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The n x n matrix 

occurs occasionally in applications (see, for example, [l]). In particular, it is of interest to know 
when this matrix is positive definite. One way to determine this is to calculate the eigenval- 
ues explicitly and to test whether they are positive. In this note, we therefore calculate the 
characteristic polynomial 

D,,(X) = det(A - AI) 

for the above matrix. 
For simplicity, we calculate first 

D, = det 

If we can find D, explicitly, then we obtain the characteristic polynomial by replacing a by a-A. 

Let also 

C,, = det 

that is the determinant of the matrix obtained by replacing the element a in the top left corner 
of A by b. 

Expanding D, by minors in the first row, (see, for example, [2]) we get 

D,, = aD,_l - b det iii’i.ri~)+bdetiii’i._ii) 
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+...+(_1)"-1 I;.;.; ;i)+b(_l)n[; .;.; ;i 

=a&-1 -(ra- l)bC,_i. (I) 

We have the initial values D1 = a and D2 = a2 - b2. Using the recurrence (l), we get 

D3 = 2b3 + a3 - 3ab2 = (a - b)2(a; 2bj h h w ic is easily verified directly; and replacing a by 
a -:f+{;, we get 03(A) = (a - A) + 2b - 3( a - A)b’, which has the factors Ai,2 = a - b and 

x3 

Similarly, expanding C,, by minors in the first row, we get 

G = bDn_l - (n - 1) bC,,_1, (2) 

where we have Ci = b, C2 = b(a - b) and C’s = b(a - b)2 by direct calculation. 
From (1) and (2), we get 

Cn - Dn = (b - a)D,-1. (3) 

Multiplying (2) by a and (1) by b and subtracting, we get 

aC, - bD, = b(b - a)(n - 1) C,_r. (4) 

Increasing the index in (2) by 1, we get 

bD, = &+I+ nbC,,. (5) 

Equations (4) and (5) together give 

C,,+r + (nb - a)& + b(b - a)(n - l)C,-i = 0. (6) 

Increasing the index in (6) by 1, we get 

CL+2 + ((n + 1)b - a)G+i + b(b - a)n)G = 0, (7) 

which can further be written as 

(E2 + ((n + 1)b - a)E + b(b - a)n)C,, = 0 (8) 

using the shift operator, E, defined by ED, = D,,+l. Equation (8) can now be factored in a 

similar manner to the example in [3, Section 6.2.31, 

E2 + (b(n + 1) - a)E + bn(b - a) = (E + bn)(E + (b - a)) (9) 

taking care that the noncommutativity of the shift operator with a non-constant coefficient is 
not violated. We now have two first order recurrences: 

(E + bn)Y, = 0 (10) 

and 
(E + (b - a))C,, = Yn. (11) 

The solution of (10) is clearly 

Y, = (-l)“-lb”-‘@ - l)!YI. (12) 
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Plugging this into (ll), we get the equation 

c n+l = (a - b)C, + (-l)“-lb”-‘(n - I)lYr. 

81 

(13) 

This is a first order linear recurrence, as given in [3, Section 5.21. The solution is 

C” = ci n (a - a) + c (-l)‘b’(i - 2)!Yr n (a - 6) 
2<i<n 2<iln i<j<n 

= Cl(a - b)“-l + Yl c i!(-b)‘(a - b)“-‘-‘. 
l<i<n-1 

(14) 

Using the values for Ci and Ca, we get Yi = 0 so that Cn = a(o - b)“-‘. This could also have 
been obtained directly from (10) and (11) using the boundary conditions Cr and Ca. Fkom (5), 
we then obtain 

0, = (a - b)” + nb(a - b)“--l = (a - b)“-‘(a + (n - 1)b). (15) 

The eigenvalues of D, are therefore Ar,z,... ,“-I = (u - b) and A, = a + (n - l)a. 
Gershgorin’s theorem (see [2]) tells us that all of the eigenvalues lie in or on the disk 1% - a] 5 

(n - l)]b] in the complex plane. In this example, we see that (n - 1) eigenvalues lie in the interior 
of the disk and one eigenvalue is on the boundary. 

The answer to the question on whether the matrix A is positive or not is now obvious since we 
have explicit values for the eigenvalues. 
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