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Rings satisfying chain conditions have been of interest for quite some
time. The famous Wedderburn Theorem states that semisimple Artinian
rings must be finite direct sums of matrix rings. Goldie’s theorem links
rings with ascending chain conditions to rings with descending chain condi-
tions, thus extending Wedderburn’s result. A ring R is said to be a (right)
Goldie ring if R satisfies the ascending chain condition on (right)
annihilator ideals and R contains no infinite direct sum of (right) ideals.
From Goldie’s theorem we know that a semiprime (right) Goldie ring must
be an order in a semisimple (right) Artinian ring.

A natural question to arise is whether the matrix and polynomial rings
over (right) Goldie rings are also necessarily (right) Goldie rings. Under
certain additional hypotheses such as if the ring is an order in a (right)
Artinian ring [4] or if the ring contains a certain type of uncountable set
in its center [ 1], the answer is yes. Moreover, the second Goldie condition
is always preserved [3]. Hence, as in the case for the matrix ring counter-
example [2], we must explore the ascending chain condition on (right)
annihilator ideals.

In the next section we construct a commutative Goldie ring R whose
polynomial ring R[t] contains two infinite sets of polynomials, {p,(t)} and
{q;(t)}, such that p,(t) q;(t) = 0 iff i # j. This condition forces q,(t) to be in
Ann({p;(t): i>k}) and q,(t) to be excluded from Ann({p,(t): i>k—1}).
Thus R[t] has an infinite ascending chain of annihilator ideals

~Ann({p;(t):i>k—1})c Ann({p,(t):i>k})..

and hence, R[t] fails the Goldie criteria.
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We obtain R in two stages. First we define a polynomial ring Z,{ A1 and
a prime ideal P. The factor ring Z,[A]/P is our domain D. We then
consider R=D[U], the polynomials in {ug, u;, 1>, us} over D. In R we
determine two ideals, P and I. The prime ideal P plays an important role
in all that follows. The ring R/ is R. Now we begin.

Let A={ay for i in Z* and j=0,1,2,3}; U= {ug, uy, uy, us};
U_i={us' ulusuy'y; X={x,, for i in Z*}; and {c} be sets
of commuting indeterminates over Z,. Let v,z be elements in
Z,[ A, U, U_, X, {c}] Define

deg(a;)=(1, 0) =deg(x,);

deg(u) = (0, 1);

deg(c) = (0, 0);

deg ,(v) = the total degree of vy in the a,;
deg,(z) = the total degree of z in the u,.

Consider the doubly graded Z,-algebra homomorphism
ﬁ: ZZ[A] - ZZ[Xa c, Us U~1];

ay;— Ixuou;
Clearly Z,[X,c, U, U_,] is a domain, so P, the kernel of f, must be a
prime homogeneous ideal. It is easy to see that the kernel of such a graded
homomorphism is generated by clements of the form (monomial—
monomial). For example,

(@@ + @;,@,) 1S 2 generator of P.

o~
s
e

This element comes up again later. A quick glance at f yields
{y such that deg,(y)<2} nP=0. (2}

Let y,a,, A be the images of y, a;, A in D=Z,[A]/P. Extend { to
DT U7; that is,

fD[U]—')Zl[Xa <, U’ Ufl];

i

a;— cxugu;

U.

AL

e

Let P=Xer f and denote by P, the set of elements in P whose total degree
in the /s is i. So Py=(ker f)n D=ker f=0.
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Note that in addition to the usual grading by degrees, we have another
grading—a “weighted” grading W—defined on D[U] by W(B [T, uy)=
2., jn;, where B is a monomial in the a;s; on Z,[X,c, U, U_;] by
W' I, uy)=J+3,jn;, where ¢ is a monomial in the x,s. The
homomorphism f respects this weighted grading also, so P=ker f is a
prime, homogeneous ideal with respect to both gradings.

Next we examine the elements that generate the Ry-modules P, and P,.
Using the weighted grading, the only elements of degree 1 in U we need to
consider have the form fu, where degy(f)=0. Obviously u, is not in the
prime ideal P. This forces f to be in P. But P, is 0. Thus P, =0.

Straightforward calculations yield

— 2 =D

Qo = Aio gy UoUy + Ay Gy U in P;

U3 = Ao gz UoUs + Ay Qra U Uy in P; (3)
—_ 2 : P

Qajp = ;) AUy Uz + A Qi U5 m r.

So clearly P, will not be trivial. We shall see that {a,;, @3, 4%} generate
the elements in P, of deg, =2, and that a,,, a,, turn out to be the coef-
ficients of t2, ¢* in the polynomial p;(t) q,(t) in R[t].

Suppose y,, a difference of two monomials, is in P,. Let y,=
(I'l;;a) u,u,+(I1,;a3") u,u, #0. Using the weighted grading, we can
assume that r+v=s+w. Because Py,=0=P, and P is prime, we
immediately conclude {r, v} n {s, w} = . There are only three possibilities
for {(r, s), (v, w)}:

{0,2), (1,1}, {(0,3),(1,2)},  {(1,3).(22)}

Furthermore, by examining the X and U parts of f{y,) and recalling (1),
we see that if deg ,(y,) <3, then y, must be of the forms described in (3).

Now we are ready to define I as the homogeneous (with respect to the
degree grading) ideal generated by

G = {all clements in P of deg,>2; o, as,, for all k # j;

. . 2 . .
oy — oty for all 4, ji wyus, u3, ug, uu;u, for all i, j, s}.

Let R be the domain D[ U] and R be the graded ring R/I. Let y denote the
image of y in R. Consider p;(t)=a;,ou,+a; u,t, q.(t)=a,u,+a, ut+
a,uyt’ +a,u 6’ Then the product pi(t) qu(t) = a,, t2 + oy t® is zero
precisely when i# k. Hence from our discussion in Section 1, we see that
R[t] is not a Goldie ring. Next we show R is a Goldie ring.
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In order to show that R has no infinite ascending chain of annihilators,
we will explicitly determine its annihilator ideals. First note that R may be
written as Ry + R+ R,, where R; is the ith component with respect to
degree in U. Denote by y; the ith component of the element y. Let R,
denote R localized at P and let % denote {y,eR, such that y,=37_, ¢y,
OF ¥; = €oly -+ CyUy OF ¥; = Colly+ U, Where ¢;€ R, and ¢; % 0}. We define
equivalence classes on % of R, by:

?_o6u; is equivalent to ?_ diwy if ¢o/e,=dy/d; and for

i j=0, 12 (c;u)/(c;i 1t )= (dud{d; ;1) in R,
Collg + ¢,y is equivalent to (dgug+dyuy) if ¢p/c; =dy/d, in Ry,
Collg + €, U, is equivalent to (dgug +dyu,) if ¢y/c,=dy/d, in Ry,
Denote by 4(y,) the equivalence class of y,.

THEOREM 1. (i) Given y, €%, the number of ideais in {Ann(z) such
that 2,=0 and z,€6(y,)} is no more than two.
(il) If'y,, z,e€ S, such that Ann(y, 2) #R,, 0, or P, then yo=2,=9
and 1, €%4(y).
(iii} If y, is not in & or if yo#0, then Aun(y) is in the following
finite set of ideals {0, R, R,, P, RyR, AR, + R;Ry + R, ;R for
i=0,1,2,3}. Furthermore,

Amn{ARy)=P;
Ann(P)=AR;+R;R;+R;;
Ann(ug) =yyR;
Ann{u,) =u;R;
Ann(u,) =u,R;
Ann(u,)=u,R.

Recall that the annihilator ideal of a set S is the intersection of the
annihilators of the elements in S. Theorem 1 implies that Ann S will be an
ideal other than those listed in (iii) only when all of the degree 1 parts of
the elements in S fall into one equivalence class. Let &/, = {Ann S such
that if zeS then z, is equivalent to y,}. Parts (i) and (ii) of Theorem 1
imply o/, is a finite set. Note if Ann(S,)= Ann(S,), then Ann($,)=
Ann(S, u’SZ), so we may assume S, < S;. Thus an infinite chain cannot
exist. The rather difficult proof of Theorem 1 appears in Section 4.

We show R has finite Goldie rank by determining H, an essential ideal
of rank 6. Let J=Ruyu, + Rugu,+ Rugu;+ Ru,u;+ Rui. Fach of the
above direct summands of J is isomorphic as an Ry-module to the domain
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R,, and thus has rank 1. Hence J has rank 5. Note that P = {0, a}, where
a is the image of a,; in R. Let H=J + P. Then H has rank 6.

We need only show that H is essential. Let K be an ideal in R. Then
without loss of generality, there exists k in K such that k is in R,. (If
k =k, +k, +k, with kg #0, then 0+#u,u,kq is in K. If k=k, +k, with
k, #0, then by part (iii) of Theorem 1, there exists an u; such that u;k, is
a nonzero element of K.) So K contains a nonzero element of the form
k=3, k;uu;, where kj; is in R,. If 2,22, 3 kyu;u;, is zero, then by the
proof of Theorem 1(iii), }_; k;u;u; must be in P, in which case we would
be done. Otherwise from Aea,;, Ay =0, we have

2;;3;;4;; Z kij“i“j
i

= (element in H) + a;; k,(a;; 2,u,u;)
+a;, k4 (a; ajl“f)
= (element in H) + aj, ky,(a08;3u0u3)

+a,ka(a02pu0u,),

which is in H. Therefore, H is essential.

4

We now proceed with the proof of Theorem 1. Recall that R = R/I may
be written as Ry + Ry + R,, where R, is the ith component with respect to
degree in U. Denote by y; the ith component of the element y (the image
of y in R). For z in R, the product yz is 0 iff

Yozo€lg= Py, 4)
J’021‘+y120611=P1; (5)
YoZa+ y1Z1+ V220 € [ & Py + (Roug + Rouyus + Ryu3). (6)

First we show that in the case y,# 0, the annihilator of y must be either
0 or P. Because P is prime and y, is not in P, using (4) we have z,
in Py=0. Substituting 0 for z, in (5), and using a similar argument,
we have z; =0. Substituting these values into (6) yields y,z, in I,. Now
z,=2; zyu;u;, for some z;€ R,. Note that without loss of generality, we
may assume (i, j) # (0, 0), (1, 3), (2, 2). Then y,z,€ P, < P, hence z,€e P.
Thus, z, is in P= {0, a}, where & is the image of «,, in R. That is,
Anny < P. Clearly if y, € AR, (where AR, is the ideal in R, generated by
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the ay’s), then Anny>P and so, Anny=P. Otherwise yo=1+ (elt in
AR,) and Anny=0.

Now suppose yo=0. Then if z;#0, by a symmetrical argument y is in
P. In the nontrivial case y=a, we have Ann y=AR,+R; R, +R,. Hence
we have

LemMa 2. (1) Ifyo is not in AR, then Ann{y)=0;
(i1) if'y, is nonzero and in AR, then Apn(y)=";
(ii1) Ann(P)=ARy+R;R;+R,;.

Next we consider the more complicated case, yo=0=z,. Note that
g1} p,(1) = (2?:0 akj”jlj)(z:}:o apu 17) = oy + gy

If i#k, then q, (1) p;(1) is clearly 0; if i=k, then q(1)pl) s a+a=
20=0 since chR is 2. So there exist many nontrivial annihilators for
elements in R, + R,.

Let y, =3, cu;, z, =2 ,d,u;. Then since y,=0=z,, we see that (4), (5),
and (6) become

iz = Z (c;d;+ c;d) uu; + codotif
i<j

+cdu? + cydyus + csdyudel (1)

From the weighted grading on P and the generators of I, we know no u3
term and no u,u; term may exist in P,, and hence not in 1. So c;d; =0,
which implies ¢; or d; is zero. We assume ¢; is zero. Then the coefficient
of u,u; becomes c,d,;, which must also be zero. Thus either ¢, or d; is zero.
Suppose ¢, is not zero. Then from d; =0, (7), the generators of 1, and the
homogeneity of P with respect to the weighted grading, we have

(codi +¢1dy) ugu, € P; ie., cod; +¢1dy=0; (8}
(cody + crdy) u0u2+cld1u%€P; (9
(C1d2+C2d1) u1u2eP; i.e., C1d2+C2d1:0. (}0)

If ¢;#0 and ¢, =0, then (10) implies 4, is 0. In this case we have
Vi =C€oly + Cou; and z, =dyuy+d,u,, so y,z; is 0 iff cqd, + ¢,dy=0.

Next we show that if ¢, is nonzero, then ¢, must be zero. For if ¢, is
nonzero (with ¢, and z, nonzero), then d, is nonzero. {Note: If d, =0, then
(8) implies dy,=0 and (10) implies d, = 0. Similarly if d,=0, then z, =0.)
So from ¢, ¢; #0, we have d,, d, are nonzero and the formulas in (8) and
(10) yield

cofcy=dy/dy;

(11}
cfea=d,/d,.
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From the equations in (11) we have c,/c,=d,/d,, or equivalently,
(cody + cpdy) ugu, is in P. Applying (9), this forces ¢,d;u? to be in P. So
¢, or d; must be zero, which is a contradiction. Hence the only nontrivial
case for ¢, #0 is where ¢; =0, d; =0 and cyd, + c,dy =0.

Now suppose c, is zero. Then from (7), and from the generators of I, we
have

(C0d1+cld0) UOMIEP; i.e., COd1+CId0=0; (8’)

codytiguy + ¢ d ul € P; 9"
codsugtiy+ ¢ dyuu, € P (10")

In R, the above formulas yield
cofci=dy/d;;
Cotlo/Crtty = dyuy [dyu,; (11°)

Cothp/Crtty = dyruy [d3us.

Hence we have proved

LemMA 3. Suppose y, ze R;R. If yze P, then one of the following cases
holds.

(i) The product yz=0 if y,eu,R and z,euR, where
(5, /)€ {(0,0), (2,2), (1, 3)}.
(i) If y1=cotto+ cyuy with ¢y, ¢, nonzero, then the product yze P iff
Zl =d0u0 +d2u2, and Co/C2=d0/d2.
(iii) If y; = cotto + cuy with ¢y, ¢, nonzero, then the product yze P iff
zy=doug+diuy + dyu, + dyus, and (11') holds.
(v) If zy=dyug+du,+dyu,+dsus with d, nonzero, then the
product yzeP iff y, = couy + ¢ u, and (11’ holds.
Remark 4. Lemmas2 and 3 imply if y,,x;€% such that
Ann(y,x) # R,, 0, or P, then y, = x, = 0, x; € %(y,). Furthermore if
X, €%(yy), W €% (z,) with y,z, € P then x,w, e P.

To complete the proof of Theorem 1, we shall show
LemMaA 5. Given y,€ A, the number of ideals in {Ann(x) such that
Xo=0 and x,€%(y,)} is no more than two.

Proof. Suppose xp=yo=2z,=0 and x, =boug+ b uy, y; = cotiy+ ¢, 1,
z;=3;_od:u;, and y,z, = a. We shall show that %, the equivalence class



POLYNOMIAL RINGS OVER GOLDIE RINGS 351

of y;, can be written as the union of %, and %,, two disjoint subsets, such
that if x,€%, then Annx=Anny and if x,€%, then Annx=Ann %,.
A similar argument applies to the other elements in 9.

By Remark 4, if x; is equivalent to y, then we have xzeP. Since @ is
obtained from the lowest deg, part of its preimage in R, it is only the
lowest degree parts of x, and z, that determine whether xz =g or 0. After
a moment’s thought we realize that for our purposes, we may assume. the
b;s, ¢s, and d;s are homogeneous by disregarding all but the lowest deg,
parts. Because x, and y, are equivalent, we have byc, =5,¢c,. The two
subsets %, and %, will be determined by deg b, and deg ;.

Since y,z;=0, part of codyugu,+ ¢ d ul + codyugus+ ¢ dyusuts has
degree 2 in 4. Without loss of generality, assume the deg , =2 part occurs
in codyugu,+c;diui. Note that deg, b, cannot be less than deg,c,.
(Otherwise from byc, =b, ¢y, we would have deg , b, less than deg, ¢, and
so deg ,(bodyugu, + b du3) is less than deg ,(codyugu, + ¢ d ul)=2. This
is impossible since the weight 2 part of x,z, W,(x,,) = bedyugti, +
b.du*e P.) If deg, b, exceeds deg, c,, then by a similar argument we sce
that every part of bodougu,+ b d u’ +bodsugus+b,d,uu, has deg,
greater than 2. Hence, from xze P, we have xz is zero if deg, b, > deg, ¢,.
Next we show that if deg, b, =deg , ¢,, then the weight 2 part of xz is the
same as the weight 2 part of yz. Moreover in this case b, =¢, and b, = ¢y,
so Aunnx=Anny.

Assume deg , b, =deg, ¢, and the deg, =2 part of yz is of weight 2, ie.,
it oceurs in cod,uou; + ¢ dyu?. From byc, =b,c, we have b,y z,=c¢,x,z,
and

2
Wyb,yiz:)=b, 2 = by Z {aiOaj2u0u2+ailajlu1}'
(L,j)eF (i.jye ¥

Since deg, b, =deg, ¢; and x,z,€ P, W,(c,x,z,) must have the form

¢r Y Aoty + Gy a,, Ut}
(k,mye X~
By considering the “smallest” (i, j) in ¢ and the “smallest” (k, m) in X" we
see that, in order for Wy(b, y,z,)= Wy{c,x,2;), deg b; and deg, ¢, would
have to be greater than 2 unless (i, j) = (k, {}. Hence by an inductive argu-
ment, we have # =, or equivalently, b, =c¢,. Thus by=1¢,. A similar
argument works for the weight 3 parts, so if b, = ¢, then xz = a. Moreover,
for any woe R;R N #(z,;) we have xw =yw. A similar argument works for
the other equivalence classes. Note that the above two paragraphs imply
that if there exist z,z' for two equivalent elements x,x’ such that
xz = X'z’ = q, then the lowest degree coefficients of the u,’s in x are the same
as those in x’ and Ann x = Ann x’. Given an equivalence class either there
exists some y, in it such that yz=a, or not If not there is only one

481/134/2-7
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annihilator associated with that class. If there is such a y,, let %, be the set
of elements in ¥ with the lowest degree coefficients of the u,’s the same as
those of y,, and let %,, be the compliment of %, in ¥. We are done.
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