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A b s t r a c t - - I n  this paper, we made an attempt to establish the usefulness of Lanczos solver with 
preconditioning technique over the preconditioned Conjugate Gradient (CG) solvers. We have pre- 
sented here a detail comparative study with respect to convergence, speed as well as CPU-time, by 
considering appropriate boundary value problems. © 1999 Elsevier Science Ltd. All rights reserved. 

K e y w o r d s - - K r y l o v  subspace, Preconditioned conjugate gradient method, Lanczos algorithm, 
Preconditioned Lanczos algorithm, Symmetric systems. 

1. I N T R O D U C T I O N  

Systems of linear equations arise from the numerical modeling of problems in many branches of 
science and engineering. For example, the discretization of boundary value problems by finite 
difference or finite element methods gives rise to huge sparse systems of linear equations. The 
solution of a linear system of equations with a symmetric coefficient matr ix  is a most common 

and usually very important  task in scientific computation. The iterative methods for solving 
linear systems possess certain desirable advantages over direct methods. 

One of the most  successful and widely accepted iterative solver is the Krylov subspace methods,  

such as Conjugate Gradients (CG) method [1,2], and Lanczos algorithm [3-5]. All these Krylov 

subspace methods can obtain exact solutions at most in N steps, when round of error become 
zero [1] and produce the same approximate solution at each step in exact arithmetic [6], al though 

the approaches they follow are computationally a little different. The strong effect of roundoff 
error on actual implementation does not prevent convergence but merely delays it [4]. I t  is well 

known tha t  a satisfactory accuracy is often achieved for values of m far less than N (order of 
matrix A) [5]. 

A common feature of all these methods is that the approximate solution X m belongs to the 

affine space X ° + K m, where K m is the Krylov subspace of dimension m, K m = (r °, Ar°,..., 

Am-lr°), and r ° -- b - AX ° is the initial residual vector. The principal idea here is to make 
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the residual vector r m orthogonal to another Krylov subspace L (called left subspace), usually 
different from K m [2,7,8]. 

All the Krylov subspaee methods slow down the convergence speed, whenever the system 
becomes ill conditioned. So the Krylov subspace methods, together with suitable powerful pre- 
conditioning techniques, accelerate the speed of convergence, which is a vital part in such high- 
performance computing. Several authors discussed various preconditioning techniques, viz., the 
incomplete Cholesky Factorization (ILU) [9,10] polynomial preconditioning [11,12], and so on. 

In this paper, we made an attempt to establish the usefulness of Lanczos solver with precon- 
ditioning technique over the preconditioned conjugate gradient (CG) solvers. We have presented 
here a detail comparative study with respect to convergence speed as well as CPU-time, by 
considering appropriate boundary value problems. 

The outline of the paper is as follows. The next section deals with the Preconditioned Conjugate 
Gradient (PCG) solver for solving symmetric linear systems. The ensuing section describes the 
Lanczos symmetric solver with preconditioning Lanczos solver. We present the results of our 
comparative study in the final section. 

2. P R E C O N D I T I O N E D  C O N J U G A T E  G R A D I E N T  
( P C G )  SOLVER F O R  S Y M M E T R I C  L I N E A R  S Y S T E M  

The method of conjugate gradient originally developed by Hestenes and Stiefel [4] is used for 
solving the linear system of equations 

Ax = b, (1) 

particularly matrix A E R n x n  is a sparse Symmetric Positive Definite (SPD) coefficient matrix. 

THEORETICAL BACKGROUND. Let x ° as initial approximate solution, 

r ° = b - Ax ° 

for the m th iteration X m E X ° q- K 'n 

K m =  Span ( r ° , r i , .  .. , r  m-l)  

= Span (r °, A r ° , . . . ,  A m - l r ° ) .  

PRECONDITIONING TECHNIQUES. The convergence of the iterative methods highly depends on 
the eigenvalue distribution of the matrix A [13]. A criterion for the width of the spectrum is the 
Euclidean condition number, that  is, for spd matrices is a = IIAII211A -i112 = ) ~ m a x ( i ) / / ~ m i n ( i )  • 

With 3' = (x/~ - 1) /(v f~ + 1), the distance to the exact solution x* in the ith iteration is bounded 
by llx i - x* II 2 _< 2x/~3' i IIx ° - x* 112. The right-hand side increases with growing condition number. 
Hence, lower condition number usually accelerate the speed of convergence. The most efficient 
preconditioning is direct matrix inversion, but this is not a practical choice. An alternative pro- 
cedure such as incomplete Cholesky Factorization [9,10] or polynomial preconditioning [9,11,12] 
are used as an approximation for matrix inversion. Here we have to apply the regular CG method 
to the transformed system, 

k ~  = fi, (2) 

wl~ere A = SAS T, ~ = S-Tx ,  and 1~ = Sb. Here S is a nonsingular matrix chosen and 
the preconditioner M = ( sTs )  - i .  The good choice of M implies that  A of the transformed 
system has a smaller condition number than matrix A. A satisfies s T . ~ s  -T = STSA ---- M - i A ,  
therefore, the matrix M - i A  is similar to A so that  condition number of .~ is the ratio of the 
maximum and minimum eigenvalues of M - i  A. 

ALGORITHM 2.1. Preconditioned Conjugate Gradient Solver (PCG) 

STEP 1. Choose an arbitrary x °, 
set r ° = b - Ax °, (3) 
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solve M ~ ° = r  °, 

p0 = ~0. 

STEP 2. Iterate for i ----0,1,2, . . ,  until convergence 

(4) 

(5) 

ai - (ri, ri) 
(pi, A p i ) ,  (6) 

X i+1 ~-~ X i -[- a i p  i, (7) 

r i+1 =ri-aiAp i, (8) 

solve M~ i+1 = r i+1. 

TERMINATION. I f  ( r i + l , r  i+1) ( £, stop 

(9) 

Z' - 
(~i, ri ) ' 

(10) 

pi+l _-- ~i+1 + 3ipi.  (11) 

3. L A N C Z O S  S O L V E R  F O R  S Y M M E T R I C  L I N E A R  S Y S T E M S  

The Lanczos algorithm has proved to be a powerful solution method for solving linear sys- 
tems of equations [8]. The Lanczos algorithm in exact arithmetic is described as the process of 
constructing a set of orthonormal vectors (ql, q2 , . . . ,  qi) by applying Gram-Schmidt orthogonal- 
ization to the set of vectors (r °, A r ° , . . . ,  A~-lr  °) which form the Krylov subspace. Because of 
special properties of the orthonormal vectors [8], it is possible to orthogonalize Aq ~ against qi-1 
and qi to obtain the next orthogonal vector 

r i + l  = f l i + l q l + l  = A q i  _ ~ i q i  _ 3 i q i - 1 ,  (12) 

without using the vectors (ql, q 2 , . . . ,  qi) in 12, where cd = (qi)TAqi and H i -= Ilril]. This special 
choice of the vectors for the subspace has the property that the projection of a matrix A onto 
this subspace is a tridiagonal matrix T i, 

T '  = (Q,)T AQ', (13) 

T i 

where Qi = [q l ,q2 , . . . , q i ] .  

original system (1), becomes 

-C~I f~2 

~3 (23 " •. 

°,. ",.  
(14) 

Now by applying the orthogonal similarity transformation, the 

(Qn)TAQ~(Qn)Tx = (Qn)Tb. (15) 

And the solution x can be achieved by transforming the solution y on the Krylov space back to 
the original space. From (15) by taking T ~ = (Qn)TAQ'~, we get 

Tny  = (Qn)Tb, (16) 

x = Qny. (17) 
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Introducing the decomposition for tridiagonal matrix T 

T i = L i D  i (Li) T (is) 

We define 

Zi : ( i i )  T y  i : (Li)T (Qi )  T x i  

and L{ (C i )  T : (Q{)  T 

(19) 

(20) 

We obtain an iteration procedure, where the storage of the large (i x n) matrix Qi is not required 

by 
L i D i z  i = (Qi)T b, (21) 

x i = C i z  i. (22) 

By applying equations (20) and (21), we have 

1 
52 1 

5 a 1 

1 

5 ~ 1 

• d 1 

d 2 

d a 

d i 

[11] F,qi,ml <2 |(q2)T| 
<.3 / (q3.)T [ 

L (q/')T J 

b. (23) 

1 
52 1 

53 1 

1 

6 ~ 1 

(cl) T 
(C2) T 
(c3)T. 

L(d) T 

(ql)T 
(q2)T 

= (q3)T 

(q~)T 

(24) 

reveals by simple transformation 

(qi) T b - 5i<.i-ldi-1 

d i 
C i = qi  _ 5 i e i -1 .  

(25) 

(26) 

From (22), x i can be rewritten as 

x i = C i - l z i - 1  + ( ic  i = xi-1 + ¢ici. (27) 

3.1.  L a n c z o s  A l g o r i t h m  

The Lanczos algorithm for a symmetric (n x n) matrix A can be stated as follows. 

STEP 1. Choose a starting vector x °, then 

r 1 = b -  Ax ° with r 1 ¢ 0, qO = 0, 

d o =0, 51 =0, 
= j l r l l l 2 ,  

ql - r__~ 1 
- -  ~ 1 '  

c o = O, 

for i = 1 , 2 , 3 , . . . .  
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STEP 2. Computa t ion  of q ~, a ~, /3 ~+1, 

a i = (qi) T Aq  i, 

r i+i  : f l i q - l q i + i  = Aqi  _ aiqi _ fliqi- 1, 

r i+l  qi+l  : 
~ i + 1  " 

(28) 
(29) 

(30) 

(31) 

STEP 3. LDL T factorizat ion of T j, 

d i = a i _ (6i) 2d i-1, 

6i+i _ / 3~+1 
d i 

(32) 

(33) 

STEP 4. The  new est imat ion of x, 

~i ~i~i-ldi-l  ( ~l ~ 1 )  
di with = ~-g , (34) 

c i = qi _ 6~ci-1, (35) 

x i = x i - i  + ~ici ' (36) 

STEP 5. T e r m i n a t i o n  Criter ion 

ilrll--- ~ - 191----- ~ < ~. (37) 

THE PRECONDITIONED LANCZOS SOLVER. The  convergence speed of the Lanczos a lgor i thm is 
improved by using a suitable precondit ioning to the original sys tem (1). Therefore,  the original 
sys tem (1) is t ransformed into t ransformed system (2) with ./t = W - l A W  - T ,  .~ = W T x ,  l~ = 
W - l b .  Therefore ,  ./t has the same eigenvalues as R - i A ,  where R = W W  T. Now the  precon- 

di t ioned Lanczos algori thm is given as follows. 

3.2. Preconditioned Lanczos Algorithm 

STEP 1. Choose x °, then  

r 1 = b -  A x  °, q0 = 0, ~0 = 0, 

d o - 0 ,  ~1 =0,  

~ 1 =  ill.ill = ~ / ~ T R - l r l  with q l  = 
r 1 

~1 '  

for i = 1 , 2 , 3 , . . . .  

STEP 2. 

~1 i = R - l q  i, 

a~ = (a i )s  A ~  

p + l  = Afii  _ &iqi _ ~iqi-1, 

ri+l 
qi+l = ~i+i" 

(3s) 

(39) 
(40) 

(4i) 

(42) 
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STEP 3. 

STEP 4. 

di = ~i - (~i) 2d  i-1 , (43) 

~ + 1  ~i+~ 
di (44) 

= - _ with (45) 
d i ~ ' 

~i  = R - l q i  _ ~ i s i - 1  ' (46) 

x i = x i-1 + ~iSi. (47) 

II ili _ . . .  Ifr +lll 

STEP 5. Te rmina t ion  Cr i te r ion  

Note 5 i, 

< £ .  
lirlll IfriJI 

~i are elements of transformed tridiagonal matrix (~i). 

4. N U M E R I C A L  E X P E R I M E N T S  

The numerical experiments described in this section have been performed on a DEC-ALPHA 
3000/600 OSF system. The single precision has been used throughout. 

We have compared the Lanczos solver (Algorithm 3.1) with the conjugate gradient (CG) solver 
and Lanczos preconditioned solver (Algorithm 3.2) with preconditioned conjugate gradient solver 
(Algorithm 2.1) by considering the following rr/odel problems. 

PROBLEM l. Here we have considered the boundary value problem V2u(x, y) = 0 defined in 
0 < x < 1, 0 _< y < 1, with boundary conditions are u(x,y) -- 0 on three sides and u(x,y) = 1 
on the remaining side. A five-point finite difference approximation with uniform grids is applied. 

Figure 1 compares the convergence of the Lanczos algorithm and the conjugate gradient 
(CG) method with Incomplete Cholesky Preconditioning (ILU) and Polynomial Precondition- 
ing 
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Figure 1. Convergence history of Lanczos and CG with preconditioning of 25 x 25 
uniform grid. 
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Figure 3. Number  of iterations versus number  of equations for Lanczos and CG with 

preconditioning. 

(PP(5)) of 25x25 uniform grids. It is seen that  the speed of convergence are equivalent, when 
zero initial guess have been taken. But the convergence speed of the preconditioned Lanczos 
algorithm is faster than the preconditioned conjugate gradient solver. 

The convergence history of using the Lanczos algorithm and the CG method with precondi- 
tioning is summarized in Figure 2. The results show that  the iteration number reduced when 
incomplete Choleski Factorization or polynomial precondition is applied. For example, at an 
error level of (1 × 10-6), a four-fold reduction is obtained for both Lanczos-PP (5) and CG- 
PP (5)(i.e., with a fifth-order polynomial), and a three-fold reduction for both Lanczos-ILU and 
CG-ILU(i.e., with the ILU-preconditioning) of 30×30 uniform grids. The Lanczos process and 
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CG based computation exhibits a linear relationship between the number of iterations and the 
number of equations as shown in Figure 3, which indicates the rate of increase in the number 
of iterations is lower than that in the number of equations. The linear relationship between the 
number of iterations and the equation numbers proves the Lanczos algorithm and CG method 
are good competent and stable for large-scale computing. Figure 6 gives the CPU-time for the 
Lanczos algorithm and CG method with preconditioning solvers for this model problem, and the 
details of the execution time (CPU-time), as well as number iterations are given in Table 1. 

PROBLEM 2. Here we have considered the elliptic differential equation 

0 Ou 
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LAN-POLY 
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LAN-ILU 

LAN 

Table 1. 
and CG with preconditioning• 

CG 

0.1 0.2 0.3 

Figure 6. Relative time. 

CPU-time/Number of iterations for the corresponding errors of Lanczos 

Methods Res Norm Norm cPU-Time 

LAN 1.0E - 05 0.3 

1.0E - 06 0.3 

CG 1.0E - 05 0.3 

1.0E - 06 0.3 

LAN-ILU 1.0E - 05 0.2 

1.0E - 06 0.2 

CG-ILU 1.0E - 05 0.3 

1.0E - 06 0.3 

LAN-PLY 1.00E - 05 0.2 

1.00E - 06 0.2 

CG-PLY 1.00E - 05 0.3 

1.00E - 06 0.3 

Iterns 

47 

53 

48 

54 

13 

14 

16 

17 

4 

6 

7 

9 

where  c~, • > 0 are piecewise cont inuous functions and u is defined on the  uni t  square [0,1] x [0,1]. 

Here  we used Dir ichlet  problem,  ~ = ~ -- 1. In this case, the  l inear sys tem A x  = b genera ted  by 

using f ive-point  d iscre t iza t ion of uniform grids, is given by 

B - I  

- I  B 

- I  
A = 

- I  

B "• 

- I  

- I  

B 

where  B = 

4 - 1  

- 1  4 - 1  

- 1  4 ". 

-1 

- i  4 

and m a t r i x  I is ident i ty  matr ix ,  wi th  a r ight -hand side consist ing of all ones. Here we considered 

the  ini t ial  guess is to  be arbitrary.  F igure  4 indicates  the  convergence behaviour  for the  Lanczos  

a lgor i thm and CG m e t h o d  wi th  ILU and P P  (5) precondit ioning• T h e  linear re la t ionship  be tween  

the  Lanczos  a lgor i thm and CG m e t h o d  along wi th  precondi t ioning as shown in F igure  5, clearly, 

indicates  t ha t  the  convergence speed of the  Lanczos a lgor i thm is faster t h a n  the  CG m e t h o d  for 

any a rb i t r a ry  init ial  vector .  
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Table 2. CPU-t ime/Number  of iterations for the corresponding errors of Lanczos 
~reconditioning. 

Methods Res Norm CPU-Time 

LAN 1.0E - 05 0.3 

1.0E - O6 0.3 

CG 1.0E - 05 0.3 

1.0E - 06 0.3 

LAN-ILU 1.0E - 05 0.2 

1.0E - 06 0.2 

CG-ILU 1.0E - 05 0.3 

1.0E - 06 0.3 

LAN-PLY 1.00E - 05 0.2 

1.00E - 06 O.2 

CG-PLY 1.00E - 05 0.3 

1.00E - 06 0.3 

and CG with 

Iterns 

36 

38 

41 

43 

11 

12 

14 

15 

4 

6 

6 

8 
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