Note

Covering the Positive Integers by
 Disjoint Sets of the Form $\{[n \alpha+\beta]: n=1,2, \ldots\}$

R. L. Graham
Bell Laboratories, Incorporated, Murray Hill, New Jersey 07974

Communicated by the Managing Editors
Received April 20, 1972

For real numbers $\alpha>0$ and β, let $S(\alpha, \beta)$ denote the set of integers $\{[\alpha n+\beta]: n=1,2,3, \ldots\}$ where, as usual, $[x]$ denotes the greatest integer $\leqslant x$. A finite family $\left\{S\left(\alpha_{i}, \beta_{i}\right): 1 \leqslant i \leqslant r\right\}$ of these sets is said to be an eventual covering family (ECF) if every sufficiently large integer occurs in exactly one $S\left(\alpha_{i}, \beta_{i}\right)$.

It is well known (e.g., see [11], [1], [6], [7]) that if all β_{i} are zero then the only ECF's are:
(i) $r=1, \alpha_{1}=1$;
(ii) $r=2, \alpha_{1}$ irrational with $1 / \alpha_{1}+1 / \alpha_{2}=1$.

However, if the β_{i} are allowed to be nonzero then a greater variety of ECF's is possible. For example, $\{S(2,0), S(2,1)\},\{S(3 / 2,1), S(3,0)\}$, $\{S(9 / 7,0), S(9 / 2,-1 / 2)\},\{S(7 / 4,0), S(7 / 2,-1), S(7,-3)\}$ and $\left\{S\left(2 \alpha_{1}, 0\right)\right.$, $\left.S\left(2 \alpha_{1}, \alpha_{1}\right), S\left(\alpha_{2}, 0\right)\right\}$ where α_{1} is irrational and $1 / \alpha_{1}+1 / \alpha_{2}=1$, are all ECF's.
In general, the problem of characterizing all ECF's seems to be difficult. Even in the case in which all the α_{i} and β_{i} are assumed to be integers, only limited success has been achieved [10], [12]. In this case, following Erdös [2], [3], we call the ECF a family of exact covering congruences. It is easily seen that if $\left\{S\left(a_{i}, b_{i}\right): 1 \leqslant i \leqslant r\right\}$ and $\left\{S\left(a_{i}{ }^{\prime}, b_{i}{ }^{\prime}\right): 1 \leqslant i \leqslant r^{\prime}\right\}$ are families of exact covering congruences, and $\left\{S\left(\alpha_{1}, \beta_{1}\right), S\left(\alpha_{2}, \beta_{2}\right)\right\}$ is an ECF, then

$$
\begin{equation*}
\left\{\bigcup_{i=1}^{r} S\left(\alpha_{1} a_{i}, \alpha_{1} b_{i}+\beta_{1}\right)\right\} \cup\left\{\bigcup_{i=1}^{r^{\prime}} S\left(\alpha_{2} a_{i}^{\prime}, \alpha_{2} b_{i}^{\prime}+\beta_{2}\right)\right\} \tag{1}
\end{equation*}
$$

is an ECF. The main result of this note is the following.

Theorem. AnyECF in which some α_{i} is irrational must be of the form (1).
Thus, because of results of Skolem (Fact 4 below), the Theorem implies that the complexity of any ECF is essentially no greater than the complexity of the two exact covering congruences from which it must be constructed.

The proof of the theorem will require several preliminary results.
FACT 1. If $1 / \alpha_{1}, 1 / \alpha_{2}$ and 1 are linearly independent over the rationals then $S\left(\alpha_{1}, \beta_{1}\right)$ and $S\left(\alpha_{2}, \beta_{2}\right)$ have infinitely many common elements.

This well-known result can be proved by a straightforward application of an approximation theorem of Kronecker and appears, for example, in [2], [11] or [7].

FACT 2. If some α_{i} in an ECF is irrational then all α_{i} in the ECF are irrational.

This follows from the fact [7] that for α irrational $\{n \alpha(\bmod 1)$: $n=1,2,3, \ldots\}$ is dense in $[0,1)$.

Fact 3. Suppose $S\left(\alpha_{1}, \beta_{1}\right)$ and $S\left(\alpha_{2}, \beta_{2}\right)$ are disjoint. Then either
(i) α_{1} / α_{2} is rational,
or
(ii) there exist positive integers a_{1}, a_{2} such that

$$
a_{1} / \alpha_{1}+a_{2} / \alpha_{2}=1 \quad \text { and } \quad a_{1} \beta_{1} / \alpha_{1}+a_{2} \beta_{2} / \alpha_{2} \equiv 0(\bmod 1)
$$

This is a corrected form of a result of Skolem [1, Satz 6]. The original statement in [1] neglects to allow for the possibility (i); however, modulo this oversight, the proofs for (ii) hold and the result is valid (cf. [7] or [4]).

FACT 4 (Skolem [8]). If α_{1} is irrational then $\left\{S\left(\alpha_{1}, \beta_{1}\right), S\left(\alpha_{2}, \beta_{2}\right)\right\}$ is an ECF if and only if

$$
1 / \alpha_{1}+1 / \alpha_{2}=1 \quad \text { and } \quad \beta_{1} / \alpha_{1}+\beta_{2} / \alpha_{2} \equiv 0(\bmod 1)
$$

As one might suspect, it is not difficult to deduce this result from the preceding fact.

Proof of the Theorem. Suppose $\mathscr{F}=\left\{S\left(\alpha_{i}, \beta_{i}\right): i=1, \ldots, m\right\}$ is an ECF with some α_{i} irrational. By Fact 2 we may assume all α_{i} are irrational. Partition the α_{i} into equivalence classes C_{1}, \ldots, C_{t} by the condition that α_{i} and α_{j} belong to the same C_{k} if and only if α_{i} / α_{j} is rational. Choose a fixed representative $\alpha_{i}{ }^{*} \in C_{i}, 1 \leqslant i \leqslant t$.

First, suppose $t \geqslant 3$ Applying Fact 3 to $S\left(\alpha_{1}{ }^{*}, \beta_{1}{ }^{*}\right), S\left(\alpha_{2}{ }^{*}, \beta_{2}{ }^{*}\right)$ and $S\left(\alpha_{3}{ }^{*}, \beta_{3}{ }^{*}\right)$, all of which must be pairwise disjoint, we have (since (i) never holds) for some choice of positive integers A_{1}, \ldots, A_{0}

$$
\begin{equation*}
A_{1} / \alpha_{1}^{*}+A_{2} / \alpha_{2}^{*}=1, \quad A_{3} / \alpha_{1}^{*}+A_{4} / \alpha_{3}^{*}=1, \quad A_{5} / \alpha_{2}^{*}+A_{6} / \alpha_{3}^{*}=1 \tag{2}
\end{equation*}
$$

Since $1 / \alpha_{1}{ }^{*}$ is irrational, the determinant

$$
\left|\begin{array}{ccc}
A_{1} & A_{2} & 0 \\
A_{3} & 0 & A_{4} \\
0 & A_{5} & A_{6}
\end{array}\right|
$$

must vanish. But its value is just $-\left(A_{2} A_{3} A_{6}+A_{1} A_{4} A_{5}\right)$ which cannot vanish for positive A_{i}.

Hence, we may assume $t \leqslant 2$. Since \mathscr{F} is an ECF then density considerations immediately imply

$$
\begin{equation*}
\sum_{i=1}^{m} 1 / \alpha_{i}=1 \tag{3}
\end{equation*}
$$

But if $t=1$ then (3) would have the form

$$
\frac{1}{\alpha_{1}{ }^{*}} \sum_{i=1}^{m} \alpha_{1}^{*} / \alpha_{i}=\frac{1}{\alpha_{1}^{*}} \sum_{i=1}^{m} r_{i}=1
$$

where the r_{i} are rational, which is clearly impossible. Therefore, we must have $t=2$. Define $R_{i}, i=1,2$, by

$$
R_{i}=\frac{1}{\alpha_{1}{ }^{*}} \sum_{\alpha \in C_{i}} \alpha, \quad i=1,2 .
$$

By the definition of C_{i}, we see that R_{i} is rational. Thus, (3) becomes

$$
R_{1} / \alpha_{1}^{*}+R_{2} / \alpha_{2}^{*}=1
$$

Let $\alpha_{i_{1}} \in C_{1}, \alpha_{i_{2}} \in C_{2}$ and consider the sets $S\left(\alpha_{i_{1}}, \beta_{i_{1}}\right)$ and $S\left(\alpha_{i_{2}}, \beta_{i_{2}}\right)$. Since these are disjoint then by Fact 3 there exist positive integers $A_{i_{1}}, A_{i_{2}}$ such that

$$
\begin{equation*}
A_{i_{1}} / \alpha_{i_{1}}+A_{i_{2}} / \alpha_{i_{2}}=1 \tag{4}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\left(\frac{A_{i_{1}} \alpha_{1}^{*}}{\alpha_{i_{1}}}\right) \frac{1}{\alpha_{1}^{*}}+\left(\frac{A_{i_{2}} \alpha_{2}^{*}}{\alpha_{i_{2}}}\right) \cdot \frac{1}{\alpha_{2}^{*}}=1 . \tag{5}
\end{equation*}
$$

Since $A_{i_{1}} \alpha_{1}{ }^{*} / \alpha_{i_{1}}$ and $A_{i_{2}} \alpha_{2}{ }^{*} / \alpha_{i_{g}}$ are rational and $\alpha_{1}{ }^{*}$ is irrational then ($3^{\prime \prime}$) and (5) imply

$$
\begin{equation*}
R_{1}=A_{i_{1}} \alpha_{1}{ }^{*} / \alpha_{i_{1}}, \quad R_{2}=A_{i_{2}} \alpha_{2}^{*} / \alpha_{i_{2}} . \tag{6}
\end{equation*}
$$

Letting $\alpha_{i}{ }^{\prime}=\alpha_{i}{ }^{*} / R_{i}, i=1,2$, we have $\mathscr{F}=\mathscr{F}_{1} \cup \mathscr{F}_{2}$ where

$$
\mathscr{F}_{i}=\bigcup_{\alpha_{j} \in C_{i}} S\left(A_{j} \alpha_{i}^{\prime}, \beta_{j}\right), \quad i=1,2 .
$$

By Fact 3, if $\alpha_{i_{1}} \in C_{1}, \alpha_{i_{2}} \in C_{2}$ then not only does (4) hold but also

$$
\begin{equation*}
A_{i_{1}} \beta_{i_{1}} / \alpha_{i_{1}}+A_{i_{2}} \beta_{i_{2}} / \alpha_{i_{2}} \equiv 0(\bmod 1) . \tag{7}
\end{equation*}
$$

By (6) and the definition of $\alpha_{1}{ }^{\prime}$, we can write (7) as

$$
\beta_{i_{1}} / \alpha_{1}^{\prime}+\beta_{i_{2}} / \alpha_{2}^{\prime} \equiv 0(\bmod 1) .
$$

Holding i_{2} fixed and recalling that $\alpha_{1} * \in C_{1}$, we have by subtraction

$$
\begin{equation*}
\beta_{j} / \alpha_{1}^{\prime}-\beta_{1}{ }^{*} / \alpha_{1}^{\prime} \equiv 0(\bmod 1) \tag{8}
\end{equation*}
$$

for $\alpha_{j} \in C_{\mathbf{1}}$. This implies

$$
\begin{equation*}
\beta_{j}-\beta_{1}{ }^{*}=M_{j} \alpha_{1}^{\prime} \tag{9}
\end{equation*}
$$

for $\alpha_{j} \in C_{1}$ and some choice of integers M_{j}. Similar arguments for C_{2} show that

$$
\beta_{k}-\beta_{2}{ }^{*}=M_{k}{ }^{\prime} \alpha_{2}^{\prime}
$$

for $\alpha_{k} \in C_{2}$ and some choice of integers $M_{k}{ }^{\prime}$.
Thus, \mathscr{F} can be written as

$$
\begin{aligned}
\mathscr{F}=\mathscr{F}_{1} \cup \mathscr{F} \mathscr{F}_{2} & =\left\{\bigcup_{\alpha_{j} \in C_{1}} S\left(A_{j} \alpha_{1}{ }^{\prime}, M_{j} \alpha_{1}{ }^{\prime}+\beta_{1}{ }^{*}\right)\right\} \\
& \cup\left\{\bigcup_{\alpha_{k} \in C_{2}} S\left(A_{k} \alpha_{2}^{\prime}, M_{k}{ }^{\prime} \alpha_{2}^{\prime}+\beta_{2}{ }^{*}\right)\right\}
\end{aligned}
$$

where $\bigcup_{\alpha_{j} \in C_{2}} S\left(A_{j}, M_{j}\right)$ and $\bigcup_{\alpha_{k} \in C_{2}} S\left(A_{k}, M_{k}{ }^{\prime}\right)$ are families of exact covering congruences since

$$
1 / \alpha_{1}^{\prime}+1 / \alpha_{2}^{\prime}=1, \quad \beta_{1}^{*} / \alpha_{1}^{\prime}+\beta_{2}^{*} / \alpha_{2}^{\prime} \equiv 0(\bmod 1)
$$

imply by Fact 3 that $\left\{S\left(\alpha_{1}^{\prime}, \beta_{1}{ }^{*}\right), S\left(\alpha_{2}^{\prime}, \beta_{2}{ }^{*}\right)\right\}$ is an ECF. This proves the Theorem.

We remark that a result of Mirsky and Newman (cf. [2]) asserts that if $\left\{\bigcup_{i=1}^{r} S\left(a_{i}, b_{i}\right)\right\}$ is a family of exact covering congruences with $r \geqslant 2$ then $a_{i}=a_{j}$ for some $i \neq j$. This can be combined with the Theorem to yield the following result.

Corollary. If $\left\{S\left(\alpha_{i}, \beta_{i}\right): i=1, \ldots, r\right\}$ is an ECF with some α_{i} irrational and $r \geqslant 3$ then $\alpha_{i}=\alpha_{j}$ for some $i \neq j$.

References

1. Th. Bang, On the sequence $[n \alpha], n=1,2, \ldots$, Math. Scand. 5 (1957), 69-76.
2. P. Erdös, On integers of the form $2^{n}+p$ and some related problems, Summa Brasil Math. 2 (1950), 119.
3. P. Erdös, On a problem concerning congruence systems, Mat. Lapok 3 (1952), 122-128.
4. A. S. Fraenkel, The bracket function and complementary sets of integers, Canad. J. Math. 21 (1969), 6-27.
5. A. S. Fraenkel, Complementing and exactly covering sequences, J. Combinatorial Theory, Ser. A, 14 (1973), 8-20.
6. R. L. Graham, On a theorem of Uspensky, Amer. Math. Monthly 70 (1963), 407-409.
7. Ivan Niven, "Diophantine Approximations," Interscience, New York, 1963.
8. Тн. Skolem, Über einige Eigenshaften der Zahlenmengen $[\alpha n+\beta$] bei irrationalem α mit einleitenden Bermerkungen über einige kombinatorische probleme, Norske Vid. Selsk. Forh. (Trondheim) 30 (1957), 118-125.
9. Th. Skolem, On certain distributions of integers in pairs with given differences, Math. Scand. 5 (1957), 57-68.
10. S. K. Stein, Unions of arithmetic sequences, Math. Ann. 134 (1958), 289-294.
11. J. V. Uspensky, On a problem arising out of the theory of a certain game, Amer. Math. Monthly 34 (1927), 516-526.
12. S. ZnÁM, On exactly covering systems of arithmetic sequences, Math. Ann. 180 (1969), 227-232.
