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Efficient Algorithms for Computing the Jacobi
Symbol'

SHAWNA MEYER EIKENBERRY* AND JONATHAN P. SORENSONS?

Department of Mathematics and Computer Science, Butler University, U.S.A.

We present two new algorithms for computing the Jacobi Symbol: the right-shift and
left-shift k-ary algorithms. For inputs of at most n bits in length, both algorithms take
O(n?/logn) time and O(n) space. This is asymptotically faster than the traditional
algorithm, which is based in Euclid’s algorithm for computing greatest common divisors.
In practice, we found our new algorithms to be about twice as fast for inputs of 100 to
1000 decimal digits in length. We also present parallel versions of both algorithms for
the CRCW PRAM. One version takes O¢(n/loglogn) time using O(n!*€) processors,
giving the first sublinear parallel algorithms for this problem. The other version takes
polylog time using a subexponential number of processors.
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1. Introduction

In this paper, we present two new algorithms for computing the Jacobi symbol (see
Section 2 for a definition). After a brief discussion of some applications, we review the
previous work on Jacobi symbol algorithms, including both sequential and parallel com-
putation models, and then we summarize our results.

Solovay and Strassen (1977) observed that one may use the Jacobi symbol to proba-
bilistically test for primality. Specifically, to test the integer m for primality, choose an
integer a € [2,m — 1] uniformly at random, and compare (a/m) to a™~1/2 mod m. If
these do not match (modulo m), then m is composite. Otherwise, m might be prime; the
probability of a composite number passing as a prime is at most 1/2. This test can be
repeated to reduce the chance of error.

Perhaps the most important application for the Jacobi symbol is in finding quadratic
nonresidues. Nonresidues are used in computing square roots modulo a prime (see Bach
(1990b, 1991) and Peralta (1986)), in writing a prime as a sum of two squares (Shallit
and Rabin, 1986), and in several cryptography schemes that are based on the difficulty of
computing square roots modulo a composite number (see, for example, McCurley (1990),
Williams (1980, 1986), and Menezes et al. (1997)).
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As there are (p — 1)/2 quadratic nonresidues modulo any odd prime p, to find a non-
residue one simply chooses integers a at random until (a/p) = —1. Under the assumption
of the Extended Riemann Hypothesis (ERH), the Ankeny-Bach theorem states that there
exists a nonresidue a satisfying a < 2log? p (Ankeny, 1952; Bach, 1990a). Thus, one may
eliminate randomness by assuming the validity of the unproven ERH.

There are several algorithms for computing the Jacobi symbol, including the ordinary
algorithm (based on Euclid’s GCD algorithm), Eisenstein’s algorithm, and Lebesgue’s
algorithm (based on the least-remainder GCD algorithm); see Shallit (1990) for detailed
analyses of these. The ordinary algorithm and Lebesgue’s algorithm take O(logzlogy)
bit operations to compute (z/y). Eisenstein’s algorithm has an exponential worst-case
running time. The more recent binary algorithm (Shallit and Sorenson, 1993) takes
O(log®(xy)) bit operations; this algorithm is probably the most efficient in practice.
The asymptotically fastest Jacobi symbol algorithm involves computing the continued
fraction expansion of x/y using Schonhage’s GCD algorithm (Schénhage, 1971) and ex-
tracting the Jacobi symbol from this information (see Gauss (1870), Bach (1990b)). This
method takes only O(n log? nlog log n) bit operations, but is not considered practical.
For algorithms that compute cubic and higher residuosity, see Scheidler and Williams
(1995).

Work on parallel Jacobi symbol algorithms is not as advanced. A straight-forward par-
allelization of the binary algorithm yields an O(n) time parallel algorithm for the EREW
PRAM. The only known AC algorithm for evaluating quadratic residuosity (Fich and
Tompa, 1988) works only in finite fields, with the additional restriction that the char-
acteristic be bounded by a polynomial in the input size. No NC algorithm is known
for computing the Jacobi symbol, or even for computing GCDs; the question of the
existence of an N'C algorithm for GCDs is a well-known open problem in parallel com-
plexity (Greenlaw et al., 1995). See Adleman and Kompella (1988), Chor and Goldre-
ich (1990), Kannan et al. (1987), and Sorenson (1994) for sublinear time and polylog
time/subexponential processor parallel GCD algorithms.

In this paper, we present the right-shift and left-shift k-ary Jacobi symbol algorithms,
which are based on the k-ary GCD algorithms (Jebelean, 1993; Sorenson, 1994). We
obtain the following results:

(1) Both algorithms use at most O(log(zy)/ log k) iterations of their main loop to com-
pute (z/y). See Sections 3 and 4.

(2) Sequentially, both algorithms take at most O(log®(xy)/ log k) bit operations and at
most O(log(xy) + k?logk) space when k < (log(xy))'/?~¢. By setting n = log(zy)
and k = 2104187 e obtain an O(n?/logn) running time using O(n) space. See
Section 5.

(3) In practice, we found our new algorithms to be approximately two to three times as
fast as previous algorithms, including the binary algorithm, on inputs of 100-1000
decimal digits in length. See Section 6.

(4) By choosing k = 2l€8n] hoth algorithms take O.(n/loglogn) time using n'*e
processors under the Common CRCW PRAM model of parallel computation. This
gives the first sublinear parallel algorithms for computing the Jacobi symbol. We
also obtain polylog time, subexponential processor algorithms. See Section 7.

Both of our new algorithms can be readily modified to compute the Kronecker symbol.



Algorithms for the Jacobi Symbol 511

2. Notation and Background
We begin by reviewing the definition of the Jacobi symbol.

2.1. DEFINITIONS

Let a be a positive integer and let p be an odd prime. Then «a is a quadratic residue
(or simply residue) modulo p if ged(a,p) = 1 and there exists an integer z such that
2% = a(modp). If a is not a quadratic residue and ged(a,p) = 1, then we say that a is a
quadratic nonresidue (or nonresidue). The Legendre symbol (a/p) has the value 1 if a is
a residue, —1 if a is a nonresidue, and 0 if p | a. The Legendre symbol can be computed
using (a/p) = a?~Y/2 (mod p).

Let m be an odd, composite integer with prime factorization m = py1ps - - - p;. The Ja-
cobi symbol, a generalization of the Legendre symbol, is defined by (a/m) = (a/p1)(a/p2)
-+« (a/p;); it matches the Legendre symbol whenever m is prime. If (a/m) = —1, then a
is a nonresidue modulo m, and if ged(a, m) # 1 then (a/m) = 0. However, if (a/m) = 1,
a may be either a residue or a nonresidue.

2.2. JACOBI SYMBOL IDENTITIES
The Jacobi symbol satisfies the following identities which we will utilize (see Hardy

and Wright (1979), Ireland and Rosen (1990) for proofs). Assume a,b are integers and
n, m are odd, positive integers throughout.
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For simplicity, we define (0/1) = 1, but (0/n) = 0 for any integer n > 1. Note that (2.5)
implies that (a/n) = (a mod n/n).

2.3. JACOBI SYMBOL ALGORITHM OUTLINE

Assume u, v are integers, with v odd and |u| > v > 0. Most Jacobi symbol algorithms
compute (u/v) by doing the following:

(1) Initialize a variable ¢ := 1; this keeps track of the value of the Jacobi symbol as the
algorithm progresses.

(2) If u < 0, apply (2.3) above; that is, set v := —u and if v mod 4 = 3, set ¢ := —t.

(3) Remove all factors of 2 from u and adjust ¢ appropriately using (2.1) and (2.4).
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(4) If uw < v, then apply (2.6), thereby interchanging u and v; adjust ¢ as required.
(5) Apply (2.5) in some form to make u smaller.

(6) If u =0, then stop. The answer is ¢ if v = 1, and the answer is 0 otherwise.
If w # 0, then go back to Step 2.

Steps 2—6 are repeated until © = 0, which must eventually occur because one of u, v must
decrease in absolute value every iteration.

The difference between the ordinary, Eisenstein, Lebesgue, and binary algorithms lies
in how Step 5 is performed. In the ordinary algorithm, (u/v) = (v mod v/v) is used. In
Eisenstein’s algorithm, (u/v) = (u — bv/v) is used, where b is the even integer nearest to
u/v. In Lebesgue’s algorithm, (u/v) = (u — bv/v) is used, where b is u/v rounded to the
nearest integer. In the binary algorithm, (u/v) = ([(u — v)/2]/v)(2/v) is used. Because
of how Step 5 is done, the number of iterations through this process is at least linear in
log v in the worst case for all four algorithms.

Our new algorithms have a parameter k which is a power of 2. In the following section
we show how to perform Step 5 so that u is reduced by a factor proportional to v/k. The
result is an algorithm requiring only O(log(uv)/log k) iterations in the worst case.

3. The Right-shift Algorithm
The central idea behind the right-shift k-ary algorithm is the use of something of the

following form in Step 5 above:
u (au — bv) [k
Y =p o =7 1
(5)=n () 81

where h is whatever is needed (0, 1) to make this true. Note that when a =1, b = —1,
and k = 2, we obtain the binary algorithm as a special case. For simplicity we will assume
henceforth that k is an even power of two.

The following lemma shows that we can always choose a,b so that |(au + bv)/k| =

O(u/VE).

LEMMA 3.1. Let u,v,k be positive integers with u,v both relatively prime to k. Then
there exist integers a,b with a > 0, a, |b| < Vk + 1, such that au + bv = 0 (mod k).

PROOF. See Sorenson (1994). O

In fact, (3.1) as written above is not always feasible; any common factors of a and v
will cause the algorithm to output 0, which is not always correct. However, the following
lemma gives a corrected version of (3.1).

LEMMA 3.2. Let u,v,r be positive integers, with v odd and k = 22", a square. Let a,b
be nonzero integers such that au + bv = 0 (mod k). Let d = ged(a,v), giving o’ = a/d,

v' =w/d. Then we have
()= () (5) ()
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ProoF. We have

G- = @) - (%)(
- () = @)

Because k is a square and v’ is odd, this completes the proof. O

Note that this can be generalized to when k is an odd power of 2; simply include an

additional factor of (2/v").

Combining these ideas, we have the right-shift k-ary Jacobi symbol algorithm, which we
present in Pascal-like pseudocode below. It is written with a sequential implementation
in mind, although we will parallelize this algorithm in Section 7. As a convention, we
use uppercase letters to denote multiprecision integers, and lowercase letters to denote

single-precision integers (that is, integers bounded by k in absolute value).

RS k-ary Jacobi Symbol Algorithm

INPUTS: Positive integers U, V,r with V odd, and k = 22",
OvutruT: (U/V)

t:=1;
While U # 0 do:
If U < 0 then
U .=-U,
If V mod 4 = 3 then t := —t;
End if;
(U,t) :=oddify (U, V,t, k);
If U <V then
(U, V) := (V,U); { Interchange U and V' }
If Vmod4 =3 and U mod 4 = 3 then t := —t;
End if;
(a,b) :==Rfind(U mod k,V mod k, k);

{ Returns nonzero a, b such that aU + bV =0 (mod k) }

d := ged(V mod a, a);
a:=a/d; V:=V/d;
t := t-Jacobi(U mod d, d)-Jacobi2(a, V);
If ¢ = 0 then Return(0);
U :=(aU +bV)/k;
End while;
If V' =1 then Return(¢) else Return(0);

The oddify function removes factors of 2 from U while adjusting ¢ as necessary. Our

nonstandard implementation will be justified later.

Function oddify (U, V,t, k)
InpuTs: Positive integers U, V. k with V odd, and ¢t = +1.

OutpuT: (U, t) with U odd and ¢ adjusted using equation (2.3).
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Repeat
u := U mod k;
If u = 0 then
e = log, k; { Here e is even }
Else
e:=0;

While v mod 2 = 0 do:
e:=e+1;u:=u/2;
End while;
End if;
U := U/2¢% { Performed using a bit shift }
Until u # 0;
If emod 2 # 0 and V mod 8 = 3 or 5 then ¢ := —t;
Return((U, t));

The Rfind function is essentially an implementation of Lemma 3.1. This algorithm is
an adaptation of an extended version of Euclid’s algorithm as given by Weber (1995).

Function Rfind(u,v, k)

InpUTS: Positive integers u, v, k with ged(u, k) = ged(v, k) = 1.
OUTPUT: (a,b) according to Lemma 3.1.

w:=uv~ ! mod k; { v™! mod k is found via an extended GCD algorithm }
(z1,72) == (k,0);
(W1,92) := (w,1);
While y; > vk do:
q:=[z1/y1;
(21,22) = (z1,22) — ¢ (y1,92);
(z1,72) == (y1,92);
(y1,92) = (21, 22);
End while;
If y2 > 0 then
a:=y2; b= —yu;
Else
a:= —ya; b:=yi;
End if;
Return((a, b));

The Jacobi(u, v) function computes (u/v) for single-precision integers u, v with v odd.
It can be implemented using the ordinary, Lebesgue, or binary algorithms. The Jacobi2
function allows its second argument to be multiprecision, and can be implemented as
follows:

Function Jacobi2(u, V)

INpPUTS: Positive integers u, V with V' odd.
OuTpPUT: (u/V).

s:=1;
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While v mod 2 = 0 do:
= u/2;
If V mod8 =3 or 5 then s := —s;
End while;
If umod 4 =3 and V mod 4 = 3 then s := —s;
Return(s-Jacobi(V mod u, u));

Note that in all these algorithms and functions, divisions by k and other powers of
2 can be implemented using bit shifts. Also, computing remainders modulo powers of 2
can be done using bit extraction.

THEOREM 3.1. Let U,V,r be positive integers with V odd, and let k = 22". The right-
shift k-ary Jacobi symbol algorithm computes (U/V') using at most

(")

iterations of its main loop.

PROOF. Correctness follows from our discussion above and Lemma 3.2. The bound on
the number of iterations follows from Lemma 3.1. O

These results can be generalized to arbitrary k& > 1. We chose not to present the full
generality for two reasons. First, both the algorithm and the equivalent of Theorem 3.1
become more involved and difficult (see Sorenson (1994)). Second, in practice, the best
value to use for k is an even power of two, and so there is no demand for the more general
theory.

4. The Left-shift Algorithm

The left-shift version of the k-ary Jacobi symbol algorithm is based on the following
lemma.

LEMMA 4.1. Let u,v,k be positive integers, with uw > v > u/k. Then there exist nonzero
integers a,b with |a|, |b| < k such that |au + bv| < u/(k +1).

PRrROOF. This follows immediately from Theorem 36 of Hardy and Wright (1979). O

Using this, one can insure that U will decrease by a factor of at least k + 1 every
iteration of the algorithm. Note that we may assume ged(a,b) = 1 will always hold.

In order to apply Lemma 4.1, we require that V' > U/k. This requirement is met
by “shifting V' to the left” first. In other words, an integer e is computed such that
kv > U > k°V.

The following lemma shows how Lemma 4.1 can be applied to compute the Jacobi
symbol.

LEMMA 4.2. Let u,v, k be positive integers, with v odd, and let e be a nonnegative integer.
Let a,b be nonzero integers. Let d = ged(a,v), giving o’ = a/d, v' = v/d. Then we have

()= (%) ().
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PrOOF. The proof is similar to that of Lemma 3.2. O

Combining these two lemmas, we obtain the following algorithm. Our notation remains
consistent with that of the last section, with the exception that single-precision integers
are those with absolute value bounded by k2.

LS k-ary Jacobi Symbol Algorithm

InpuTS: Positive integers U, V,r with V' odd, and k = 27.
Ovutput: (U/V)

t:=1;
While U # 0 do:
If U < 0 then
U :.=-U,
If V mod 4 = 3 then t := —t;
End if;
(U,t) :=oddify (U, V, t, k);
If U <V then
(U, V) := (V,U); { Interchange U and V' }
If Vmod4 =3 and U mod 4 = 3 then t := —t;
End if;
e:=[([logy U] — [logy V])/7];
T :=k°V,

T >UthenT:=T/k;e:=e—1;
h:=[log, U] +1—2r;
(a,b) :==Lfind(|U/2"|, | T/2" |, k);
{ Returns nonzero a, b such that |aU + bk°V| < U/(k+ 1)}

d := ged(V mod a, a);
a:=a/d,V:=V/d; T :=T/d;
t := t-Jacobi(U mod d, d)-Jacobi2(a, V);
If ¢ = 0 then Return(0);
U :=aU + bT}

End while;

If V =1 then Return(t) else Return(0);

Note that [U/2"| and |T/2"] are single-precision integers, and they can be computed
by extracting the leading bits of U and T'; no division is required. Also, oddify must be
slightly modified because we no longer assume that k is an even power of 2; we leave this
detail to the reader.

Function Lfind is an implementation of Lemma 4.1, and like its counterpart Rfind,
is based on the extended GCD algorithm of Euclid.

Function Lfind(u,v, k)

InpuUTS: Positive integers u, v, k.
OuTPUT: (a,b) according to Lemma 4.1.

(Ilax27x3) = (U, 170)7
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(ylvy2ay3) = (Ua 07 1),
While y; > u/(k + 1) do:
q:=|z1/y1];
(2517 22, Z3) = (.171,132,.173) —q- (y17y2ay3);
(z1,72,73) == (Y1,Y2,Y3);
(Y1,y2,Y3) := (21, 22, 23);
End while;
a:=yo; b:=ys;
Return((a, b));

As in the previous section, we have the following.

THEOREM 4.1. Let U, V,r be positive integers with V' odd, and let k = 2". The left-shift
k-ary Jacobi symbol algorithm computes (U/V') using at most

o(120)

iterations of its main loop.

5. Sequential Complexity

In this section we prove subquadratic running times for both k-ary Jacobi symbol
algorithms. We begin with a discussion of our model of computation and a lemma on
arithmetic with small integers. We then present our sequential complexity results.

Our model of computation is a RAM with potentially infinite memory that is ad-
dressable at the bit level (sometimes called the naive bit complexity model). Any basic
operation on one or two bits takes constant time, as does indirect addressing and any
basic flow of control operations. Let x,y be integers with y # 0. To compute = + y or
compare z to y takes O(logx + logy) time, zy takes O(logxlogy) time, and |z/y] and
2 mod y take O(log(x/y + 1)logy) time.

The following lemma shows that arithmetic operations where one of the operands is
“single-precision” take essentially linear time. Thus, this lemma provides a theoretical
foundation for differentiating between single and multiple precision numbers in our al-
gorithms. In practice, single-precision arithmetic is performed in hardware, and so the
benefits of this lemma happen “automatically”.

LEMMA 5.1. Let X, y, and k = 2" be positive integers with y < k. Then Xy, X/y, and
X mod y can be computed in O(log X) bit operations using a precomputed table of size
O(k?logk) bits. It requires O(k?log® k) bit operations to construct this table.

PRrROOF. The idea is to precompute a table containing the product, quotient, and re-
mainder of all pairs of positive integers bounded by k. Then operations with multiple
precision numbers are performed by manipulating the multiple precision integers in base
2",

For further discussion, see Sorenson (1994). O

With this lemma in hand, we are now prepared to prove the following theorems.
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THEOREM 5.1.  The right-shift k-ary Jacobi symbol algorithm computes (U/V') using at
most
o (1og2(UV)
log k
bit operations and O(log U + k? log k) space.

+log(UV)logk + (klog k)2>

PrROOF. Let U and V denote the initial values of these variables in the algorithm. WLOG,
we will assume that U > V. Then, ignoring time spent in functions oddify, Rfind,
Jacobi, Jacobi2, or to compute ged(V mod a,a), one pass through the main loop takes
no more than O(logU) time by Lemma 5.1. Rfind, Jacobi, and the ged can all be
computed in O(log? k) time. Jacobi2 takes no more than O(logV +log® k) = O(log U +
log? k) time. Thus, excluding the oddify function, the time for one loop iteration is
O(logU + log” k). Applying Theorem 3.1 we obtain the bound of O(log? UV /logk +
log(UV) log k).

One pass through the repeat loop in function oddify takes O(log2 k +logU) time. If
the repeat loop executes more than once, then every pass except the last reduces U by a
factor of k. The number of final passes is bounded by the number of times oddify is called,
which is at most O(log(UV)/logk) by Theorem 3.1. There are at most O(logU/logk)
of passes that are not the last. Thus, the total number of passes is O(log(UV)/log k).
Multiplying by the time for one pass, we obtain an O(log?(UV)/log k + log(UV) log k)
bound for the total time spend in function oddify.

By Lemma 5.1, at most O(k?log” k) time is spent in precomputation. O

THEOREM 5.2.  The left-shift k-ary Jacobi symbol algorithm computes (U/V') using at
most
0 (logQ(UV)
log k
bit operations and O(log U + k?log k) space.

+log(UV)logk + (klog k)2>

PRrROOF. The proof follows the same lines as the previous theorem; we leave it as an
exercise for the reader. O

6. Implementation Results

In this section, we present results of timing experiments we conducted to determine
how well the k-ary Jacobi symbol algorithms perform in practice.

Note that the data presented below depend not just on the algorithms used, but also
on the programmer, the compiler and programming language, and the platform. The
reader should keep this in mind before drawing any conclusions based on our data.

We implemented the two new algorithms along with the ordinary, Lebesgue, and binary
algorithms in C4++ using a common multiprecision library (this library was also used in
Shallit and Sorenson (1993, 1994) and Sorenson (1994, 1995)). We used the Gnu g++
compiler based on gcc Version 2.6.3, with standard level optimization. Our platform was
a Hewlett-Packard 9000 series 715/75 workstation running HP-UX Version 9.01.

Fach algorithm was timed using a common set of 100 pseudo-random input pairs of
each of sizes 100, 250, 500, and 1000 decimal digits in length. The average times are
reported in Table 1.
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Table 1. Average running times in CPU seconds.
Input size
Algorithm 100 250 500 1000
Ordinary Algorithm 0.0168 0.0783 0.276  0.997
Lebesgue’s Algorithm  0.0170 0.0783 0.277  1.004

Binary Algorithm 0.0182 0.0775 0.264  0.933
RS k-ary Algorithm 0.0087 0.0315 0.0917 0.334
(when not zero) 0.0107 0.0394 0.125  0.405
LS k-ary Algorithm 0.0079 0.0308 0.0901 0.355
(when not zero) 0.0097 0.0382 0.122  0.430

Table 2. Average running times in CPU seconds (using pointers).
Input size
Algorithm 100 250 500 1000
Ordinary Algorithm 0.0154 0.0710 0.249  0.924
Lebesgue’s Algorithm  0.0160 0.0735 0.260  0.968

Binary Algorithm 0.0165 0.0694 0.232  0.837
RS k-ary Algorithm 0.0082 0.0297 0.0849 0.324
(when not zero) 0.0100 0.0371 0.115  0.392
LS k-ary Algorithm 0.0074 0.0288 0.0868 0.346
(when not zero) 0.0088 0.0359 0.118  0.419

Table 3. Average number of main loop iterations.
Input size
Algorithm 100 250 500 1000
Ordinary Algorithm 121 306 613 1214
Lebesgue’s Algorithm 98 244 484 966

Binary Algorithm 234 586 1173 2345
RS k-ary Algorithm 30 73 134 305
(when not zero) 37 92 185 370
LS k-ary Algorithm 31 77 141 318
(when not zero) 38 97 193 387

For the right-shift (RS) k-ary algorithm, we used k = 23%; for the left-shift (LS) we
used k = 2'°. As both new algorithms may “stop early” if a small common divisor is
found, we also present the averages over only those inputs where the Jacobi symbol is
nonzero.

In Table 1, when performing the equivalent of Step 4 (see Section 2), swaps were
performed using three assignment statements (or copy operations). An alternative is to
use pointers and then simply swap the pointers. This is more efficient if the inputs are
sufficiently large, and it favors algorithms that perform more iterations. We present these
results in Table 2.

Finally, we present the average number of main loop iterations performed by each algo-
rithm in Table 3. Note that these data are independent of the particular implementation.
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7. Parallel Complexity

In this section, we present two results on parallel algorithms for the Jacobi symbol:
sublinear, polynomial processor algorithms and polylog time, subexponential processor
algorithms.

Our model of computaton is the parallel random access machine (PRAM) where con-
current reads and writes are permitted (CRCW). Write conflicts are only allowed if the
same value is being written (the Common CRCW PRAM). For more on parallel models
of computation, see Greenlaw et al. (1995) and Karp and Ramachandran (1990).

Before giving our results for the Jacobi symbol, we need to address the cost of per-
forming various arithmetic operations on the Common CRCW PRAM. Let x and y be
integers of at most n bits in length, and define M (n) := nlognloglogn. Then

(1) computing = + y and performing comparisons takes O(1) time and O(nloglogn)
processors (Chandra et al., 1985);

(2) computing zy takes O(logn) time and O(M (n)) processors (Schonhage and Strassen,
1971);

(3) and computing |z/y| and 2 mod y takes O(lognloglogn) time and O(M(n)) pro-
cessors (Reif and Tate, 1989) or O(logn) time and O(n'T¢) processors (Beame
et al., 1986).

LEMMA 7.1. Multiplication of an n-bit integer by an O(r)-bit integer (assuming r =
Q(loglogn)) takes O(1) time using O(n22") processors. This requires a precomputed table
of size O(r2%") bits, which takes O(logr) time and O(2* M (r)) processors to construct.

PROOF. (SKETCH) The idea is to precompute all products of pairs of integers bounded
by 27, and then view the n-bit number in base 2". For details, see Chor and Goldreich
(1990) or Lemma 6.2 from Sorenson (1994). O

LEMMA 7.2. Division of an n-bit integer by an O(r)-bit integer takes O(logn/loglogn)
time using O(n2%") processors. Here we assume r < logon and r = Q(loglogn), and
precomputation is required as in the previous lemma.

PROOF. (SKETCH) We use Lemma 7.1 so that multiplication by an r-bit integer requires
only O(1) time.

The basis for our division algorithm is the A'C* division circuit of Beame, Cook, and
Hoover for small integers (Beame et al., 1986, Lemma 4.1). Their circuit can be mapped
to an exclusive-read exlusive-write PRAM algorithm. When adapting their algorithm to
the CRCW model, the time bottleneck is easily seen to be computing parallel prefix sums.
We apply the algorithm of Cole and Vishkin (Cole and Vishkin, 1989; Vishkin, 1995) to
obtain the necessary ©(loglogn) factor speedup. O

THEOREM 7.1. The right and left-shift k-ary Jacobi symbol algorithms can be imple-
mented in parallel so that they take O.(n/loglogn) time using O(n'*€) processors.

PROOF. Let § > 0 with § < €/4, and choose k = 22L91°8n) 5o that log k = ©,(logn) and
k? < nc. We will use Lemma 7.1 with r = (log, k) (or equivalently, 2" = k).
We will prove this theorem for the right-shift k-ary algorithm only. The proof for the
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left-shift algorithm is very similar, only choose § < €/8 and use 2" = k? due to the
different definition of “single-precision” integer.

(1) Precomputation. The precomputation for Lemma 7.1 takes O(loglogk) time and
O(k*M (log k)) processors.

We also need to precompute ged(x,y), 2~ mod k, and (x/y) for all integers 0 <
z,y < k. We begin by finding the prime factorization of all integers up to k;
by (Sorenson, 1994, Lemma 6.3), this takes O((loglog k)?logloglog k) time using
O(k3log K) processors. From this information, ged(z,y) is easily computed. To
compute 2! mod k, we try all possible inverses exhaustively. To compute (x/y), we
use (2.2) and the prime factorization of y to reduce this to computing the Legendre
symbol. To compute the Legendre symbol, we simply square all integers up to k to
see if one is the square root. This takes O(loglog k) time and O(k3M (log k) log k)
Processors.

Finally, we also precompute a table encoding the output of the Rfind function.
This is done using exhaustive search in O(1) time using O(k* log k) processors.
Thus, the total cost of precomputation is O((loglog k)?logloglogk) time and
O(k*log k) processors.

(2) The Main Loop. First let us look at the time spent in the oddify function. Recall

that division by a power of 2 takes O(1) time using O(n) processors. If u = 0
for an iteration of the repeat-loop, then the cost for that iteration is O(1) time,
O(n) processors. If uw > 0, then ged(u, k) gives the value for e, and as this is
precomputed, this also takes only O(1) time, O(n) processors. Thus, the total time
spent in oddify over all iterations of the main loop of the algorithm is O(n/logk)
using O(n) processors.
Except for division by a and d, all other operations performed during an iteration
of the main loop require O(1) time using O(nk?) processors. Using Lemma 7.2,
division by a and d takes O(logn/loglogn) time and O(nk?) processors. This gives
a total of O(nlogn/(logkloglogn)) time using O(nk?) processors for the main
loop.

Combining the costs of precomputation and the main loop, we obtain a running time of
O((loglog k)% log loglog k + nlogn/(log k loglogn)). By our choice for k as a function of
n, this is O(n/eloglogn). The number of processors is O(k*log k + nk?) = O(n'*¢). O

THEOREM 7.2. Let d > 1 be an integer. The right-shift and left-shift k-ary Jacobi
symbol algorithms can be implemented to take O(loggnlog logn + longr1 n) time using
exp[O(n/ log® n)] processors.

PrOOF. If we substitute the use of Lemma 7.2 in the proof of the previous theorem with
the division algorithm of Beame et al. (1986), we obtain a running time of O((loglog k)2
logloglog k + nlogn/logk) using (nk)°™M) processors. Choose = 2|n/log®n| so that
k = exp[©(n/log?n)]. O
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