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For real numbers CL> 0 and /I, let S(or, fl) denote the set of integers 
{[WI + /I] : n = I, 2, 3,...} where, as usual, [x] denotes the greatest 
integer <.x. A finite family {S(q) pi) : 1 < i < r> of these sets is said to 
be an eventual covering fami& (ECF) if every sufficiently large integer 
occurs in exactly one S(CX~, pi). 

It is well known (e.g., see [I 11, [l], [6], [7]) that if all /3, are zero then 
the only ECF’s are: 

(i) r= l,al= 1; 
(ii) r = 2, 01~ irrational with l/q + I/cx~ = 1. 

However, if the pi are allowed to be nonzero then a greater variety of 
ECF’s is possible. For example, {S(2,0), S(2, l)}, {S(3/2, l), S(3, 0)}, 
WV, o), W/2,- l/2)3, {S(7/4,0), S(7/2, - I>, S(7, -3)) and {S(2a1 , 01, 
S(2Ly 1 , q), S(a, , 0)) where a1 is irrational and l/or, + l/a, = I, are all 
ECF’s. 

In general, the problem of characterizing all ECF’s seems to be difficult. 
Even in the case in which all the oli and Is, are assumed to be integers, 
only limited success has been achieved [lo], [12]. In this case, following 
Erdiis [2], [3], we call the ECF a family of exact covering congruences. 
It is easily seen that if (S(ai , b,) : 1 < i < r} and {S(Ui’ , bi’) : 1 < i < I’) 
are families of exact covering congruences, and {S(q) &), S(q) &J} is 
an ECF, then 

I_ ,q S(Wi , “Ih + PII/ u g %%4’, 4: + Al1 

is an ECF. The main result of this note is the following. 
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THEOREM. Any ECF in which some ai is irrational must be of the form (1). 

Thus, because of results of Skolem (Fact 4 below), the Theorem implies 
that the complexity of any ECF is essentially no greater than thecomplexity 
of the two exact covering congruences from which it must be constructed. 

The proof of the theorem will require several preliminary results. 

FACT 1. If l/or,, l/c+ and 1 are linearly independent over the rationals 
then S(ol, , /3J and S(ol, , /&) have infinitely many common elements. 

This well-known result can be proved by a straightforward application 
of an approximation theorem of Kronecker and appears, for example, 
in [2], [l l] or [7]. 

FACT 2. If some (Y~ in an ECF is irrational then all af in the ECF are 
irrational. 

This follows from the fact [7] that for 01 irrational {nol(mod 1): 
n = 1,2, 3 ,... } is dense in [0, 1). 

FACT 3. Suppose S(ar, , fll) and S(cllz , fia are disjoint. Then either 

(i) L& is rational, 

or 

(ii) there exist positive integers a, , a2 such that 

al/al + a2/a2 = 1 and a$&, + a&J~z - O(mod 1). 

This is a corrected form of a result of Skolem [l, Satz 61. The original 
statement in [l] neglects to allow for the possibility (i); however, modulo 
this oversight, the proofs for (ii) hold and the result is valid (cf. [7] or [41). 

FACT 4 (Skolem [8]j. If czl is irrational then {S(LY~, 83, S(CX, , flz>} is 
an ECF if and only if 

l/&L, + l/rX, = 1 and j3Ja1 + /&/a2 = O(mod 1). 

As one might suspect, it is not difficult to deduce this result from the 
preceding fact. 

Proof of the Theorem. Suppose 9 = {S(ori , /3J : i = l,..., m} is an 
ECF with some 01~ irrational. By Fact 2 we may assume all 01~ are irrational. 
Partition the 01~ into equivalence classes C, ,..., Ct by the condition that 
cu, and aj belong to the same C, if and only if> ai/aj is rational. Choose a 
tied representative c+* E C, , 1 < i < t. 
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First, suppose t > 3 Applying Fact 3 to S(q*, PI*), S(ol,*,/$*) and 
S(a,*, ,&*), all of which must be pairwise disjoint, we have (since (i) never 
holds) for some choice of positive integers A, ,..., A, 

A,/a,* + A&,* = 1, As/al* + A&,* = 1, As/a,* -t A&,* = 1. 

(2) 
Since I/q* is irrational, the determinant 

must vanish. But its value is just -(A,A,A, + AlAdA,) which cannot 
vanish for positive Ai . 

Hence, we may assume t < 2. Since 9 is an ECF then density consid- 
erations immediately imply 

(3) 

But if t = 1 then (3) would have the form 

(3’) 

where the ri are rational, which is clearly impossible. Therefore, we must 
havet=2.DefineR,,i= 1,2,by 

& = $ c a, i= 1,2. 
UGC, 

By the definition of C, , we see that Ri is rational. Thus, (3) becomes 

RJq* + R&is* = 1. (3”) 

Let olil E C, , olig E C, and consider the sets S(q, , /?,J and S(orip , &). 
Since these are disjoint then by Fact 3 there exist positive integers Ai1 , Aig 
such that 

Thus 

AC/q + AiahP = 1. (4) 

(5) 
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Since A~Iq*/oliI and Aiea2*/~ia are rational and olI* is irrational then (3”) 
and (5) imply 

Letting 01~’ = ai*/Ri , i = 1,2, we have * = 9x v Pz where 

6 = u Ch’, j&L i= 1,2. 
“,ECi 

By Fact 3, if 01~~ E C, , aiz E Cz then not only does (4) hold but also 

A&J~il + A,Bi,/~iB G 0 (mod 1). (7) 

By (6) and the definition of 01~’ , we can write (7) as 

&/a, + f&/a2 = 0 (mod 1). (7’) 

Holding is fixed and recalling that aI* E C, , we have by subtraction 

fij/a, - #ll*/q’ = O(mod 1) (8) 

for 01~ E C, . This implies 

flj - PI* = Mjoll' (9) 

for 01~ EC, and some choice of integers Mj . Similar arguments for C, 
show that 

/3k - /I,* = M;az (9’) 

for ak E C, and some choice of integers Mi. 
Thus, 9 can be written as 

s = s1 u s2 = 
I 

u S(AjcLI’, Mp.~ + a*> 
WC1 

I 

u I u Sbk‘Z), MklQ!; + &*> 
QW, I 

where UPC1 S(4, ND and UmkEC2 S(A, , Mk’) are families of exact covering 
congruences since 

l/c%,’ + l/oIt’ = 1, /31*/a1’ + &*/a; = O(mod 1) 

imply by Fact 3 that {S(q’, PI*), S(C+‘, &*)} is an ECF. This proves the 
Theorem. 
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We remark that a result of Mirsky and Newman (cf. [2]) asserts that if 
{Ull S(u, , b,)} is a family of exact covering congruences with r 3 2 
then ai = aj for some i # j. This can be combined with the Theorem to 
yield the following result. 

COROLLARY. If(s(q , ,&) : i = I,..., r} is an ECF with some 01~ irrational 
and r > 3 then ai = cxj for some i # j. 
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