log qn)

+

pn(mn − mnj) +
rj−1∑
i=0

log{1 − (mn − mnj)=(mn − i)}
 : (2.6)

The 1rst term in (2.6) is immediately of order

O(T (n),(n)p2
n) = O(�2n={,(n) log4 n}) = o(�n):

For the second term, de1ne the set

Rn =

(k0; : : : ; kT (n) ): 06 ki−1 − ki6 log2 n; 16 i6T (n);

∣∣∣∣∣∣
T (n)∑
j=1

(kj−1 − kj − mnpn)(mn − mnj)

∣∣∣∣∣∣6,(n){log n}2
√
T (n)

 :
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The random variable

Sn :=
T (n)∑
j=1

(Z (n)
j−1;1 − Mn;j−1pn)(mn − Mn;j−1)

is a martingale; the weights mn − Mn;j−1 satisfy 06mn − Mn;j−16,(n) a.s., and the
random factors Z (n)

j−1;1 − Mn;j−1pn have centred binomial distributions, conditional on

X (n)
0 ; : : : ; X (n)

j−1. Hence, using mnpn6 	, the moment generating function E(e�Sn) of Sn

is simply bounded in �6 1=,(n) by

E(e�Sn)6 exp{ 1
2	e�

2(,(n))2T (n)}:
Provided that log2 n6 2	e

√
T (n), we can thus choose � := ±{log n}2={2	e,(n)

√
T (n)}

to show that

P[|Sn|¿ 1
2 ,(n){log n}2

√
T (n)]6 2 exp{−{log n}4=8	e} = $(n):

Then we also have
T (n)∑
j=1

(mn − Mn;j−1)2pn = O(T (n)(,(n))2n−1) = O(,(n){log n}2
√
T (n){�n=log4 n})

6 1
2 ,(n){log n}2

√
T (n)

for all n large enough. These considerations, together with the ChernoL bounds on the
tails of the binomial distribution, show that P[�T (n) (X (n)) �∈ Rn] = $(n); the argument
for Y (n) is a little easier, because Mnj is replaced by mn.
Now, returning to the second term in (2.6), for k ∈Rn and 16 j6T (n), we have

pn(mn − mnj) +
rj−1∑
i=0

log{1 − (mn − mnj)=(mn − i)}

=m−1
n (mn − mnj)(mnpn − rj) + �nj;

where

�nj := (mn − mnj)
rj−1∑
i=0

(
1
mn

− 1
mn − i

)

+
rj−1∑
i=0

(
log

{
1 − mn − mnj

mn − i

}
+

mn − mnj

mn − i

)
= O(n−2rj(mn − mnj){(mn − mnj) + rj})
= O(n−2(log n)2,(n)(,(n) + log2 n));

uniformly for k ∈Rn, so that
T (n)∑
j=1

|�nj| =O(T (n)n−2(,(n))2 log4 n) = O(�2n) = o(�n);
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again uniformly for k ∈Rn. But then, for k ∈Rn,∣∣∣∣∣∣
T (n)∑
j=1

m−1
n (mn − mnj)(mnpn − rj)

∣∣∣∣∣∣6m−1
n ,(n){log n}2

√
T (n) = O(�n);

hence it follows that
T (n)∑
j=1

log  j =O(�n);

uniformly for k ∈Rn. This completes the proof of the lemma.

Lemma 2.3. De;ne processes X (n) and Y (n) taking values in Z by

X (n)
j+1 = X (n)

j − Z (n)
j1 and Y (n)

j+1 = Y (n)
j − Z (n)

j2 ; j¿ 0;

where, with mn; pn as before, X (n)
0 =Y (n)

0 =mn and the Z (n)
j2 ∼Bi(mn; pn) are indepen-

dent; and now, conditionally on F
(n)
j ; Z (n)

j1 is sampled independently from Bi(X (n)
j ; pn).

If

T (n)¿ (2	e)−2 log4 n; �n := {T (n)}3=2{log n}2n−1 → 0 as n → ∞; (2.7)

then it follows that X (n) and Y (n) are ARC(�n; $(n)) up to time T (n).

Proof. The lemma follows from Lemma 2.2. De1ne a further process X ′(n) by setting
X ′(n)

0 = X (n)
0 and X ′(n)

j+1 = X ′(n)
j − Z ′(n)

j1 for j¿ 0, where, given (X ′(n)
i ; 06 i6 j), Z ′(n)

j1

is sampled from the binomial distribution Bi(max{X ′(n)
j ; mn − ,(n)}; pn), with ,(n) =

2	T (n). Since Y (n) is stochastically smaller than X (n) and
∑T (n)

j=1 Z
(n)
j−1;2 ∼Bi(mnT (n); pn),

it follows that

P[mn − X (n)
T (n) ¿,(n)] = $(n);

and hence, de1ning

Rn = {(k0; : : : ; kT (n) ): 06 ki−1 − ki6 log2 n; 16 i6T (n); k0 − kT (n) 6,(n)};
that X (n) and X ′(n) are ARC(0; $(n)) up to time T (n). Now apply Lemma 2.2 to the
processes X ′(n) and Y (n), recalling that ,(n) = 2	T (n).

Lemma 2.4. For each n¿ 1, let (Z (n)
j1 ; j¿ 0) and (Z (n)

j2 ; j¿ 0) be sequences of in-

dependent random variables, with Z (n)
j1 ∼Po(	′

n) and Z (n)
j2 ∼Po(	n), where 06 	n − 	′

n

6 n−1,(n) and where 	n � 1 as n → ∞. De;ne processes X (n) and Y (n) taking values
in Z by

X (n)
j+1 = X (n)

j − Z (n)
j1 and Y (n)

j+1 = Y (n)
j − Z (n)

j2 ; j¿ 0;

where X (n)
0 = Y (n)

0 . Then if

�n := n−1,(n)
√
T (n) log2 n → 0 as n → ∞;

the processes X (n) and Y (n) are ARC(�n; $(n)) up to time T (n).
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Proof. We start with

 j =
Po(	′

n){rj}
Po(	n){rj} = {e−	′

n(	′
n)

rj =rj!}={e−	n(	n)rj =rj!};

yielding

T (n)∑
j=1

log  j = T (n)(	n − 	′
n) +

T (n)∑
j=1

rj[log(	′
n) − log(	n)]

= T (n){(	n − 	′
n) + 	n[log(	′

n) − log(	n)]}

+
T (n)∑
j=1

(rj − 	n)[log(	′
n) − log(	n)]: (2.8)

As before, the 1rst term in (2.8) is of order O(T (n){n−1,(n)}2) = o(�2n) as n → ∞.
Now de1ne the set

Rn =

(k0; : : : ; kT (n) ):

∣∣∣∣∣∣
T (n)∑
i=1

(ki−1 − ki − 	n)

∣∣∣∣∣∣6 log2 n
√
T (n)

 :

Note that

T (n)|	n − 	′
n| =O(T (n)n−1,(n)) = O(log2 n

√
T (n){�n=log4 n}) = o(log2 n

√
T (n));

and that

P

∣∣∣∣∣∣
T (n)∑
j=1

(Z (n)
j−1;1 − 	′

n)

∣∣∣∣∣∣¿ 1
2
log2 n

√
T (n)

= $(n);

in view of the ChernoL bounds for Poisson random variables. Hence it follows that
P[�T (n) (X (n)) �∈ Rn] = $(n); the corresponding argument for Y (n) is easier. Then, for
k ∈Rn, the second term in (2.8) is of order

O

|log(	′
n) − log(	n)|

∣∣∣∣∣∣
T (n)∑
j=1

(ki−1 − ki − 	n)

∣∣∣∣∣∣
=O(n−1,(n) log2 n

√
T (n))

= O(�n);

uniformly for k ∈Rn, completing the proof.

The Reed–Frost epidemic process can be formulated as a sequence of processes
X̂ (n), de1ned as is X (n) in Lemma 2.3, having X̂ (n)

0 = n and with Bi(X̂ (n)
j ; n−1	) in-

novations, j¿ 0; time j¿ 0 is to be interpreted as the number of removals. The
numbers of susceptibles and infectives (S(n)(r); I (n)(r)) in the epidemic process (1.1)
at genuine time steps r = 0; 1; : : : are then derived from the initial number in = I (n)(0)
of infectives and from values of the X̂ (n)-process at (random) times J1; J2; : : :, where
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Jr+1 := n+ in − X̂ (n)
Jr and J0 := 0: the recursion is given by

S(n)(r) = X̂ (n)
Jr and I (n)(r) = Jr+1 − Jr; r¿ 0; (2.9)

see [7, relation (29)]. The branching process approximation (S̃(n); Ĩ (n)) with which it is
to be compared can be constructed in analogous fashion, starting from a process Ỹ (n)

having Ỹ (n)
0 =n and Ỹ (n)

j+1=Ỹ (n)
j −Z̃ j, where the innovations (Z̃ j; j¿ 0) are independent

Poisson Po(	)-distributed random variables, and using the recursion

S̃(n)(r) = Ỹ (n)
J̃ r

and Ĩ (n)(r) = J̃ r+1 − J̃ r ; r¿ 0;

where J̃ r+1 := n+ in − Ỹ (n)
J̃ r

and J̃ 0=0. The branching process is the second component

Ĩ (n), and, if in is the same for all n, so is the distribution of Ĩ (n).
By comparing the innovations, the approximation can only be expected to be rea-

sonable as long as X̂ (n)
j ≈ n. It has previously been justi1ed until the time r when

n−S(n)(r) 1rst exceeds n� in [1, 6], for �¡ 1=2. Here, we extend the range of approx-
imation to allow any �¡ 2

3 , and indeed up to times of order o({n=log2 n}2=3), and give
bounds on the accuracy of the approximation. To do so, 1xing any positive sequence
t(n), de1ne

U (n) := min{r¿ 0: n+ in − S(n)(r)¿ t(n) or I (n)(r) = 0};
and set S(n)

∗ (r) := S(n)(r ∧U (n)); de1ne Ũ (n) and S̃(n)
∗ analogously. Then the following

theorem makes the approximation precise.

Theorem 2.5. Assume that t(n) satis;es (2.7) and de;ne �n := {t(n)}3=2{log n}2n−1 →
0. Then S(n)

∗ and S̃(n)
∗ are ARC(�n; $(n)).

Remark. It follows from Lemma 2.4 that Theorem 2.5 is also true if 	 = 	n → 	0
depends on n in such a way that |	n − 	0|6 n−1,(n), but now with

�n = {t(n)}1=2(,(n) + t(n)){log n}2n−1;

provided that �n → 0.

Proof. Note that, if in¿ t(n), there is nothing to prove. Otherwise, we start by observing
that

P[JU (n) ¿ 2	t(n)] = $(n); P[J̃ Ũ (n) ¿ 2	t(n)] = $(n): (2.10)

To prove the 1rst of these, note that, for each r, Jr+1 − Jr is stochastically smaller
than a sum of Jr − Jr−1 independent random variables with distributions Bi(n; n−1	).
Hence, from the ChernoL bounds,

P[Jr+1¿ 2	t(n) | Jr−1 ¡Jr6 t(n)] = $(n);

and the probability is zero if Jr−1 = Jr . Since the event {Jr−1 ¡Jr6 t(n)} can occur
at most t(n) times, the 1rst claim in (2.10) follows. The second is proved similarly.
Since T (n) = 2	t(n) satis1es (2.2) and (2.7), Lemmas 2.1 and 2.3 can be combined

to show that the processes X̂ (n) and Ỹ (n) de1ned above are ARC(�n; $(n)) up to time
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t(n): Lemma 2.1 shows that Ỹ (n) and a process PX (n) with Bi(n; n−1	) innovations are
ARC(�n; $(n)) up to time t(n), and Lemma 2.3 that PX (n) and X̂ (n) are ARC(�n; $(n))
up to time t(n). The proof is completed easily using (2.10) by expanding the set Rn if
necessary, and applying Corollary A.2.

Corollary 2.6. Suppose that t(n) = Kn� logb n, where 06 �6 2
3 and we assume that

b¿ 4 when � = 0 and b¡−4=3 when � = 2
3 . Then S(n)

∗ and S̃(n)
∗ are ARC(�n; $(n))

with

�n = n−(1−3�=2) log2+3b=2n:

Remark. The stopping time U (n) is actually the time when the total of infectives and
removals 1rst exceeds t(n), if I (n) does not previously reach 0, being the time at which
n − S(n)(r) 1rst exceeds t(n) − in. Hence Corollary 2.6 implies a similar result for the
processes until the number of removals n − S(n)(r) 1rst exceeds Kn� logb n, as long as
in =O(n� logb n).
Corollary 2.6 shows that the Reed–Frost epidemic remains close in distribution to a

branching process with Poisson oLspring distribution until either the epidemic termi-
nates or the number of removals exceeds a level of magnitude O(n� logb n). A subcrit-
ical epidemic process, with 	¡ 1, typically dies out very soon, so that the corollary
is enough to show that the two processes remain close in distribution for all time, and
hence, in particular, that their 1nal size distributions are close. We give a brief sketch
of the reasoning; the detailed argument parallels the corresponding part of the proof of
Theorem 3.3.
The argument is based on the observation that, with the above construction of the

Reed–Frost epidemic, In(r) = 0 when n+ in − X̂ (n)
Jr = Jr , and that the total size of the

epidemic is then just n+ in − Sn(r) = Jr . In terms of the underlying process X̂ (n), this
translates into the statement that the total size of the epidemic is equal to the value of
the stopping time

1(n) := min{j: n+ in − X̂ (n)
j 6 j}: (2.11)

Now X̂ (n)
j ∼Bi(n; {1− 	=n}j), so that n − X̂ (n)

j has mean close to 	j for j�n, and the
binomial ChernoL bounds then show that P[1(n) ¿T (n)] = $(n), where

T (n) := max(2in(1 − 	)−1; log4 n):

This fact, in combination with Corollaries 2.6 and A.2, leads to the following corollary,
improving related results in [6].

Corollary 2.7. Let Y (n)
∞ denote the total progeny in the Galton–Watson process with

o?spring distribution Po(	), starting with in individuals, and let R(n)
∞ denote the total

size of the Reed–Frost epidemic, starting with n susceptibles and in infectives, and
having mean reproduction number 	. Then if 	¡ 1 and in = O(n� logb n), and if
{in}3=2{log n}2n−1 → 0, then L(R(n)

∞ ) and L(Y (n)
∞ ) are ARC(�n; $(n)), with �n :=

{in ∨ log4 n}3=2{log n}2n−1.
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3. Relative closeness in the normal approximation

Over longer time intervals than those considered in the previous section, it is unre-
alistic to hope to approximate the Reed–Frost epidemic in the sense of ARC by any
simpler process. However, for summaries of the trajectory, this may still be possible,
and in particular for the 1nal size n−S(n)(∞) of a large epidemic, a statistic frequently
used in practice. Here, we show that the distribution of the 1nal size and a discretized
normal distribution are ARC, a result which can then be applied to justify the use of
the normal approximation in likelihood inference based on the 1nal size.
The basis for proving this is Theorem 3.2, which shows that the distribution of a

random sum of independent and identically distributed integer valued random variables
and an appropriately matched discretized normal distribution are ARC. The theorem re-
quires the distributions of the random variables involved to have exponential moments,
a condition which presents no problems in the Reed–Frost context. However, for more
general epidemic models, such a condition could cause diGculties. We therefore begin
with a somewhat simpler result, establishing a local limit theorem for the random sum
under much weaker conditions.

Theorem 3.1. For each n¿ 1, let (2(n)j ; j¿ 1) be independent, identically distributed

integer valued random variables with E2(n)1 =m(n)
1 and E{2(n)1 }2 =m(n)

2 ¡∞, and such
that 2(n)1 →L2 21, where E21 =m1; E221 =m2 and 21 has lattice span 1. Let (Sn; n¿ 1)
be non-negative random variables, independent of the sequence (2(n)j ; j¿ 1), with
Laplace-transform ’n( ) := E{e− Sn}. Suppose that, for sequences an and bn satis-
fying

s2n := an{m(n)
2 − (m(n)

1 )2} + bn(m
(n)
1 )2 ∼ ns2 as n → ∞ (3.1)

for some s¿ 0, and for a sequence of functions �n satisfying

lim
 →0;R ¿0

sup
n

|�n( )| = 0;

the quantities

�n1(c) := sup
 :06R 6c{n−1 log n}1=2

∣∣∣∣’n( ) − exp
{

− an +
1
2
 2bn + n 2�n( )

}∣∣∣∣ ;
�n2(c) := sup

 :R ¿c{n−1 log n}1=2

|’n( )| (3.2)

are such that �ni(c) = o(n−1=2) for any c¿ 0 and for i = 1; 2. Then Zn :=
∑Sn

j=1 2
(n)
j

satis;es a local limit theorem:

lim
n→∞ sup

k

∣∣∣∣∣√nP[Zn = k] − 1
s
5

(
k − anm

(n)
1

s
√
n

)∣∣∣∣∣= 0;

where 5(x) := 1√
2�

e−x2=2 denotes the standard normal density.

Remark. The constants an and bn are to be expected to be close to ESn and Var Sn, re-
spectively. No direct assumption has been made as to their relative magnitudes, though
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it follows from (3.1) that an = O(n), and that bn = O(n) also if m1 �= 0. However, a
local limit theorem cannot hold if Sn=0 with too large a probability; hence one would
expect to see a condition of the form an�

√
bn in the theorem as well, suggesting that

the mean of Sn is many standard deviations away from zero. This is actually implied
here by the condition �n2(c) = o(n−1=2); in Theorem 3.2, a more explicit assumption
is made.

Proof. Let w(n)(t) := E{eit2(n)1 }; t ∈R, be the characteristic function of the random
variables 2(n)j . Since 2(n)1 →L2 21, it follows that

w(n)(t) = 1 + itm(n)
1 − 1

2 t2m(n)
2 + t2�(n)(t);

where limt→0 supn |�(n)(t)| = 0, and also, because 21 has lattice span 1, that

sup
n

|w(n)(t)|6 e−ct2 ; |t|6 �; (3.3)

for some c¿ 0 and all n large enough. Then

E{eitZn} = E{w(n)(t)Sn} = E{eSn log w(n)(t)};
and R logw(n)(t)6 0 for |t|6 � because |w(n)(t)|6 1. Thus, taking  = −logw(n)(t)
in (3.2), we have

|E{eitZn} − exp{an logw(n)(t) + 1
2 bn{logw(n)(t)}2

+ n{logw(n)(t)}2�n(−logw(n)(t))}|
6 �n1(c1)

uniformly in 06− R logw(n)(t)6 c{n−1 log n}1=2, where also

logw(n)(t) = itm(n)
1 − 1

2 t2m(n)
2 − 1

2 (itm
(n)
1 )2 + t2�̂(n)(t)

with �̂(n) satisfying limt→0 supn |�̂(n)(t)| = 0. Hence it follows that

|E{eitZn} − exp{itanm
(n)
1 − 1

2 s2nt
2 + (an + n)t2�̂n(t)}|6 �n1(c1) (3.4)

uniformly in 06 |t|6√
c2{n−1 log n}1=4 and for all suGciently large n, where �̂n(t)

de1ned by

(an + n)�̂n(t) := n{t−1 logw(n)(t)}2�n(−logw(n)(t)) + an�̂(n)(t)

+ 1
2 bn({t−1 logw(n)(t)}2 + {m(n)

1 }2) (3.5)

satis1es limt→0 supn |�̂n(t)|=0, and c2 := 4c1={m2−m2
1}. Thus the characteristic function

of Zn is close to that of the normal; the remaining argument consists of showing that
the approximation is good enough to prove a local limit theorem.
First, from the de1nition of �̂n, we can 1nd k0; t0 ¿ 0 such that

inf
|t|6t0

{
1
2
s2n − (an + n)|�̂n(t)|

}
¿ k0n; (3.6)
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hence, from (3.4), it follows that

|E(eitZn)|6 �n1(c1) + $(n) uniformly in t1(n)6 |t|6 t2(n) (3.7)

with t1(n) := n−1=2 log n and t2(n) := min{t0;√c2{n−1 log n}1=4}. For t2(n)¡ |t|6 �,
from (3.3),

|E(eitZn)|6 E{|w(n)(t)|Sn}6 E(e−ct2Sn) = ’n(ct2)6 �n2(cc2); (3.8)

for all n suGciently large. Combining (3.7) and (3.8), and writing �n := �n1(c1) +
�n2(cc2), it thus follows that

√
n

∣∣∣∣∣P[Zn = k] − s−1
n 5

(
k − anm

(n)
1

sn

)∣∣∣∣∣
6

∣∣∣∣√n
2�

∫ �

−�
e−itk

(
E{eitZn} − exp

{
itanm

(n)
1 − 1

2
s2nt

2
})

dt
∣∣∣∣

+
√
n

2�

∣∣∣∣∣
∫

|t|¿�
e−s2nt

2=2 dt

∣∣∣∣∣
6

√
n

2�

∫ �

−�

∣∣∣∣(E{eitZn} − exp
{
itanm

(n)
1 − 1

2
s2nt

2
})∣∣∣∣ dt + $(n)

6
√
n

2�

∫ t1(n)

−t1(n)
exp

{
−1
2
s2nt

2
}

|e(an+n)t2 �̂n(t) − 1| dt + n1=2�n + $(n)

=O

(
n1=2�n + n3=2 sup

|t|6t1(n)
|�̂n(t)|

∫ ∞

0
t2e−k0t2n dt

)
+ $(n)

=O

(
n1=2�n + sup

|t|6t1(n)
|�̂n(t)|

)
+ $(n) = o(1); (3.9)

uniformly in k, from (3.6) and because limt→0 supn|�̂n(t)|=0. Finally, since n−1s2n → s2,
it follows that

sup
x

|s−1
n

√
n5(xs−1

n ) − s−15(xs−1n−1=2)| =O(|n−1s2n − s2|) = o(1); (3.10)

uniformly in x∈R, completing the proof.

The local limit theorem is a purely asymptotic measure of the closeness of the
density of Zn to a discretized normal density, implying only that the two measures are
ARC(�n; �n) for some unspeci1ed �n; �n → 0. We now strengthen the hypotheses of
Theorem 3.1, and improve the conclusion to ARC closeness with explicit convergence
rate.
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Theorem 3.2. The setting is as for Theorem 3.1, but with the de;nition of �n1(c)
modi;ed to

�n1(c) := sup
 :|R |6c{n−1 log n}1=2

∣∣∣∣’n( ) − exp
{

− an +
1
2
 2bn + n 2�n( )

}∣∣∣∣ ;
with the function �n analytic in this strip. Assume in addition that

an�{n log n}1=2 and bn =O(n);

that, for any c¿ 0, �n1(c) = O(e−�a2n=n) = $(n) for some � = �(c)¿ 0, and that
�n2(c) = $(n). Assume also that vn(t) := E(et2

(n)
1 ) exists for all |t|6 t3 for some

t3 ¿ 0, and that lim supn→∞{vn(t3) + vn(−t3)}¡∞. Then the sequences of measures
Pn and Qn de;ned by

Pn(k) = P[Zn = k] and Qn(k) = s−1
n 5(un;k); k ∈Z;

where un;k := s−1
n (k − anm

(n)
1 ), are ARC(9n; $(n)), where

9n := log2 n sup
t∈C:|t|62t1(n)

|�̂n(t)|; t1(n) = n−1=2 log n

and �̂n(t) is as de;ned in (3.5), provided that 9n¿ n−� for some �¿ 0.

Proof. Arguing much as for (3.9), we derive

snP(Zn = k) =
1
2�

∫ snt1(n)

−snt1(n)
exp(−iyun;k − y2=2 + �̂n(y=sn)(an + n)y2s−2

n ) dy

+$(n);

uniformly in

k ∈R′
n := {k: s−1

n |k − anm
(n)
1 |6 1

2 snt1(n)}:
Putting

u= un;k ; d= snt1(n) and L(y) = exp{y2�̂n(y=sn)(an + n)s−2
n };

the integral can be written as

1√
2�

∫ d

−d
5(y)e−iyuL(y) dy:

By Cauchy’s formula, this is equal to the integral along the contour consisting of the
three chords

;1 : joining −d to − d − iu; ;2 : joining −d − iu to d − iu;

;3 : joining d − iu to d;

and L(y) = 1 + O(9n) uniformly along the contour. The integrals along ;1 and ;3 are
immediately seen to be of order

O(|u|exp{−3d2=8}) = $(n);
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since |u|6d=2, and the remaining integral, with y = z − iu, is just

5(u)
∫ d

−d
5(z)L(z − iu) dz

=5(u)
∫ d

−d
5(z)[1 + O(9n)] dz = 5(u){(1 + O(9n)) + $(n)}

=5(u){1 + O(9n)};
since 9n¿ n−�. Combining these estimates, we establish the approximation

snP[Zn = k] = 5(un;k)(1 + �(1)n;k) + �(2)n;k ; (3.11)

with �(1)n;k =O(9n) and �(2)n;k = $(n) uniformly for k ∈R′
n.

Now let

A1 := {k ∈R′
n : logP[Zn = k]¿ log(s−1

n 5(un;k)) + 2c∗9n};
where c∗ is such that |�(1)n;k |6 c∗9n uniformly in n and k. Then, using (3.11), we have

logQn(A1) + 2c∗9n ¡ logP[Zn ∈A1]

6 log{Qn(A1)(1 + c∗9n) + s−1
n |R′

n|�(2)n }; (3.12)

where �(2)n =maxk∈R′
n
|�(2)n;k |, and so

c∗9n6 log

(
1 +

|R′
n|�(2)n

snQn(A1)

)
6

|R′
n|�(2)n

snQn(A1)
:

Hence, and from (3.12), both Qn(A1) and P[Zn ∈A1] are of order $(n). A similar
argument covers the case of

A2 := {k ∈R′
n : log(s

−1
n 5(un;k))¿ logP[Zn = k] + 2c∗9n};

so that we shall have proved that L(Zn) and Qn are ARC(9n; $(n)) by taking Rn to be
the set R′

n \ {A1 ∪ A2}, provided only that P[Zn �∈ R′
n] =$(n), since the corresponding

bound for Qn is immediate.
For this 1nal step, we use Laplace-transform bounds. Observe that for real t with

|t|6 {n−1 log n}1=2, much as for (3.4),

E{et(Zn−anm
(n)
1 )} = e−tanm

(n)
1 ’n(−log vn(t))

6 exp{knt2} + e−tanm
(n)
1 �n1(c3);

for some k ¡∞ and c3 ¿ 0. Taking t = tn = {n−1 log n}1=2, it follows easily that

P
[
Zn − anm

(n)
1 ¿

1
2
s2nt1(n)

]

6 exp
{

− 1
2
tns2nt1(n)

}
{exp{knt2n} + e−tnanm

(n)
1 �n1(c3)}

=$(n);
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since we have

tns2nt1(n) � log3=2 n�knt2n =O(log n);

tnan|m(n)
1 | � an{n−1 log n}1=2�n−1a2n;

and because of the bound on �n1(c). A similar bound for P[Zn − anm
(n)
1 ¡− 1

2 s2nt1(n)]
is obtained by taking t = −tn, and the theorem is proved.

We now wish to apply the above results to the Reed–Frost epidemic, using the
construction in (2.9). The idea is to express the 1nal size as being close enough to the
sum of a random number of independent and identically distributed random variables.
This is actually based on a second branching process approximation. For times r near
the end of the epidemic, I (n)(r) reduces to values of much smaller order than n, and
S(n)(r) becomes close to a value n�, where � is the proportion of susceptibles typically
remaining at the end of a major outbreak. At such times, the number of contacts with
susceptibles made by a given infective is close to having a Po(	�) distribution, and
	�¡ 1. Hence each infective at time r gives rise to a rather small total number of
cases over the remaining duration of the epidemic, having mean 1=(1 − 	�), and, if
I (n)(r) is small enough, these numbers for the diLerent infectives are close to being
independent and identically distributed. This idea is actually exploited from within the
process X̂ (n) of the construction in (2.9), which makes for a simpler argument; note
that the 1nal size is given, as in (2.11), by

1(n) := min{j¿ 0 : X̂ (n)
j + j¿ n+ in}; (3.13)

where X̂ (n)
0 = S(n)(0)= n denotes the initial number of susceptibles, and I (n)(0)= in the

initial number of infectives.
Our normal approximation theorem concerns the distribution of 1(n) conditional on

there having been a large outbreak; for small epidemics, the branching process approx-
imation in Theorem 2.5 can be used. A large outbreak has negligible probability of
occurring unless 	¿ 1; if this condition is satis1ed, we de1ne the epidemic to have
been large if 1(n) ¿n(1 − 1=	), and denote the corresponding conditional probability
by PL.

Theorem 3.3. Assume that 	¿ 1 and n−1in → – with 06 –¡∞. De;ne the sequences
of measures (Pn; Qn; n¿ 1) on Z+ by

Pn(k) = PL[1(n) = k] and Qn(k) =
1

*
√
n
5
(
k − n(1 − �n)

*
√
n

)
; k¿ 0:

Then (Pn; n¿ 1) and (Qn; n¿ 1) are ARC(�n; $(n)) with

�n = |n−1in − –|log2 n+ n−1=4 log5 n;

where *2 = �(1 − �)=(1 − 	�)2, �= �(–) and �n = �(n−1in), with �(w) the solution in
(0; 1) of the equation � − 	−1 log �= 1 + w.

The theorem immediately implies a local limit approximation.
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Corollary 3.4. Under the conditions of Theorem 3.3,

sup
k

∣∣∣∣√nPL[1(n) = k] − 1
*
5
(
k − n(1 − �n)

*
√
n

)∣∣∣∣
=O(|n−1in − –|log2 n+ n−1=4 log5 n):

Remark. A similar rate of convergence in the (distributional) central limit theorem
was established in [3] for sparse undirected random graphs, by using the martingale
approximation approach.

Proof. The 1rst step is to show that n−11(n) is either very small or else near to the
value n−1(1 − �n). Rather than using coupling arguments as in [5], we apply simple
large deviation bounds applied to the process X̂ (n): in what follows, we always omit
the hat, and write just X (n). Since X (n)

j ∼Bi(n; (1−n−1	) j), with mean EX (n)
j 6 ne−j	=n

and variance Var(X (n)
j )6 n(1 − e−j	=n)6 j	, it follows from the Bernstein inequality

(see for example [8, p. 193]) that

P[1(n) = j]6P[X (n)
j = n+ in − j]6 exp

{
− nf2

n (t)
2	t + 2fn(t)=3

}
;

where t = j=n and

1 + sup
n
(n−1in) = C¿fn(t) = (1 + n−1in − t − e−	t)¿ 0;

provided that 0¡t¡ 1− @n, where @n = �n − in and �n is as de1ned in the statement
of the theorem. Note also that

fn(t)¿

{ 1
2 (	 − 1)t if 06 t6 1 − 1=	;

(1 − @n − t)(1 − 	e1−	) if 1 − 1=	6 t6 1 − @n;

so that

P[1(n) = j]6

{
Ke−jc1(	) if 06 t6 1 − 1=	;

K exp{−c2(	)n−1(n(1 − @n) − j)2} if 1 − 1=	6 t6 1 − @n

for

c1(	) =
(	 − 1)2=2

4	+ 2(	 − 1)=3
and c2(	) =

(1 − 	e1−	)2

2	(1 − 1=	) + 2C=3
:

Hence

P[log2 n6 1(n)6 un] = $(n); (3.14)

if we de1ne

un = n(1 − @n) − �√n log2 n� = n(1 − �n) + in − �√n log2 n�:
We next examine the distribution of the modi1ed stopping time

1̃(n) := min{j¿ un :X
(n)
j + j¿ n+ in};
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where the process is not stopped at the end of a ‘small’ epidemic. Then it follows
from the above that X (n)

un ∼Bi(n; (1 − n−1	)un) and that

P[X (n)
un ¿ n+ in − un] = $(n); (3.15)

also, since

EX (n)
un = n(1 − n−1	)un = n�n exp{	n−1=2 log2 n} +O(1); (3.16)

it follows that

n+ in − un − X (n)
un =

√
n log2 n(1 − 	�n) + {EX (n)

un − X (n)
un } +O(log4 n);

and hence, from the ChernoL bounds, that

P[n+ in − un − X (n)
un ¿ 2

√
n log2 n] = $(n): (3.17)

In particular, from (3.15), it follows that

dTV(L(1̃ (n));L(1∗(n))) = $(n); (3.18)

where

1∗(n) := un + 1(X (n)
un ; [n+ in − un − X (n)

un ]+) (3.19)

and 1(m; i) denotes the 1nal size of an epidemic starting with m susceptibles and i
infectives.
Now 1(X (n)

un ; [n + in − un − X (n)
un ]+) is zero if [n + in − un − X (n)

un ]+ = 0, and is
otherwise the 1rst time j at which n + in − un6Y (n)

j + j, where Y (n) is a process

like X (n) in Lemma 2.3, satisfying the recursion Y (n)
j+1 = Y (n)

j − Z (n)
j ; j¿ 0, with initial

value Y (n)
0 = X (n)

un , where, conditional on F
(n)
j ; Z (n)

j ∼Bi(Y (n)
j ; n−1	). What is more,

we have Y (n)
j ∼Bi(Y (n)

0 ; (1− n−1	) j), implying from the ChernoL bounds that, writing
t(n) = 3

√
n log2 n,

P[Y (n)
t(n) + t(n)¿Y (n)

0 + 2
√
n log2 n] = 1 − $(n); (3.20)

which, with (3.17), implies that 1(X (n)
un ; [n + in − un − X (n)

un ]+)6 t(n) with probability
1−$(n). Hence, for our purposes, we can approximate the distribution of the stopping
time 1(X (n)

un ; [n + in − un − X (n)
un ]+) by working instead with any process which is

ARC(�n; $(n)) close to Y (n) up to time t(n), since ARC-closeness of the processes
carries over to the distributions of the stopping times of interest to us, by Corollary
A.2.
We now apply Lemmas 2.1, 2.3 and 2.4 with T (n) = t(n) = 3

√
n log2 n to the process

Y (n) de1ned above and to Y ′(n) de1ned by

Y ′(n)
j+1 = Y ′(n)

j − Z ′(n)
j ; j¿ 0; Y ′(n)

0 = Y (n)
0 = X (n)

un ;

where Z ′(n)
j ∼Po(	�n). Note that, in applying the lemmas, we have mn = X (n)

un , so that

the mean of the Poisson innovations in Lemma 2.1 is n−1	X (n)
un , and Lemma 2.4 is

used to replace this mean with 	�n. This can be done since, from (3.16) and the
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ChernoL bounds for the Binomial distribution,

P[|n−1X (n)
un − 	�n|¿c4n−1=2 log2 n] = $(n);

for some c4 ¡∞. Thus Y (n) and Y ′(n) are ARC(�′n; $(n)) up to time t(n), where, with
,(n) = c4n1=2 log

2 n,

�′n = {t(n)}1=2(t(n) + ,(n)){log n}2n−1 = O(n−1=4 log5 n):

In consequence, with Y∞(J ) de1ned by

Y∞(J ) := min

t¿ 0 :
t∑

j=1

(1 − Z ′(n)
t )¿ J

 ;

the sequences of measures P′
n and Q′

n de1ned by

P′
n(k) = P[1(X (n)

un ; [n+ in − un − X (n)
un ]+) = k];

Q′
n(k) = P[Y∞([n+ in − un − X (n)

un ]+) = k];

are ARC(�′n; $(n)); thus the problem is reduced to proving the ARC-closeness of

L(un + Y∞([n+ in − un − X (n)
un ]+)) and Qn:

Now, as for Corollary 2.7, Y∞(J ) is just the total progeny in the Galton–Watson
process with oLspring distribution Po(	�n), starting with J individuals, and so

Y∞(J ) =
J∑

i=1

2i;

where {2i} is an i.i.d. sequence distributed as Y∞(1); in particular, we have

21¿ 1 a:s:; P[21 = 1] = e−	�n ; E21 = (1 − 	�n)−1;

E(et21 )¡∞ for all t6 	�n − 1 − log(	�n): (3.21)

Thus the 2i satisfy the relevant conditions in Theorem 3.2, with m(n)
1 =(1−	�n)−1, and

we now wish to show that [n+ in − un − X (n)
un ]+ satis1es the conditions for Sn in that

theorem, so that it can be applied to approximate L(un + Y∞([n+ in − un − X (n)
un ]+)).

To show that Sn := [n + in − un − X (n)
un ]+ indeed satis1es the conditions, we use

the fact that X (n)
un ∼Bi(n; pn) with pn := (1− n−1	)un ; this suggests using the Laplace

transform of Ŝn := n+ in − un −X (n)
un as the approximation to ’n( )=E{e− Sn}, which

from the de1nitions of un, �n and pn, gives

an := (n+ in − un) − npn =
√
n log2 n(1 − 	�n) + O(log4 n)�{n log n}1=2;

bn := npn(1 − pn)∼ n�(1 − �) = O(n);

�n( ) :=  −2{log(1 + pn(e − 1)) −  pn − 1
2 

2pn(1 − pn)};
satisfying all the conditions relating to an, bn and �n(·), with s2 := �(1−�)(1−	�)−2 and
9n := sup|t|62t1(n) |�̂n(t)| � n−1=2 log n. It therefore remains to show that the quantities
�n1(c) and �n2(c) are suitably small.
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For �n2(c), it is enough to note that, in  0 := R ¿ 0,

|E(e− Sn)|6 exp{− 1
2 an 0} + P[Ŝn ¡ 1

2 an] = $(n);

uniformly in  0¿ c{n−1 log n}1=2, because of the de1nition of an and the ChernoL
bounds on the binomial distribution. For �n1(c), note that, again in  0 := R ¿ 0,

|E(e− Sn) − E(e− Ŝn)|6 E{e− 0Ŝn I [Ŝn6 0]};
and that this, by considering ratios of successive probabilities in the binomial distribu-
tion, is at most of order

(n=an)exp{−a2n=(2npn(1 − pn))} =O(e−�a2n=n) = $(n)

for any 0¡�¡ 1={2�(1 − �)}, uniformly in 06  06 c{n−1 log n}1=2 for any c¿ 0;
if R ¡ 0, the ChernoL bound alone suGces. Applying Theorem 3.2, we see that
L(un + Y∞([n+ in − un − X (n)

un ]+)) and Q′′
n are ARC(9n; $(n)), where

Q′′
n (k) :=

1
sn

5

(
k − un − anm

(n)
1

sn

)
;

then, applying Lemma A.3 to replace sn by *
√
n and un + anm

(n)
1 by n(1 − �n), we

deduce that Q′′
n and Qn are ARC(�′′n ; $(n)) with

�′′n =O(n−1=2 log4 n+ |n−1in − –|); (3.22)

since

n−1s2n =pn(1 − pn){m(n)
1 }2 + O(n−1=2 log2 n)

= �n(1 − �n)(1 − 	�n)−2 + O(n−1=2 log2 n);

|�n − �| =O(|n−1in − –|) and |n(1 − �n) − un − anm
(n)
1 | =O(log4 n):

Combining the previous approximations, we have thus shown that L(1̃(n)) and Qn are
ARC(�n; $(n)) close.
We now wish to replace the distribution of 1̃ (n) by the distribution of 1(n) conditional

on 1(n)¿ n(1−1=	). From (3.14), with probability 1−$(n), 1(n) diLers from 1̃ (n) only
if X (n)

j + j= n+ in for some 16 j6 �log2 n�, so that there is essentially no correction
to be made if in ¿ �log2 n�. Otherwise, we have

PL[1(n) = k] =
P[1̃(n) = k] − ∑�log2 n�

l=in P[1̃(n) = k | 1(n) = l]P[1(n) = l]

P[1(n) ¿ �log2 n�] + $(n)

=
P[1̃(n) = k] − ∑�log2 n�

l=in Pn; l(k)P[1(n) = l]

P[1(n) ¿ �log2 n�] + $(n); (3.23)

where Pn;l denotes P[1̃ (n) ∈ · | 1(n) = l]. The sequence of measures L(1̃(n)) has already
been approximated by Qn. To approximate the measures Pn;l(k) for each l¿ in, the
conditional distribution of 1̃(n) given 1(n) = l can be analyzed exactly as before, except
that the new process X (n) starts at time l with value n+ in − l instead of at time zero
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with value n, and it follows by the argument above that, for each 1xed l, the measures
Pn;l and Qn;l are ARC(�n; $(n)) close, uniformly in l, where

Qn;l(k) =
1
*
5
(
k − al

n

*
√
n

)
;

and |al
n − an|6Kl for some K ¿ 0. Hence, by Lemma A.3 applied to the measures

Qn;l and Qn for each l, the measures Pn;l and Qn are ARC(�n; l; $(n)), where

�n; l =O(�n + ln−1=2 log n):

It remains only to apply Lemma A.4 to the measures Qn and (Pn;l : n¿ 1; l = in; : : : ;
�log2 n�), with rn; l := P[1(n) = l]=P[1(n)6 �log2 n�], and then Lemma 4.5 to complete
the proof.

Appendix A. Properties of ARC

The de1nition of relative closeness depends on the typical set R being F-measurable.
While this may seem a trivial requirement, it needs to be considered when taking
functionals. If P and Q are RC(�; �) and f : (X;F) → (Y;G) is measurable, it may
well be that R �∈ f−1(G), so that Pf−1 and Qf−1 are not automatically RC(�; �). The
following lemma examines the relationship in more detail.

Lemma A.1. Suppose that measures P and Q are RC(�; �) close in (X;F). Let A∈F
be such that |logQ(A) − logP(A)|¿�+ t, for some t ¿ 0. Then

max{P(A); Q(A)}6 �(1 + t−1):

As a result, if f : (X;F) → (Y;G) is measurable, then the measures Pf−1 and Qf−1

are RC(�+ t; 2�(1 + t−1)) for any t ¿ 0.

Proof. Suppose that logQ(A) + �+ t ¡ logP(A). Then Q(A)¡P(A) and

logQ(A) + �+ t ¡ log(P(A ∩ R) + P(A \ R))

6 logQ(A) + �+ log
(
1 +

P(A \ R)
P(A) − P(A \ R)

)
;

where R denotes the set on which |log(dP=dQ)|6 �. Hence

t ¡
P(A \ R)

P(A) − P(A \ R)
;
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and thus Q(A)¡P(A)¡P(A ∩ Rc)(1 + t−1). Applying the 1rst part of the lemma to
the sets

A1 =
{
y :

d(Qf−1)
d(Pf−1)

(y)6 e−�−t
}

and A2 =
{
y :

d(Pf−1)
d(Qf−1)

(y)6 e−�−t
}

proves the second part of the lemma.

We shall only make use of the following simple consequence.

Corollary A.2. Suppose that the measures Pn and Qn are ARC(�n; $(n)) in (X;F),
where �n ¿n−� for some �¿ 0. Then, for any measurable f : (X;F) → (Y;G), the
measures Pnf−1 and Qnf−1 are ARC(�n; $(n)) also.

The next lemma states simple ARC-closeness properties of discrete normal densities.
The proof involves only elementary calculations.

Lemma A.3. (i) Let sequences of measures (Pn : n¿ 1) and (Qn : n¿ 1) be de;ned
by

Pn(k) = 5
(
k − an

sn

)
and Qn(k) = 5

(
k − bn

sn

)
:

Then, if �n := |an − bn|s−1
n log n → 0 as n → ∞, the measures Pn and Qn are

ARC(�n; $(n)).
(ii) Let sequences of measures (Pn : n¿ 1) and (Qn : n¿ 1) be de;ned by

Pn(k) = 5
(
k − an

sn

)
and Qn(k) = 5

(
k − an

*
√
n

)
:

Then, if �n = |n−1s2n − *2|log2 n → 0 as n → ∞, the measures Pn and Qn are
ARC(�n; $(n)).

In the next lemma, we give conditions under which ARC-closeness is preserved
under mixtures.

Lemma A.4. Let Q and (Pj : j¿ 1) be measures such that, for each j, Pj and Q
are RC(�j; �j), and let (rj : j¿ 1) be non-negative real numbers summing to 1. Then
P∗ :=

∑
j¿1 rjPj and Q are RC(�+ t; 2�(1+ t−1)) for any t ¿ 0, where � := maxj¿1�j

and � :=
∑

j¿1 rj�j.

Proof. The proof is much as for Lemma A.1. Let

A := {x∈X: (dP∗=dQ)(x)¡ − (�+ t)}:
Then logP∗(A) + �+ t ¡ logQ(A), and so

logP∗(A) + �+ t ¡ log

∑
j¿1

rj{Q(A ∩ Rj) + Q(A \ Rj)}
 ;
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where the Rj are the typical sets in the RC-comparisons of Pj and Q. Hence it follows
that either Q(A)6 � or

logP∗(A) + �+ t ¡ log

∑
j¿1

rjQ(A ∩ Rj)

+ log(1 + �=(Q(A) − �))

6 log

∑
j¿1

rjP(A)e�j

+ �=(Q(A) − �)

6 logP∗(A) + �+ �=(Q(A) − �);

and thus P∗(A)¡Q(A)¡�(1 + t−1). The argument for

A′ := {x∈X: (dP∗=dQ)(x)¿�+ t}
is similar, and the lemma follows easily.

The 1nal lemma allows linear combinations with some negative coeGcients.

Lemma A.5. Let P1; P2 and Q be measures on (X;F) such that Pj and Q are
RC(�j; �j) for j=1; 2. Let �¿ 0, and de;ne P∗ := (1+�)P1 −�P2. Suppose also that
�1; �2 and � are such that

max{�1; �2}6 1=2; (1 + �)e−�1 − �e�2 ¿ 1=2;

� := (1 + �)(e�1 − 1) + �(1 − e−�2 )6 7: (A.1)

Then, for any t ¿ 0, the measures P∗ and Q are RC(8� + t; 2�(8t−1 + 2)), with
� := (1 + �)�1 + ��2.

Proof. The proof makes frequent use of the following inequalities: if measures Q1 and
Q2 are RC(�′; �′) with typical set R′, then

(Q2(A) − �′)e−�′ 6Q1(A) = Q1(A ∩ R′) + Q1(A \ R′)6Q2(A)e�
′
+ �′: (A.2)

We begin by taking

A := {x∈X: (dP∗=dQ)(x)¡ − (8�+ t)}:
Then, from (A.2),

logP∗(A) + 8�+ t ¡ logQ(A)

= log{(1 + �)Q(A) − �Q(A)}
6 log{(1 + �)(P1(A)e�1 + �1) − �(P2(A) − �2)e−�2}
6 log{P∗(A) + (1 + �)P1(A)(e�1 − 1) + �P2(A)(1 − e−�2 ) + �}: (A.3)
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Now note that, from (A.1) and (A.2), if Q(A)¿ 4�, then

P∗(A)¿ (1 + �)e−�1 (Q(A) − �1) − �(e�2Q(A) − �2)

¿Q(A){(1 + �)e−�1 − �e�2} − �

¿ 1
4 Q(A);

hence, from (A.3), we have

logP∗(A) + 8�+ t

¡ logP∗(A) + (4=Q(A)){(1 + �)P1(A)(e�1 − 1) + �P2(A)(1 − e−�2 ) + �}
6 logP∗(A) + (4�=Q(A)) + 4{(1 + �)e�1 (e�1 − 1) + ���2 (1 − e−�2 )}

+(4�=Q(A))max{e�1 − 1; 1 − e−�2}
6 logP∗(A) + (4�=Q(A)){1 + max(e�1 − 1; 1 − e−�2 )} + 8�;

giving

P∗(A)¡Q(A)¡ (4�=t){1 + max(e�1 − 1; 1 − e−�2 )}:
For the set

A′ := {x∈X: (dP∗=dQ)(x)¿ 8�+ t};
we have, from (A.2),

logQ(A′) + 8�+ t ¡ logP∗(A′)

6 log{(1 + �)(Q(A′)e�1 + �1) − �(Q(A′)e−�2 − �2)

6 logQ(A′) + �+ �=Q(A′);

giving Q(A′)6 t−1�. Hence also, from (A.2),

P∗(A)6Q(A)(1 + �) + �6 �{t−1(1 + �) + 1};
completing the proof, since �6 7.
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