Randomised, double blind, placebo-controlled Phase III Study of Bronchitol (inhaled dry powder mannitol) in Cystic Fibrosis (CF)

D. Bilton1, P. Robinson2, P. Cooper3, B. Charlton4. 1Royal Brompton Hospital, London, United Kingdom; 2Royal Children's Hospital, Melbourne, VIC, Australia; 3Westmead Children's Hospital, Sydney, NSW, Australia; 4Pharmaxis Ltd, Sydney, NSW, Australia

The airways in CF are characterised by a reduction in the water content of the airway surface liquid (ASL) and accumulation of thick mucus that is a precursor for chronic infection, inflammation and tissue damage. Inhaled mannitol is an osmotic agent that increases the water content of the ASL, improves mucociliary clearance and in studies has shown to improve lung function, lung hygiene and be well tolerated [1,2]. This phase III study was designed to assess the efficacy and safety of inhaled mannitol over the longer term.

Methods: The study was a randomised, double-blind, parallel, placebo-controlled design, where subjects inhaled 400 mg mannitol or control, twice daily for 6 months, with a further option of participating in a 6–12 month open label phase. Patients who had confirmed CF, were >6yrs with an FEV1 >30 and <90% predicted, and were not using hypertonic saline.

Demographics: Preliminary baseline data were available for the 295 eligible patients. Patients were aged 6–56 yrs (mean 22 yrs) with 44.5% female and mean BMI of 21.33kg/m2. The baseline % predicted FEV1 was 62.0±16.44% and 55% of the patients were taking rhDNase.

Objectives: The primary endpoint was change in FEV1. The study was also powered to assess the change in FEV1 in the group of patients taking rhDNase. Secondary endpoints included pulmonary exacerbations, quality of life, and antibiotic treatment. The study duration was 2 years.

Results: The 6 month blinded study completed in March 2009. This will be the first presentation of the CF-301 study data.

Reference(s)

Safety/Efficacy of Inhaled Human Alpha-1 Antitrypsin (AAT) in CF: A Phase II Clinical Study

E. Kerem1, S. Bauer2, P. Strauss2, N. Jaffe3, T. Armoni1, T. Pugatsch1, D. Shoseyov1, N. Tov2. 1CF Center, Hadassah Medical Center Mt Scopus, Jerusalem, Israel; 2Kamada Ltd, Rehovot, Israel

Neutrophilic inflammation in CF is associated with excessive Neutrophil Elastase (NE) levels, which cause further damage to the respiratory tissue. The major antagonist of NE is AAT. In CF, the unregulated inflammatory process overwhelm the normal NE/AAT balance, leading to accumulation of NE in the lung and ultimately to tissue damage. The rationale for inhaled AAT therapy is to treat this imbalance and prevent further damage to the lung tissue by reducing the neutrophil numbers and in sputum NE levels. Inhaled 2% CP-AAT (Kamada Ltd., Israel) for inhalation using the eFlow® electronic nebulizer (PARI Pharma, Germany). The aim of this phase II study was to assess the safety and efficacy of inhaled AAT in CF patients.

Study design: Double-blind, randomized, placebo-controlled, repeated dose. Study method: 21 patients were randomized (2:1) to receive inhaled 80 mg active AAT or placebo once a day. The study comprised three treatment periods, 1 day, 7 days and 28 days. Safety and efficacy variables were tested.

Results: All patients completed the study without SAEs. One patient reported mouth dryness probably related to the study drug. A decrease in the absolute sputum neutrophil counts and in sputum NE levels was observed in the AAT group, but not in the placebo group.

Conclusion: Kamada AAT is safe and well tolerated when inhaled daily for 28 days. The reduction of neutrophils and NE detected in sputum suggests an anti-inflammatory effect in CF patients. Further clinical trials are warranted to evaluate the effects of inhaled AAT on disease progression.

Supported by: Kamada Ltd. Israel.

Pharmacological characterization of a novel water-soluble activator of F508del-CFTR

J Bertrand1, B. Bouchier2, L. Danno-hoff2, P. Melin3, C. Routaboul2. 1Institut de Physiologie et Biologie Cellulaires, Université de Poitiers, CNRS, Poitiers, France; 2Département de Pharmacochimie Moléculaire, CNRS, Grenoble, France

One of the major therapeutic strategies in Cystic Fibrosis (CF) aims to develop modulators of CFTR (CF Transmembrane conductance Regulator) channels. Previously, we identified a new family of water-soluble and non-toxic CFTR inhibitors: the methylglyoxal-alpha-aminoazaheterocycle adducts (Routaboul et al; JPET 2007). Interestingly, in a structure-activity relationship study, some of them, like GPact-11a, were found positive as CFTR potentiator.

Firstly, using in vitro, ex vivo and in vivo techniques we demonstrated that GPact-11a is an activator of wt-CFTR (EC50=5 μM). Indeed GPact-11a potentiates the forskolin-induced iodide efflux. Furthermore, by recording short-circuit current, we found that GPact-11a induced a CFTRinh-172 inhibited chloride secretion in cfr−/− mice. Then, in vivo, we observed an increase of the salivary secretion in the presence of GPact-11a in cfr−/− mice, but not in cfr+/− mice. Using the potential-sensitive probe oxonol, the effect of GPact-11a on F508del-CFTR rescued by miglustat was assessed by single-cell fluorescence imaging. We demonstrated that GPact-11a not only potentiates the forskolin induced response but more importantly activates alone the rescued F508del-CFTR.

To conclude, this work identifies, using in vitro, ex vivo and in vivo experiments, a novel activator of CFTR. GPact-11a. This agent, non-toxic and water-soluble, represents a good candidate, alone or in combination with a F508del-CFTR corrector, for the development of a pharmacologic therapy in CF.

Supported by: Mucovisc, 66, Vancare la mucoviscidose, and CNRS.