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Starting from the Boltzmann equation in the relaxation time approximation and employing a Chapman–
Enskog like expansion for the distribution function close to equilibrium, we derive second-order evolution 
equations for the shear stress tensor and the dissipative charge current for a system of massless quarks 
and gluons. The transport coefficients are obtained exactly using quantum statistics for the phase 
space distribution functions at non-zero chemical potential. We show that, within the relaxation time 
approximation, the second-order evolution equations for the shear stress tensor and the dissipative 
charge current can be decoupled. We find that, for large values of the ratio of chemical potential to 
temperature, the charge conductivity is small compared to the coefficient of shear viscosity. Moreover, we 
show that in the relaxation-time approximation, the limiting behaviour of the ratio of heat conductivity 
to shear viscosity is qualitatively similar to that obtained for a strongly coupled conformal plasma.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

High-energy heavy ion collisions at the BNL Relativistic Heavy 
Ion Collider (RHIC) [1,2] and the CERN Large Hadron Collider (LHC) 
[3–5] create strongly interacting matter under extreme conditions 
of high temperature and density as it is believed to have existed in 
the very early universe [6,7]. At such conditions, quarks and glu-
ons are deconfined to form a new state of matter, the quark–gluon 
plasma (QGP). The QGP behaves as a strongly coupled plasma 
having the smallest shear viscosity-to-entropy density ratio, η/s
[8–13]. Relativistic hydrodynamics has been applied quite success-
fully to describe the space–time evolution of the QGP formed in 
high-energy heavy ion collisions and to estimate its transport co-
efficients [14].

In applications of hydrodynamics it is rather straightforward to 
employ the ideal (Euler) equations. The inclusion of dissipative ef-
fects in the evolution of the QGP started only a few years ago. 
However, most of the studies have focused on exploring the ef-
fects of the shear viscosity on the QGP evolution and extracting its 
magnitude from experimental measurements. Nevertheless, there 
are other sources of dissipation such as bulk viscous pressure and 

* Corresponding author.
E-mail address: jaiswal.amaresh@gmail.com (A. Jaiswal).
http://dx.doi.org/10.1016/j.physletb.2015.11.018
0370-2693/© 2015 The Authors. Published by Elsevier B.V. This is an open access article
SCOAP3.
dissipative charge current that may have a significant effect on 
the hydrodynamic evolution of the QGP. While the effects of bulk 
viscous pressure has been studied in some details [15–20], the 
dissipative charge current has been largely ignored. This may be 
attributed to the fact that at very high energies, baryon number 
and its corresponding chemical potential are negligible. However, 
at lower collision energies such as those probed in the RHIC low-
energy scan or at the upcoming experiments at the Facility for 
Antiproton and Ion Research (FAIR), baryon number can no longer 
be ignored and therefore charge diffusion may play an important 
role.

The earliest theoretical formulations of relativistic dissipative 
hydrodynamics are due to Eckart [21] and Landau–Lifshitz [22]. 
However these formulations, collectively called relativistic Navier–
Stokes theory, involve only first-order gradients and suffer from 
acausality and numerical instability due to the parabolic nature of 
the equations. Second order or extended theories by Grad [23], 
Müller [24] and Israel and Stewart (IS) [25] were introduced to 
restore causality. Therefore it is imperative that second order dis-
sipative hydrodynamic equations should be employed in order to 
correctly describe the evolution of the QGP. However, the IS formu-
lation of a causal theory of relativistic hydrodynamics from kinetic 
theory, contains several inconsistencies and approximations, the 
resolution of which is currently an active research area [26–38].
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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In order to formulate a causal theory of relativistic dissipative 
hydrodynamics from kinetic theory, it is desirable to first specify 
the form of the non-equilibrium phase–space distribution func-
tion. For a system close to local thermodynamic equilibrium, the 
non-equilibrium corrections to the distribution function can be 
obtained using either (i) Grad’s moment method [23] or (ii) the 
Chapman–Enskog method [39]. Although both methods involve ex-
panding the distribution function around its equilibrium value, it 
has been demonstrated that the Chapman–Enskog method in the 
relaxation time approximation results in a better agreement with 
microscopic Boltzmann simulations [32,33] as well as with exact 
solutions of the Boltzmann equation in the relaxation-time approx-
imation [32–36].

In the absence of conserved charges, the Chapman–Enskog 
method has been used to compute the second-order transport co-
efficients for vanishing [32–34] as well as finite particle masses 
[35,36]. On the other hand, in the presence of conserved charges 
but for classical particles with vanishing masses, the second-order 
transport coefficients corresponding to charge diffusion (or alter-
natively heat conduction) have been obtained by employing the 
moment method [40,41]. However, they still remain to be de-
termined for quantum statistics. Here, we employ the Chapman–
Enskog method to achieve this.

In this Letter, we present the derivation of second-order evolu-
tion equations for shear stress tensor and dissipative charge cur-
rent for a system consisting of massless quarks and gluons. In 
order to obtain the form of the non-equilibrium distribution func-
tion, we employ a Chapman–Enskog like expansion to iteratively 
solve the Boltzmann equation in the relaxation time approximation 
[32]. Using this expansion, we derive the first-order constitutive re-
lations and subsequently the second-order evolution equations for 
the dissipative quantities. The transport coefficients are obtained 
exactly using quantum statistics for the quark and gluon phase–
space distribution functions with a non-vanishing quark chemical 
potential. Moreover, we show that, up to second-order in the gra-
dient expansion, the evolution equations for the shear stress tensor 
and the dissipative charge current can be decoupled. We also find 
that, for large values of the ratio of chemical potential to temper-
ature, the charge conductivity is small compared to the coefficient 
of shear viscosity. Finally we demonstrate that the limiting be-
haviour of the heat conductivity to shear viscosity ratio, obtained 
here in the relaxation-time approximation, is qualitatively identical 
to that of a conformal fluid in the strong coupling limit.

2. Relativistic hydrodynamics

In the case of massless partons, i.e., massless quarks and glu-
ons, the conserved energy–momentum tensor and the net-quark 
current can be expressed in terms of the single particle phase–
space distribution function as [42]

T μν =
∫

dp pμpν
[

gq( fq + fq̄) + gg f g
]

= εuμuν − P�μν + πμν, (1)

Nμ =
∫

dp pμ
[

gq( fq − fq̄)
] = nuμ + nμ, (2)

where dp = dp/[(2π)3|p|], pμ is the particle four momenta, and 
gq and gg are the quark and gluon degeneracy factor, respectively. 
Here fq , fq̄ , and f g are the phase–space distribution functions for 
quarks, anti-quarks, and gluons. In the tensor decompositions, ε , P , 
and n are the energy density, pressure, and the net quark number 
density. The projection operator �μν = gμν − uμuν is orthogo-
nal to the hydrodynamic four-velocity uμ defined in the Landau 
frame: T μνuν = εuμ . We work with the Minkowskian metric ten-
sor gμν ≡ diag(+, −, −, −).

The dissipative quantities in Eqs. (1) and (2) are the shear stress 
tensor πμν and the particle diffusion current nμ . With the defini-
tion of the energy–momentum tensor in Eq. (1), the bulk viscous 
pressure vanishes in the massless case. The energy–momentum 
conservation, ∂μT μν = 0, and particle four-current conservation, 
∂μNμ = 0, yields the fundamental evolution equations for ε , uμ

and n, as

ε̇ + (ε + P )θ − πμνσμν = 0, (3)

(ε + P )u̇α − ∇α P + �α
ν ∂μπμν = 0, (4)

ṅ + nθ + ∂μnμ = 0. (5)

Here we use the standard notation Ȧ = uμ∂μ A for co-moving 
derivatives, θ ≡ ∂μuμ for the expansion scalar, σμν ≡ 1

2 (∇μuν +
∇νuμ) − 1

3 θ�μν for the velocity stress tensor, and ∇α = �μα∂μ

for space-like derivatives.
In the following, we briefly outline the thermodynamic proper-

ties of a QGP in equilibrium. In this case, the phase–space distri-
bution functions for quarks, anti-quarks and gluons are given by

f (0)
q = 1

exp(β u · p − α) + 1
, (6)

f (0)

q̄ = 1

exp(β u · p + α) + 1
, (7)

f (0)
g = 1

exp(β u · p) − 1
, (8)

respectively, where u · p ≡ uμpμ , β = 1/T is the inverse tempera-
ture and α = μ/T is the ratio of the quark chemical potential to 
temperature. We consider vanishing chemical potential for gluons 
because they are unconstrained by the conservation laws.

The temperature, T , and chemical potential, μ, of the system 
are determined by the matching condition ε = ε0 and n = n0, 
where ε0 and n0 are the energy density and the net quark number 
density in equilibrium. The energy density, pressure and the net 
quark number density for a system of massless quarks and gluons 
in equilibrium are given by

ε0 ≡ uμuν

∫
dp pμpν

[
gq

(
f (0)
q + f (0)

q̄

)
+ gg f (0)

g

]

= (4gg + 7gq)π
2

120
T 4 + gq

4
T 2μ2 + gq

8π2
μ4 (9)

P0 ≡ −1

3
�μν

∫
dp pμpν

[
gq

(
f (0)
q + f (0)

q̄

)
+ gg f (0)

g

]

= (4gg + 7gq)π
2

360
T 4 + gq

12
T 2μ2 + gq

24π2
μ4 (10)

n0 ≡ uμ

∫
dp pμ

[
gq

(
f (0)
q − f (0)

q̄

)]
= gq

6
T 2μ + gq

6π2
μ3. (11)

The equilibrium entropy density then becomes

s0 ≡ ε0 + P0 − μn0

T
= (4gg + 7gq)π

2

90
T 3 + gq

6
Tμ2. (12)

The above expressions for ε0, P0, n0, and s0 can also be ob-
tained directly from the partition function of an ideal QGP [42],

ln Z = V

T

[
(4gg + 7gq)π

2

360
T 4 + gq

12
T 2μ2 + gq

24π2
μ4

]
, (13)
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where V is the volume of the system. Indeed, using the thermo-
dynamic relations

ε0 = T 2

V

∂ ln Z

∂T
+ μn0, P0 = T

V
ln Z ,

n0 = T

V

∂ ln Z

∂μ
, s0 = 1

V

∂(T ln Z)

∂T
, (14)

one recovers Eqs. (9)–(12). The matching conditions ε = ε0 and 
n = n0 allow us to define thermodynamic quantities like temper-
ature and chemical potential of a dissipative system. The pressure 
P can then be obtained from the equation of state of the system.

Even if the equation of state, relating ε , P and n is provided, 
Eqs. (3)–(5) are not closed unless the dissipative quantities πμν

and nμ are specified. However, before we derive the evolution 
equations for the dissipative quantities, we need to obtain ex-
pressions for the derivatives of β and α. Using Eqs. (3)–(5) and 
Eqs. (9)–(11), we get

β̇ = β

3
θ +O(δ2), α̇ = O(δ2), (15)

∇μβ = −βu̇μ + n

ε + P
∇μα − β

ε + P
�

μ
ρ ∂γ πργ , (16)

where O(δ2) represents terms which are of second or higher order 
in derivatives. Since dissipative forces are caused by thermody-
namic gradients present in a non-ideal system, πμν and nμ are at 
least linear in the gradient expansion. Note that while Eq. (15) is 
terminated at first-order (sufficient for the present work), Eq. (16)
is exact.

The QGP is a strongly coupled system and is conjectured to be 
formed close to local thermodynamic equilibrium. Therefore, the 
phase–space distribution function can be split into equilibrium and 
non-equilibrium parts, f = f (0) + δ f , where |δ f |/ f (0) � 1. Hence, 
from Eqs. (1) and (2), the shear stress tensor πμν and the particle 
diffusion current nμ can be expressed in terms of δ f as

πμν = �
μν
αβ

∫
dp pα pβ

[
gq(δ fq + δ fq̄) + ggδ f g

]
, (17)

nμ = �
μ
α

∫
dp pα

[
gq(δ fq − δ fq̄)

]
, (18)

where �μν
αβ ≡ 1

2 (�
μ
α �ν

β + �
μ
β �ν

α) − 1
3 �μν�αβ is a traceless sym-

metric projection operator orthogonal to uμ and �μν . In the fol-
lowing, we obtain δ f up to first order by using the iterative so-
lution of the Boltzmann equation in the relaxation-time approxi-
mation and then derive second-order evolution equations for the 
dissipative quantities.

3. Dissipative evolution equations

The determination of the form of the non-equilibrium phase–
space distribution function is a central problem in statistical 
physics. This can be achieved by solving a kinetic equation like 
the Boltzmann equation. The Boltzmann equation governs the evo-
lution of the distribution function which provides a complete de-
scription of the microscopic dynamics of a system in the dilute 
limit. The relativistic Boltzmann equation with the collision term 
written in the relaxation-time approximation is [43],

pμ∂μ f = −u · p

τR

(
f − f (0)

)
, (19)

where τR is the relaxation time. Note, that for different species of 
particles, with inter- and intra-species interactions, the relaxation-
times are usually distinct. Thus, in general, one should consider 
the QGP as a true multicomponent system. In the following, we 
consider the special case with a common relaxation time for all 
particle species in the QGP. The general case with a different re-
laxation time is left for future work.

We employ iterative solution of the Boltzmann equation (19)
to derive the dissipative equations [31–33]. The first-order expres-
sions for shear stress tensor and dissipative charge current are 
obtained as [32],

πμν = 2βπτRσμν, nμ = βnτR∇μα. (20)

Here βπ and βn are the first-order transport coefficients obtained 
after performing the momentum integrations in Eqs. (17) and (18). 
For a system of massless partons, as considered here, we find

βπ = ε + P

5
, βn = J+

10

3
− n2 T

ε + P
, (21)

where,

J+
10 ≡ gq

∫
dp (u · p)

(
f (0)
q f̃ (0)

q + f (0)

q̄ f̃ (0)

q̄

)

= gq

6
T 3 + gq

2π2
Tμ2 = π2 + 3α2

α
(
π2 + α2

) n. (22)

Here f̃ (0) ≡ 1 − r f (0) , where r = 1 for Fermions (quarks and anti-
quarks) and r = −1 for Bosons (gluons).

Using Eq. (20), we also obtain the first-order dissipative correc-
tions to the distribution function,

δ f (1)
q

f (0)
q f̃ (0)

q

= β

2(u · p)βπ
pμpνπμν + 1

βn

(
n

ε + P
− 1

u · p

)
pμnμ,

(23)

δ f (1)

q̄

f (0)

q̄ f̃ (0)

q̄

= β

2(u · p)βπ
pμpνπμν + 1

βn

(
n

ε + P
+ 1

u · p

)
pμnμ,

(24)

δ f (1)
g

f (0)
g f̃ (0)

g

= β

2(u · p)βπ
pμpνπμν. (25)

Note, that the tensorial form of dissipative corrections to the dis-
tribution function, as given in the above equations, is analogous 
to that of Grad’s 14-moment approximation [23]. However, the 
coefficients of these terms are different which have interesting im-
plications in the context of relativistic heavy-ion collisions [38].

To obtain the second-order evolution equations, we follow the 
procedure discussed in Ref. [26]. We consider the comoving deriva-
tive of Eqs. (17) and (18), and rewrite Eq. (19) in favour of δ ḟ . 
Using Eqs. (23)–(25) and performing the momentum integrations, 
we finally obtain the second-order evolution equation for πμν and 
nμ ,

π̇ 〈μν〉 + πμν

τπ
= 2βπσμν + 2π

〈μ
γ ων〉γ − 4

3
πμνθ

− 10

7
π

〈μ
γ σ ν〉γ , (26)

ṅ〈μ〉 + nμ

τn
=βn∇μα − nνω

νμ − nμθ − 3

5
nνσ

νμ

− 3βn

ε + P
πμν∇να. (27)

Here ωμν ≡ (∇μuν −∇νuμ)/2 is the anti-symmetric vorticity ten-
sor and we have ignored terms higher than quadratic order in the 
gradients [32]. Note that in the relaxation-time approximation, the 
Boltzmann relaxation time τR is the time scale for evolution of 
both πμν and nμ , i.e., τπ = τn = τR . By comparing the first-order 
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equations, Eq. (20), with the relativistic Navier–Stokes equations 
for the dissipative quantities [22],

πμν = 2ησμν, nμ = κn∇μα, (28)

the dissipative relaxation times can be related to the first-order 
transport coefficients τπ = η/βπ and τn = κn/βn .

It is interesting to note that terms like �μ
ν ∂γ πνγ and πμν u̇ν

do not appear in Eq. (27) because their coefficients vanish. Note 
also that, with βπ = (ε + P )/5 calculated using the appropriate 
equation of state, Eq. (26) is valid even in a hadronic phase domi-
nated by massless pions.

The last term in Eq. (27) couples the evolution of dissipative 
charge current with the shear stress tensor. This type of coupling 
leads to disagreement with transport results as shown in Ref. [40]. 
We observe, however, that using Eq. (20), the last term in Eq. (27)
is, up to second-order in the gradient expansion, equivalent to 
−(6/5)nνσ

νμ . Thus, the evolution equation, Eq. (27), for the dissi-
pative charge current becomes

ṅ〈μ〉 + nμ

τn
= βn∇μα − nνω

νμ − nμθ − 9

5
nνσ

νμ. (29)

This is the main result of the present work. The compact form of 
the above equation makes it straightforward for direct implemen-
tation in a viscous hydrodynamic code. Note that while it is pos-
sible to formally rewrite any second-order equation only in terms 
of gradients using the first-order expressions, Eq. (20), it does not 
usually imply decoupling of the dissipative evolution equations 
[44]. However, we have ensured that the second-order terms in 
Eq. (29) are products of a dissipative quantity and a gradient, as 
inherent in Eq. (26).

It is important to note that the gradient expansion converges 
only for small deviations from equilibrium. This implies that the 
second-order scheme is, strictly speaking, justified only if the devi-
ations from the first-order relations, Eq. (20), are of second order, 
or smaller. This is true, in general, to ensure the convergence of 
gradient expansion in the formulation of dissipative hydrodynam-
ics. Hence, for consistency, the initial conditions for the second-
order evolution equations, Eqs. (26) and (29), should be chosen 
such that the constitutive relations, Eq. (20), are satisfied. Never-
theless, it was shown in Refs. [33–36] that the solutions of the 
second-order dissipative hydrodynamic equations rapidly converge 
to the exact solution of the Boltzmann equation, irrespective of the 
choices of initial conditions for the dissipative quantities. Thus, the 
use of Eq. (20), to modify the second-order terms in the evolution 
equation for the dissipative charge current, is tenable even if the 
initial conditions are chosen such that these relations are violated 
initially.

4. Transport coefficients

The dimensionless ratio κn T /η is a measure of the relative 
importance of the charge conductivity and the shear viscosity. 
This quantity, in the relaxation-time approximation, is given by 
κn T /η = βn T /βπ , which can be studied as a function μ/T . To 
quantify this ratio, one still need to specify the appropriate quark 
and gluon degeneracy factors, gq and gg , as

gq = Ns × Nc × N f = 6 N f ,

gg = Ns × (
N2

c − 1
) = 16, (30)

where Ns = 2 is the number of spin degrees of freedom, Nc = 3 is 
the number of colours, and N f is the number of flavours.

In Fig. 1, we show the ratio κn T /η as a function of μ/T for 
N f = 2 and N f = 3. We observe that, while for small μ/T , this 
Fig. 1. (Colour online.) The ratio of charge conductivity to shear viscosity scaled by 
the temperature, κn T /η, for a two flavour (solid line) and a three flavour (dashed 
line) massless quarks, plotted against μ/T .

Fig. 2. (Colour online.) The ratio of thermal conductivity to shear viscosity, κq/η, 
scaled by the factor μ2/π2 T , for a two flavour (solid line) and a three flavour
(dashed line) massless quarks, plotted against μ/T .

ratio is almost constant, it drops rapidly for larger μ/T , indicat-
ing that the conductivity of the QGP is small relative to the shear 
viscosity at low temperature and high density. Although the qual-
itative behaviour remains the same for N f = 2 and N f = 3, the 
drop in κn T /η is more pronounced for N f = 3. Moreover, we note 
that at μ/T > 1 the ratio κn T /η is almost N f independent.

A further interesting quantity is the ratio of thermal conduc-
tivity to shear viscosity. The heat flow is related to the dissipative 
charge current via the relation qμ = −(ε + P )nμ/n, and is given as 
[45]

qμ = −κq
n T 2

ε + P
∇μα ⇒ κq = κn

(
ε + P

n T

)2

, (31)

where κq is the coefficient of thermal conductivity. Using the first-
order relations in the relaxation-time approximation, we find

κq

η
= βn

βπ

(
ε + P

n T

)2

. (32)

In Fig. 2, we plot κq/η scaled by the factor μ2/π2T versus μ/T , 
for a two and a three flavour QGP. We observe a constant be-
haviour in the limit of small as well as large μ/T . Moreover, for 
large μ/T , we see that (κq/η)μ2/π2T is independent of num-
ber of flavours. These limiting behaviours have interesting conse-
quences.

In the limit of both small and large μ/T , Eq. (32) reduces to

κq = C
π2 T

2
, (33)
η μ
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which is similar to the Wiedemann–Franz law [45,46]. The factor 
π2 in the above equation is due to quantum statistics and it does 
not appear for a classical Boltzmann gas. In the limit of small μ/T , 
the constant C in Eq. (33) is C = (4gg + 7gq)/9gq . Thus, C = 37/27
and 95/81 for a two and a three flavour QGP, respectively; see 
Fig. 2. On the other hand, for large μ/T we find C = 5/3, indepen-
dent of the number of flavours, as shown in Fig. 2. These values of 
C are comparable to C = 8/9 (here a factor of 1/9 indicates that 
the baryon chemical potential is three times the quark chemical 
potential) obtained in the calculations for strongly coupled confor-
mal plasmas with finite chemical potential [45]. However, it should 
be noted that for a strongly coupled conformal plasma, the coeffi-
cient C depends on the number of space–time dimensions and is 
shown to be equal to 32/9, 8/9 and 2/9 for four, five and seven 
dimensions, respectively [47]. Nevertheless, it is intriguing that up 
to a constant of proportionality, the limiting behaviour of the ratio 
κq/η, obtained in the relaxation-time approximation, is exactly the 
same as that derived in the case of a strongly coupled conformal 
fluid.

5. Conclusions and outlook

In this paper we employed the iterative Chapman–Enskog 
method to derive the second-order dissipative hydrodynamical 
equations for a system of massless quarks and gluons. The bulk 
viscous pressure vanishes for such a system and therefore the 
dissipation is solely due to the shear stress tensor and the dissipa-
tive charge current. For the equilibrium distribution function, we 
considered quantum statistics with non-vanishing quark chemical 
potential. We obtained novel, exact relations for the second-order 
transport coefficients corresponding to the dissipative charge cur-
rent evolution.

Moreover, we demonstrated that the evolution equations for 
shear stress tensor and dissipative charge current can be decou-
pled. We also found that, for large values of the ratio of chemical 
potential to temperature, the charge conductivity is small relative 
to the shear viscosity. Finally, we showed that in the relaxation-
time approximation, the limiting behaviour of the ratio of heat 
conductivity to shear viscosity is qualitatively similar to that of a 
conformal fluid in the strong coupling regime.

At this juncture, we would like to stress that the iterative 
Chapman–Enskog approach employed here to obtain the dissi-
pative evolution equations from the Boltzmann equation in the 
relaxation-time approximation is compatible with the gradient ex-
pansion inherent in the formulation of dissipative hydrodynamics, 
as opposed to the moment method [32]. Looking forward, it would 
be interesting to determine the effect of the dissipative charge 
current in high-energy heavy-ion collisions, by implementing the 
dissipative equations derived here, in realistic hydrodynamic sim-
ulations. A further challenging problem would be to extend the 
current second-order formulation to third order. We leave these 
questions for future studies.
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