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If z, and z, are complex numbers and if ¢ is a positive number, then
2+ <+ o) |5 P+ + o) |z)5 (1)

with equality iff z, =cz,.

This inequality is due to H. Bohr [1, p. 78].

In the book by J. W. Archbold [2] the following generalization of (1) is
given: If a,, ..., a, are positive numbers such that 37 _, 1/a, =1, then

‘Zl+'”+:nz<al |Zl|2+"'+an|:n|2' (2)

A. Makowski [3] proved the following inequalities which are in
connection to Bohr’s inequality (1) in the case when z, and z, are real
numbers: If a, b, o are real numbers and ¢ >0, then

2 - 2 2 2 2
(a—b)“smoc+(a+b)‘cosa<(l+c]cosZa|)a‘+<l +M> b°
c

<(1+ce)ad+ (1 + ey
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BOHR’S INEQUALITY 139
In connection to the previous results is the following result of
H. Bergstrom [4]:

Let = and z, be complex numbers and let u and v be real numbers such
that u#0, v #0, u+ v #0. Then

N L N EE N 1 1
TR R PR U W
u+v u v u v
and (3)
e N N N N N B
TR RGNS L B
u+rv u v u v
with equalities iff vz = uz,.

Proof. Inequalities (3) are simple consequences of the identity

|31|2+f31f2_|51 +:2]2_|vz|—uzz|2

u v u+v uv(u+v)

Note that the previous results are given in the well-known book of D. S.
Mitrinovic [5, pp. 312-313, 315]. Moreover, on pp. 338-339 of the same
book we can find the following result: If @ and b are real or complex
numbers and r >0, then

la+b]"< C,(lal"+1b]"), (4)

where C,=1for r<1, and C,=2" 'for r>1 (see also [6, 7]).

A further generalization of (2) is given by P. M. Vasi¢ and J. D. Kecki¢
[87: Let -y, .., =, be complex numbers, and p,, .., p, be positive numbers.
Then, for r> 1, we have

Z:i

i=1

r n r 1l n
<<Z pi ") Y pilzln (5)

i=1 i=1

with equality iff

| 1

p||:1|r = =Py |:n|r and zk:'_'/?O(k’jzlﬁ--wn)-

A new proof of this result is given by P. S. Bullen [9].

Th. M. Rassias [10, 11] has generalized Bohr’s inequality (1) in the
following form: If «>0 and z, .., z,,, , are complex numbers, then

(1+na)!:,|2+<l+(n—1)a+é> |:2|:+<l+(n—2)a+§> 224 -

n—1 . n , ,
+<l +a+T> Zu|~+<l +5> |:n+ll->|:l+ o +:nrl'-' (6)
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Rassias [10, 11] also gave several inequalities similar to Bohr'’s, and he
also proved (2).
The following generalization of (5) is given in [12].
Let E be a nonempty set and let L be a linear class of real functions
g: E— R such that the following properties are valid:
(L1) f,geLl=(af +bg)elL forall u, heR;
(L2) Tel,ie,iff(r)=1 (teE), then fe L.
Let us consider linear functionals 4: L — R, i.e., functionals which satisfy
the following conditions:
(A1) A(af +bhg)=aA(f)+bA(g)for f, g€ L, a, beR;
(A2) fel, f(t)=0o0n E= A(f}=0.

Further, let us consider a class of functions
L={fE->C|Refel,Imfel}
and a function 4: L — C defined by
A(f)= A(Re f) +id(Im f)=Re(A(f))+i Im(A(f)).
If f: E-> Cand p: E— [0, o) are such functions that for » > 1 we have
pi DS, plflTelL, and fe L, then
AN < Ap" ™y L AlpLfI)

The following generalization of (4) is given in [13]:

THEOREM 1. Let (X, |1} be a linear normed vector space and let r be an
arbitrary nonnegative real number. Then for every n-tuple x=1{(x,, .., x,)
where x,€ X, i=1, .., n, we have

”.\’1 + - +anr<Cr.n(Hler+ s+ Hxn“rL

where C,,=n" " (r=1) and C,,=1 (0<r <) is the best possible
constant.

In [14] it was shown that Theorem 1 is a simple consequence of the
triangle inequality and of Jensen’s and Petrovic’s inequalities for convex
functions. Similarly, we have [16]:

THEOREM 2. (a) Let f: R, — R, be a nondecreasing convex function.
Then for every x,€ X, p; 20 (i=1, .., n) such that P,=73"_, p,>0, we have

1 n
f(z Z PiX;

i=1

! |

’)s}i— i pSUx ). (8)

n j=1
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(b) If ' is a nondecreasing concave function such that f(0)=0 and
p;=2 (i=1, .. n), then

(‘ZP,,

i=1

\)s S pof (. (9)
i

COROLLARY 2a. If r>1and q;>0 (i=1, .., n), then [15, 16]
N |Lr r 1 n
S <(Tat )T (10)
i=1 i=1 i=1

Proof. By substitutions,

Ll n

fi=r.  x;=xip,  pi—yg, :
we get (10) from (8).

Remark. This is a generalization of (5).

COROLLARY 2b. IfO<r<land g,=1 (i=1, .. n), then [16]

"

[
>,

\\,’:1

<2 g Xl (11)

i=1

This is a similar consequence of (9).
In a special case if ¢ is a positive number and x,, x,€ X, we have

oy 2307 <+ )l |2+ (14 Te) flxa)? (12)
By substitutions ¢, 1/p, (i=1, ... n), and since
ro| n
<Zp1w 1)) SZP” 1<r<2,
i=1 F=1
we get from (10),

e f an n
ol ( 2 P.)< Yol (1€r<2), (13)

i=1 i=1

\\,,1

where p,>0 {i=1, .., n). (The case r=1 15 obvious.)

THEOREM 3. Let f: R, - R, be a nondecreasing convex function,
7 >0, p,<0(2<i<n), and P,>0. Then

(P”\ZIM. > Z U (14)

li=1 =

409 174 1-10
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Proof. This is a consequence of Theorem 2 if we use substitutions

P]"’P,,, pPi— —p; l=2, .y Ry

Xy — Y px,, X, =X, i=2,..,0n

"=

Then (8) becomes

»<“Pn'(1//Pn)z'i’=l PiXi— Pa2X2— - *pnxn“)
!
P —P2— - —Pa
< P UYP) T pixil) —pa UL D — - = pu S (Ix,[D
h Pn P2—  — Py

which is equivalent to (14).
If we set in (14)

fl=1 (1<rg2), X, = Xi/pi, pilpil "y,
we get
n ”r S n re 1 n ,
| Z \':“ Z z q:1q;1" Z g hxA",
li=1 =1 i=1
where

n I or
0<q1<(z AR ") and ¢;<0 (2<ign).

i=2

if we set ¢, — 1/p; (1 <i<n) and use the following inequality from [17]

CESED MIXIR BREVIES TXED )

we get the case 1 <r<2 of

S (Ta)E X i (e, (15)

1—1 “ i=1 i=1

where p, >0, p,<0, i=2,.,n P,>0. (The case r=1 we get il we set
r—1.)

Remark. Using substitutions, p,— —p, (i=1,..,n) we can obtain
further results from (13) and (15) in the case when P, <0.



BOHR'S INEQUALITY 143

From (13) and (15) for n=2, and from results noted in the previous
remark, we get [16]

H.\'1+-\'g|\"<I1-\'.H"+)ix:\i’ "
u+v u t

ut{te+1)>0,

and (16)

ey 4 X" H~\'1Hr+ lxsll”

> if we(u+1v)<0,
u+v u [N

where v, v,eX, 1 <r<g2.

This is a generalization of (3).

By using Jensen's inequality for convex functions we can obtain another
generalization of (5) (see {15]):

THEOREM 4. Let f be a strictly convex function on I (=0, +x)) and let

flue) < f(w) f(e) (u,vel), lim ‘Mzo, lim -

r—0+ I t— 4o

If x,eX (X is a normed vector space) and p; are positive numbers for
i=1, .., n then

A 5))<e(E i) T rortiy (7)

i=1 n:lg I(p«’) i=1

where g(t)= f(1)/1.

Remark. From the hypotheses of the theorem it follows directly that
/(0)=0 and that the function g, defined by g(r)=f(1)/t, is increasing for
r>0. It means that there exists the function g ~!, inverse to g. Therefore,
since im,_ ,, g(¢t)=0and lim, _ ., g(t)= +oc, we conclude that equality
g(x) =y has a unique solution with respect to x for every v> 0. (See [15].)

If /- R, — R, is nondecreasing, convex, and submultiplicative, g(r)=
S/t 1s strictly increasing, and p;>0, then (17) holds. The proof is as

follows.
Let ¢;>0 and Q=3 ¢, where 3 denotes X!'_,; then

f(]‘;zq,x,”)sf<Q>f(Q UZ q,x,»ﬁ)sgg@g 'S g /(00
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by Theorem 2. Replacing x; by ¢, 'x;,,
\
f(“Z \)D <g(D) Y q: /g, MIxD<g(@) Y g /g, ) U
gl@) Y glg, ) SUXN).

Let ¢;=1/g '(p;); then p,= glg, '), and this inequality becomes (17).
Now, we prove the following generalization of (6).

THEOREM 5. Let x; (i=1, .., n) be elements of an unitary vector space X,
and a,; (1 <i<j<n) be positive numbers. Then
[ n” J

” A 1
” NI WA (1 + L oagt ) l/a.k) (18)
=1 k=1 j=k+1 i=1
Proof. D. D. Adamovic [18] proved the following identity for x,e X
(i=1,..,n):

,,

PIRES “ Z i ? = Z e+ 017 = (el + 1 107

hk k=1 1<i<j<n

which is equivalent to

»)

S = Y () — = 1)

] i=1 l<i<j<n

| Z ¢l

i

Applying (12) to llx,+ x,[? we obtain

Z AU Y el

k=1

) ! . ) ;
< ¥ ((1 +a,) nxfu-+(1 +;> AR P HX,H*>,

t<i<j<n

ie.,

[ ”

il 1
TR (a,;,-ux,-u%a—ux,uz)

12
P
k=1 | k=1 I1<i<j<n i

which is equivalent to (18}).

Similarly one can use the well-known complementary triangle inequality
and its generalizations. Such results for complex numbers are given in
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[19,12]. but these results can be improved by using results from [20]
instead of a result from [21].

Here we use a generalization of a complementary triangle inequality
given in [227]:

THEOREM 6. Ler a be a unit vector in the Hilbert space H. Suppose that
the vectors x,, ..., X,,, in the case when x,;3#0, satisfy the condition

0<r<Rel(x;, a)lxl, i=1,..,n
Then
r(”-\.IH + -+ H'\‘NH)S “xl + - +xn“€

with equality if and only if
X+ - +x, =l + -+ ixla
As a consequence of this result, J. B. Diaz and F. T. Metcalf [22]

proved:

THEOREM 7. Let the “weights” q,, .., q,, be real and positive such that
g+ -+ +4q,= 1. If the conditions of Theorem 6 are valid then we have

r ”'\’]”q1 Hx"Hllng “ql'\’l + - +qnxn” (19)
and
g 17+ - +q, 15,007 < lgy X+ - + gl (20)
where p<1 and p #0. Equality holds in (19) (or (20)) iff

qlxl + .- +qnxn:r(ql ”xI” + +(1,1 Hxn”)a (2])

and

b= - =lx,li (22)

In fact these results of Diaz and Metcalf are simple consequences of the

following results.
Let the conditions of Theorem 6 be fulfilled. If fis a strictly concave and

increasing function, then

(712

and if / is a strictly convex and decreasing function then we have the
reverse inequalities. In both cases equality is valid iff (21) and (22) are
valid.

l‘) Zq,f(n A, (23)

i=1

lvl
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Of course, as in [15] we can prove results which are related to
Theorem 4.
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