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We develop Bayesian methods for right censored multivariate failure time data
for populations with a cure fraction. We propose a new model, called the multi-
variate cure rate model, and provide a natural motivation and interpretation of it.
To create the correlation structure between the failure times, we introduce a frailty
term, which is assumed to have a positive stable distribution. The resulting correla-
tion structure induced by the frailty term is quite appealing and leads to a nice
characterization of the association between the failure times. Several novel proper-
ties of the model are derived. First, conditional on the frailty term, it is shown that
the model has a proportional hazards structure with the covariates depending
naturally on the cure rate. Second, we establish mathematical relationships between
the marginal survivor functions of the multivariate cure rate model and the more
standard mixture model for modelling cure rates. With the introduction of latent
variables, we show that the new model is computationally appealing, and novel
computational Markov chain Monte Carlo (MCMC) methods are developed to
sample from the posterior distribution of the parameters. Specifically, we propose
a modified version of the collapsed Gibbs technique (J. S. Liu, 1994, J. Amer.
Statist. Assoc. 89, 958�966) to sample from the posterior distribution. This develop-
ment will lead to an efficient Gibbs sampling procedure, which would otherwise be
extremely difficult. We characterize the propriety of the joint posterior distribution
of the parameters using a class of noninformative improper priors. A real dataset
from a melanoma clinical trial is presented to illustrate the methodology. � 2001
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1. INTRODUCTION

Survival data with a cure fraction are becoming increasingly common in
clinical trials and epidemiological studies. For example, the univariate cure
rate model has been used for modelling failure time data for various types
of cancers, including breast cancer, non-Hodgkins lymphoma, leukemia,
prostate cancer, melanoma, and head and neck cancer, where for these dis-
eases, a significant proportion of patients are ``cured.'' Perhaps the most
popular type of (univariate) cure rate model is the mixture model intro-
duced by Berkson and Gage (1952). In this model, we assume a certain
fraction ? of the population are cured, and the remaining 1&? are not
cured. The survivor function for the entire population, denoted by S1 (t),
for this model, is given by

S1 (t)=?+(1&?) S*(t), (1.1)

where S*(t) denotes the survivor function for the non-cured group in the
population. Clearly, S1 (�)=?, and thus S1 (t) is not a proper survival
function if ?>0. We mention that any cure rate model has an improper
survival function by definition. However, S*(t) is a proper survival func-
tion and common choices for S*(t) are the exponential and Weibull dis-
tributions. We shall refer to the model in (1.1) as the standard univariate
cure rate model. The standard univariate cure rate model has been exten-
sively discussed in the statistical literature by several authors, including
Farewell (1982, 1986), Goldman (1984), Halpern and Brown (1987a,
1987b), Gray and Tsiatis (1989), Sposto et al. (1992), Laska and Meisner
(1992), Kuk and Chen (1992), Yamaguchi (1992), and Taylor (1995).
Although the standard cure rate model appears to be attractive and is
widely used, it has several drawbacks. First, S1 (t) does not have a propor-
tional hazards structure if the covariates are entered through ? via a bino-
mial regression. However, as Kuk and Chen (1992), Sy and Taylor (2000)
and Peng and Dear (2000) point out, a proportional hazards structure is
often specified for S*(t) in (1.1). Second, it is computationally difficult to
work with, as it is well known that mixture models often have multiple
modes and have likelihoods that are computationally unstable. For example,
finding maximum likelihood estimates via Newton�Raphson or some
other iterative method can often fail, as discussed by Cantor and Shuster
(1992) and Yakovlev (1994). Such problems are especially prevalent when
covariates are included in the model. Even Markov chain Monte Carlo
(MCMC) sampling from (1.1) can be quite tricky as noted by Mu� ller and
Rosner (1997) since the Markov chain can easily get stuck in certain parts
of the parameter space. This is an especially disappointing feature since this
situation is often encountered in practice. Moreover, one of the most
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crucial drawbacks of (1.1) is that it lacks a simple and natural multivariate
extension.

In survival analysis, it is often of interest to jointly model several types
of failure time random variables, such as time to cancer relapse at two dif-
ferent organs, times to cancer relapse and death, times to first and second
infection, and so forth. Another important source of this type of data is sur-
vival data following a major surgery, say a heart bypass, when a patient
may die due to post-surgery complications (first failure time variable) and
he�she may be at risk of organ rejection (second failure time variable).
These types of failure time variables are typically of great importance in
survival analysis, and thus developing multivariate models which yield
suitable properties and which induce an appropriate correlation structure
is of great interest. In addition, these random variables typically have joint
and marginal survival curves that ``plateau'' beyond a certain period of
follow-up, and therefore it is of great importance in these situations to
develop a joint cure rate model for inference.

There does not appear to be a natural multivariate extension of the
standard cure rate model in (1.1). Even if such an extension was available,
it appears that a multivariate mixture model would be extremely cumber-
some to work with from a theoretical and computational perspective. As an
alternative to a direct multivariate extension of (1.1), we propose a new
model in this paper, called the multivariate cure rate model, which proves
to be quite useful for modelling multivariate data in which the joint failure
random variables have a surviving fraction and each marginal failure time
random variable also has a surviving fraction. The model we propose has
some relation to the univariate cure rate model discussed by Yakovlev
et al. (1993) and Asselain et al. (1996). To induce the correlation structure
between the failure times, we introduce a frailty term (Clayton 1978,
Hougaard 1986, and Oakes 1989), which is assumed to have a positive
stable distribution. A positive frailty assumes that we have Cox's (Cox
1972) proportional hazards structure conditionally (i.e., given the unob-
served frailty). Thus the marginal and conditional hazards of each component
have a proportional hazards structure, and thus remain in the same class
of univariate cure rate models.

The multivariate cure rate model we propose here is attractive in several
respects. First, the model has a proportional hazards structure for the pop-
ulation hazard, conditionally as well as marginally, when covariates are
entered through the cure rate parameter, and thus has an appealing inter-
pretation. Second, the model is computationally feasible. In particular, by
introducing latent variables, we develop MCMC algorithms that enable us
to sample from the joint posterior distribution of the parameters. Specifi-
cally, we propose a modified version of the collapsed Gibbs technique of
Liu (1994). Our computational development facilitates an efficient Gibbs
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sampling scheme for the posterior distribution. Without the development of
the modified collapsed Gibbs methodology, the Gibbs sampling for the
proposed model would be extremely difficult. Third, the model has several
desirable properties. Specifically, we show that the marginal survivor func-
tions have a cure rate structure and have a mathematical relationship with
the standard cure rate model. In addition, we discuss Bayesian analyses of
this model with covariates, and propose a class of noninformative improper
priors that guarantee the propriety of the joint posterior distribution. We
note that we assume a noninformative censoring mechanism throughout.
The multivariate models described here are much more complicated in the
context of informative censoring and are not examined here.

The rest of this article is organized as follows. In Section 2, we derive
the multivariate cure rate model, and obtain several of its properties. In
Section 3, we derive the likelihood function with covariates, and in Section
4 we characterize the propriety of the resulting posterior distribution with
a particular class of noninformative improper priors. In Section 5, we
develop an MCMC algorithm by introducing latent variables and proposing
a collapsed Gibbs methodology for efficient sampling from the joint
posterior distribution. In Section 6, we present a melanoma data set from
an actual clinical trial to illustrate the proposed methodology. We conclude
the paper with a brief discussion.

2. THE MODEL

For clarity and ease of exposition, we will focus our discussion on the
bivariate cure rate model, as extensions to the general multivariate case are
quite straightforward. The proposed bivariate cure rate model can be
derived as follows. Let T=(T1 , T2) be a bivariate failure time, such as
T1=time to cancer relapse and T2=time to death, or T1=time to first
infection, and T2=time to second infection, and so forth. In our
methodological development here, we assume that (T1 , T2) are not ordered
and have support on the upper orthant of the plane. For an arbitrary
patient in the population, let N=(N1 , N2) denote latent (unobserved)
variables for (T1 , T2), respectively. We assume throughout that Nk has a
Poisson distribution with mean %kw, k = 1, 2, and (N1 , N2) are inde-
pendent. The quantity w is a frailty component in the model which induces a
correlation between the latent variables (N1 , N2). Here we take w to have
a positive stable law distribution indexed by the parameter :, denoted by
wtStable(:), where 0<:<1. Although several choices can be made for
the distribution of w, the positive stable law distribution is quite attractive,
common, and flexible in the multivariate survival setting. In addition, it
will yield several desirable properties for the proposed multivariate model.
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Let Zi=(Z1i , Z2i) denote the random time for the i th latent risk factor
to cause an event. We call Zi the latent time for Ti=(T1i , T2i). The random
vectors Zi , i=1, 2, ... are assumed to be independent and identically
distributed. The cumulative distribution function of Zki is denoted by
Fk (t)=1&Sk (t), k=1, 2, and Fk is independent of N. The observed survival
time can be defined by the random variable Tk=min[Zki , 0�i�Nk],
where P(Zk0=�)=1 and Nk is independent of the sequence Zk1 , Zk2 , ...,
for k=1, 2. The survival function for T=(T1 , T2) given w, and hence the
survival function for the population given w, is given by

Spop (t1 , t2 | w)= `
2

k=1

(P(Nk=0)+P(Zk1>tk , ..., ZkN>tk , Nk�1))

= `
2

k=1
\exp(&w%k)+\ :

�

r=1

Sk (tk)r (w%k)r

r !
exp(&w%k)++

= `
2

k=1

(exp(&w%k+%kwSk (tk)))

=exp(&w[%1F1 (t1)+%2 F2 (t2)]), (2.1)

where P(Nk=0)=P(Tk=�)=exp(&%k), k=1, 2. We emphasize here
that the primary roles of N and Zi is that they only facilitate the construc-
tion of the model and need not have any physical or biological interpreta-
tion at all for the model to be valid. They are quite useful for the computa-
tional implementation of the model via the Gibbs sampler as discussed in
Section 5, and thus are defined primarily for this purpose. The model in
(2.1) is valid for any time-to-event data with a cure rate structure as
implied by (2.1) and the subsequent development. Thus the model can be
useful for modelling various types of failure time data, including time to
relapse, time to death, time to infection, time to complication, time to
rejection, and so forth. In addition, the frailty variable w serves a dual pur-
pose in the model��it induces the correlation between T1 and T2 and at the
same time relaxes the Poisson assumption of N1 and N2 by adding the
same extra Poisson variation through their respective means %1w and %2 w.
A univariate cure rate model related to (2.1), but quite different, is
examined in Chen et al. (1999).

Following Ibragimov and Chernin (1959), the Stable(:) density for w
(0<:<1) can be expressed in the form

fs (w | :)=aw&(a+1) |
1

0
s(u) exp {&

s(u)
wa = du, w>0, (2.2)
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where

a=
:

1&:
and s(u)=\sin(:?u)

sin(?u) +
a

\sin[(1&:) ?u]
sin(?u) + ,

and the Laplace transform of w is given by E(exp(&sw))=exp(&s:).
A useful reference on stable distributions is Samorodnitsky and Taqqu
(1994). Using the Laplace transform of w, a straightforward derivation
yields the unconditional survival function

Spop (t1 , t2)=exp[&[%1F1 (t1)+%2F2 (t2)]:]. (2.3)

It can be shown that (2.3) has a proportional hazards structure if the
covariates enter the model through (%1 , %2). This is a desirable feature of
the proposed model that leads to attractive theoretical and computational
properties as discussed in Sections 4 and 5.

The joint cure fraction implied by (2.3) is Spop(�, �)=exp(&[%1+%2]:).
From (2.3), the marginal survival functions are

Sk (t)=exp(&%:
k (Fk (t)):), k=1, 2. (2.4)

Equation (2.4) indicates that the marginal survival functions have a cure
rate structure with probability of cure exp(&%:

k) for Tk , k=1, 2. It is
important to note in (2.4) that each marginal survival function has a
proportional hazards structure as long as the covariates, x, only enter
through %k . The marginal hazard function is given by :%:

k fk (t)(Fk (t)):&1,
with attenuated covariate effect (%k (x)):, and fk (t) is the survival density
corresponding to Fk (t). This property is similar to the earlier observations
made by Oakes (1989) for the ordinary bivariate stable frailty survival
model.

In addition, we can express the marginal survival functions in (2.4) in
terms of standard cure rate models. We can write

Sk (t)=exp(&%:
k (Fk (t)):)

=exp(&%:
k)+(1&exp(&%:

k)) \exp(&%:
k (Fk (t)):)&exp(&%:

k)
1&exp(&%:

k) +
=exp(&%:

k)+(1&exp(&%:
k)) Sk*(t), (2.5)

where

S*k (t)=
exp(&%:

k (Fk (t)):)&exp(&%:
k)

1&exp(&%:
k)

, k=1, 2.

106 CHEN, IBRAHIM, AND SINHA



It is easily shown that Sk*(t) defines a proper survivor function. Thus (2.5)
is a standard cure rate model with cure rate given by ?k=exp(&%:

k)
and survivor function for the non-cured population given by S k*(t), for
k=1, 2.

The parameter : (0<:<1) is a scalar parameter that is a measure of
association between (T1 , T2). Small values of : indicate high association
between (T1 , T2). As : � 1, this implies less association between (T1 , T2)
which can be seen from (2.3). Following Clayton (1978) and Oakes (1989),
we can compute a local measure of association, denoted, %*(t1 , t2), as a
function of :. This measure of association is defined as

%*(t1 , t2)=
Spop (t1 , t2)

�2

�t1 �t2

Spop (t1 , t2)

\ �
�t1

Spop (t1 , t2)) \ �
�t2

Spop (t1 , t2)+
. (2.6)

The measure in (2.6), introduced by Clayton (1978), has the interpretation
of a ratio of conditional hazard rate of the conditional distribution of T1 ,
given T2=t2 , to that of T1 given T2>t2 . For more discussion of (2.6), see
Clayton (1978) and Oakes (1989). For the multivariate cure rate model in
(2.3), %*(t1 , t2) is well defined and is given by

%*(t1 , t2)=:&1 (1&:)(%1 F1 (t1)+%2F2 (t2))&:+1. (2.7)

We see that %*(t1 , t2) in (2.7) decreases in (t1 , t2). That is, the association
between (T1 , T2) is greater when (T1 , T2) are small and the association
decreases over time. Such a property is desirable, for example, when T1

denotes time to relapse and T2 denotes time to death. Finally, we mention
that a global measure of dependence such as Kendall's { or the Pearson
correlation coefficient is not well defined for the multivariate cure rate
model (2.3) since no moments for cure rate models exist due to the
improper survival function.

3. THE LIKELIHOOD FUNCTION

Suppose we have n subjects, and let Nki denote the number of latent risks
for the i th subject, i=1, ..., n, k=1, 2. Further, we assume that the Nki 's
are independent Poisson random variables with mean wi%k , i=1, ..., n,
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k=1, 2. We also assume the wi tStable(:), and the wi 's are i.i.d. We
emphasize here that the Nki 's are not observed, and can be viewed as latent
variables in our model formulation. Further, suppose Zki1 , ..., Zki, Nki

are the
independent latent times for the Nki latent risks for the i th subject, which
are unobserved, and all have cumulative distribution function Fk ( . ),
i=1, ..., n, k=1, 2. In this paper, we will specify a parametric form for
Fk ( . ), such as a Weibull or gamma distribution. We denote the indexing
parameter (possibly vector valued) by #k , and thus write Fk ( . | #k) and
Sk ( . | #k). For example, if Fk ( . | #k) corresponds to a Weibull distribution,
then #k=(!k , *k), where !k is the shape parameter and *k is the scale
parameter. Let tki denote the failure time for subject i for the kth compo-
nent, where tki may be right censored. Let cki denote the censoring time so
that we observe yki=min(tki , cki), where the censoring indicator $ki=
I(tki�cki) equals 1 if tki is a failure time and 0 if it is right censored. Let
yk=( yk1 , ..., ykn), $k=($k1 , ..., $kn), Nk=(Nk1 , ...Nkn), k=1, 2, and w=
(w1 , ..., wn). The ``complete data'' is given by D=(n, y1 , y2 , $1 , $2 , N1 , N2 , w),
where N1 , N2 , and w are unobserved random vectors, and the observed
data is given by Dobs=(n, y1 , y2 , $1 , $2). Further, let %=(%1 , %2) and #=
(#1 , #2). The likelihood function of (%, #) based on the complete data D is
given by

L(%, # | D)=\ `
2

k=1

`
n

i=1

Sk ( yki | #k)Nki&$ki (Nki fk ( yki | #k))$ki+
_exp { :

n

i=1

(Nki log(wi%k)&log(Nki !)&wi%k)= , (3.1)

where fk ( yki | #k) is the density corresponding to Fk ( yki | #k). Throughout
the remainder of this paper, we shall assume a Weibull density for
fk ( yki | #k), so that

fk ( y | #k)=!ky!k&1 exp[*k& y!k exp(*k)]. (3.2)

To construct the likelihood function of the observed data, we integrate
(3.1) with respect to (N, w) assuming a Stable(:) density for each wi ,
denoted by fs (w i | :). We refer the reader to Section 5 for an explicit expres-
sion for the probability density fs (wi | :). We are led to the following
theorem.

Theorem 3.1. The likelihood function based on the observed data,
denoted L(%, #, : | Dobs), is given by
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L(%, #, : | Dobs)#|
R+n

L(%, # | D)__`
n

i=1

fs (wi | :)& dw

=%d1
1 %d2

2 :d1+d2 _ `
2

k=1

`
n

i=1

fk ( yki | #k)$ki&
_ `

n

i=1

[[%1F1 ( y1i | #1)+%2F2 ( y2i | #2)] (:&1)($1i+$2i)]

_ `
n

i=1

[:&1 (1&:)(%1F1 ( y1i | #1)

+%2 F2 ( y2i | #2))&:+1]$1i$2i

_ `
n

i=1

exp[&(%1F1 ( y1i | #1)+%2F2 ( y2i | #2)):], (3.3)

where fs (wi | :) denotes the probability density function of wi , dk=�n
i=1 $ki

for k=1, 2, R+n=R+_R+_ } } } _R+, and R+=(0, �).

The proof is technical and is given in the Appendix.
We incorporate covariates for the cure rate model (2.3) through the cure

rate parameter %. When covariates are included, we have a different cure
rate parameter, %ki , for each subject, i=1, ..., n. Let xi$=(xi1 , ..., xip) denote
the p_1 vector of covariates for the i th subject, and let ;k=(;k1 , ..., ;kp)$
denote the corresponding vector of regression coefficients for the failure
time random variable Tk , k=1, 2. We relate % to the covariates by %ki #

%(xi$;k)=exp(x i$;k), so that the cure rate for subject i is exp(&%ki)=
exp(&exp(xi$;k)), i=1, ..., n, k=1, 2. This relationship between %ki and ;k is
equivalent to a canonical link for %ki in the setting of generalized linear models.
Letting ;=(;1 , ;2), we can write the observed data likelihood of (;, #, :) as

L(;, #, : | Dobs)=\:d1+d2 `
2

k=1

`
i # Dk

exp(x i$;k)+_ `
2

k=1

`
n

i=1

fk ( yki | #k)$ki&
_ `

n

i=1

[[exp(xi$;1) F1 ( y1i | #1)

+exp(xi$;2) F2 ( y2i | #2)] (:&1)($1i+$2i)]

_ `
n

i=1

[:&1 (1&:)(exp(xi$;1) F1 ( y1i | #1)

+exp(xi$;2) F2 ( y2i | #2))&:+1]$1i $2i

_ `
n

i=1

exp[&(exp(x i$;1) F1 ( y1i | #1)

+exp(xi$;2) F2 ( y2i | #2)):], (3.4)
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where Dk consists of those patients who failed according to Tk , k=1, 2,
Dobs=(n, y1 , y2 , X, $1 , $2), X is the n_p matrix of covariates, fk ( yki | #k)
is given by (3.2) and Sk ( yki | #k)=exp(&y!k

ki exp(*k)).

4. THE PRIOR AND POSTERIOR DISTRIBUTIONS

In this section, we propose a class of noninformative improper priors
that guarantee the propriety of the joint posterior distribution. Clearly, if
proper priors are specified for all parameters, then proper posterior dis-
tributions result, but the chore of informative prior elicitation is then
required. For the proposed class of models, this can be a monumental task,
and we do not discuss such priors here. Noninformative priors serve as a
convenient device for doing Bayesian inference for this class of models. We
consider a joint improper prior for (;, #)=(;1 , ;2 , #1 , #2) of the form

?(;, #, :)#?(;1 , ;2 , #1 , #2 , :) B ?(#1) ?(#2)

=I(0<:<1) `
2

k=1

?(!k , *k), (4.1)

where I(0<:<1)=1 if 0<:<1, and 0 otherwise. Thus, (4.1) implies that
;, #, and : are independent a priori, (;1 , ;2) are independent a priori with
an improper uniform prior, : has a proper uniform prior over the interval
(0, 1), and (#1 , #2) are independent and identically distributed as ?(#k) a
priori. We will assume throughout that

?(!k , *k)=?(!k | &0 , {0) ?(*k),

where

?(!k | &0 , {0) B !&0&1
k exp[&{0 !k], and ?(*k) B exp[&c0 *2

k] ,

and &0 , {0 , and c0 are specified hyperparameters. With these specifications,
the posterior distribution of (;, #, :) based on the observed data Dobs=
(n, y1 , y2 , X, $1 , $2) is given by

p(;, #, : | Dobs) B L(;, #, : | Dobs) `
2

k=1

?(!k | &0 , {0) ?(*k), (4.2)

where L(;, #, : | Dobs) is given by (3.4). We are led to the following
theorem concerning the propriety of the posterior distribution in (4.2)
using the noninformative improper prior (4.1).
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Theorem 4.1. Let Xk* be an n_p matrix with rows $kix$ki for k=1, 2,
and �=(;1 , ;2 , !1 , !2 , *1 , *2 , :). Then if (C1) Xk* is of full rank for
k=1, 2, (C2) ?(*k) is proper, and (C3) {0>0 and &0>&min[d1 , d2], the
posterior given in (4.2) is proper; that is,

| L(;, #, : | Dobs) _ `
2

k=1

?(!k | &0 , {0) ?(*k)& d�<�. (4.3)

The proof of Theorem 4.1 is quite technical and is given in the appendix.
Note that the conditions given in Theorem 4.1 are sufficient but not
necessary for the propriety of the posterior distribution. However, the con-
ditions stated in the theorem are quite general and typically satisfied for
most data sets. We also notice that a proper prior for !k is not required in
order to obtain a proper posterior. This can be observed from condition
(C3) because ?(!k | &0 , {0) is no longer proper when &0<0. We note that
Theorem 4.1 only requires that ?(*k) be any proper prior. Although several
choices can be made, we will take independent normal densities for ?(*k),
k=1, 2, in the remainder of this paper.

5. COMPUTATIONAL IMPLEMENTATION

In this section, we propose a modified version of the collapsed Gibbs
technique of Liu (1994) to sample from the posterior distribution. This
technique results in an efficient Gibbs sampling scheme which reduces the
correlations between the parameters and the latent variables. As a by-
product of our overall methodology, we develop a Gibbs sampling scheme
for positive stable law distributions. We note here that MCMC methods
for multivariate survival data have also been examined by Qiou et al.
(1999).

From (2.2), it can be shown that fs (w | :) is obtained by marginalizing,
with respect to u, the joint density

f (w, u | :)=aw&(a+1)s(u) exp {&
s(u)
wa = , w>0, 0<u<1. (5.1)

This relationship plays an important role in the implementation of the
Gibbs sampler.

To facilitate the Gibbs sampler, we introduce several auxiliary (latent)
variables. We note here that Gibbs sampling using auxiliary variables has
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been used by many in the Bayesian literature, including Besag and Green
(1993), and Higdon (1998). The auxiliary variables are N=(N1 , N2),
where Nk=(Nk1 , ..., Nkn) for k=1, 2, w=(w1 , w2 , ..., wn), and u=(u1 ,
u2 , ..., un). The joint posterior distribution of (;, #, :, N, w, u | Dobs) is given by

p(;, #, :, N, w, u | Dobs) B \ `
2

k=1

`
n

i=1

Sk ( yki | #k)Nki&$ki (Nki fk ( yki | #k))$ki+
_exp { :

n

i=1

(Nki log(wi%ki)&log(Nki !)&wi%ki)=
_ `

n

i=1
_w&(a+1)

i s(u i) exp {&
s(ui)
wa

i =&
_ `

2

k=1

(?(!k | &0 , {0) ?(*k)), (5.2)

where %ki=exp(xi$;k), &0>&min[d1 , d2], {0>0, and c0>0. To run the
Gibbs sampler, we need to sample from the following conditional distribu-
tions: [# | ;, :, N, w, u, Dobs] and [;, :, N, w, u | #, Dobs].

The conditional posterior density for [# | ;, #, :, N, u, Dobs] is given by

p(# | ;, #, :, N, u, Dobs) B `
2

k=1

!dk+&0&1
k exp {dk *k+ :

n

i=1

[$ki!k log( yki)]

&Nkie*ky!k
ki&{0 !k&c0 *2

k= . (5.3)

Using a similar proof given by Berger and Sun (1993), we can show that
p(# | ;, #, :, N, u, Dobs) is log-concave in !k or *k for k=1, 2. Thus, the
adaptive rejection algorithm of Gilks and Wild (1992) can be used here to
sample #.

Sampling from [;, :, N, w, u | #, Dobs] is the most challenging and expen-
sive part of this algorithm. Sampling from the five complete conditional
distributions may result in high correlations between (;, :, N, w, u) due to
the high dimension of the latent vectors. To remedy this potential problem,
we apply the collapsed Gibbs procedure of Liu (1994). It is easy to observe
that

[;, :, N, w, u | #, Dobs]=[;, :, w, u | #, Dobs][N | ;, :, w, u, #, Dobs]. (5.4)
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In (5.4), we draw (;, :, w, u) by collapsing N, which is crucial for achieving
convergence of our MCMC algorithm. For [;, :, w, u | #, Dobs], we draw
[; | :, w, u, #, Dobs] and [:, w, u | ;, #, Dobs].

Using the proof of Theorem 3.1, the density of [; | :, w, u, #, Dobs] is
given by

p(; | :, w, u, #, Dobs)

B exp { :
2

k=1

:
n

i=1

[$kixi$;k&wiFk ( yki | #k) exp(xi$;k)]= . (5.5)

It is easy to see that p(; | :, w, u, #, Dobs) is log-concave in each component
of ; and thus we can use the adaptive rejection algorithm of Gilks and
Wild (1992) to draw ;.

To draw [:, w, u | ;, #, Dobs], we use the collapsed Gibbs procedure one
more time. That is, we draw : from [: | ;, #, Dobs] by collapsing w and u,
and then draw (w, u) from [w, u | :, ;, #, Dobs].

The conditional posterior density for [: | ;, #, Dobs] can be written as

p(: | ;, #, Dobs) B L(;, #, : | Dobs), (5.6)

where L(;, #, : | Dobs) is given by (3.4). Generating : from (5.6) is not
trivial since p(: | ;, #, Dobs) is not log-concave. Therefore, we consider the
following Metropolis�Hastings algorithm with a ``de-constraint'' transfor-
mation to draw :. Since 0<:<1, we let

:=
e'

1+e' , &�<'<�. (5.7)

Then

p(' | ;, #, Dobs)= p(: | ;, #, Dobs)
e'

(1+e')2 .

Instead of directly sampling :, we generate ' by choosing a normal
proposal N('̂, _̂2

'̂), where '̂ is the maximizer of the logarithm of
p(' | ;, #, Dobs) and _̂2

'̂ is the minus of the inverse of the second derivative
of log p(' | ;, #, Dobs) evaluated at '='̂; that is,

_̂&2
'̂ =&

d 2 log p(' |;, #, Dobs)
d'2 }'='̂

.
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The algorithm to generate ' operates as follows: (a) let ' be the current
value; (b) generate a proposal value '* from N('̂, _̂2

'̂); and (c) a move from
' to '* is made with probability

min {p('* | ;, #, Dobs) , \'&'̂
_̂'̂ +

p(' | ;, #, Dobs) , \'*&'̂
_̂'̂ +

, 1= ,

where , is the standard normal probability density function. After we
obtain ', we compute : by using (5.7).

Following the proof of Theorem 4.1, the joint conditional density for
(w, u) is given by

p(w, u | :, ;, #, Dobs) B `
n

i=1

w$i
i exp {&wi :

2

k=1

exp(xi$;k)(1&Sk ( yki | #k))=
_w&(a+1)

i s(u i) exp {&
s(ui)
wa

i = , (5.8)

where $i=$1i+$2i and a=:�(1&:). Now, we use the ratio of uniforms
(ROU) method and a rejection algorithm (for example, see Devroye, 1986,
pp. 40�65, 194�205) to draw (wi , ui) for i=1, 2, ..., n. More specifically, the
ROU algorithm for drawing wi requires the following steps:

(i) Compute a* = sup( p*(wi | ui , :, ;, #, Dobs))1�2 and b* = sup
wi ( p*(wi | ui , :, ;, #, Dobs))1�2, where

p*(wi | ui , :, ;, #, Dobs)=w$i
i exp {&wi :

2

k=1

exp(x i$;k)(1&Sk ( yki | #k))=
_w&(a+1)

i exp {&
s(ui)
wa

i = . (5.9)

(ii) Draw ` from U(0, a*) and | from U(0, b*).

(iii) Return w i=`�| if `2� p*(`�| | ui , :, ;, #, Dobs); otherwise, go to
(ii).

The rejection algorithm for sampling ui operates as follows:

(i) Independently generate ui and " from U(0, 1).

(ii) Return ui if "�
s(ui)
w i

: exp[&
s(ui)
w i

: ]; otherwise, go to (i).

Finally, we draw N from [N | ;, :, w, u, #, Dobs]. Since

Nki | ;, :, w, u, #, Dobs tPoisson(wiSk ( yki | #k) exp(xi$;k))+$ki
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for k=1, 2 and i=1, ..., n, sampling N from its conditional posterior dis-
tribution is trivial.

The introduction of latent variables indeed converts an intractable and
nearly impossible computational problem (which involves direct sampling
from the posterior with the likelihood based on the observed data given in
(3.4)), into an attractive one, in which the parameters are sampled from a
posterior based on the complete-data likelihood. Throughout the entire
MCMC implementational scheme, we use the collapsed Gibbs sampling
technique of Liu (1994). Thus, instead of sampling : directly from its con-
ditional distribution ?(: | w, u, ;, #, :, Dobs) as in Buckle (1995), we sample
: from its marginal posterior distribution ?(: | ;, #, :, Dobs). Similarly, we
draw from ?(; | w, u, #, :, Dobs) instead of ?(; | N, w, u, #, :, Dobs). By doing
these two steps, we reduce the intra-correlations between : and (w, u), and
; and N, respectively. Therefore the convergence of the induced Markov
chain is improved.

6. ILLUSTRATIVE EXAMPLE

To illustrate the methodology, we consider data from a phase III
melanoma clinical trial conducted by the Eastern Cooperative Oncology
Group (ECOG). The study, denoted E1684, was a two-arm clinical trial
involving patients randomized to one of two treatment arms: high-dose
interferon (IFN) or observation. The results of this study (see Kirkwood et
al., 1996) suggested that IFN has a significant impact on time to relapse
and time to death, which led to FDA approval of this regimen as a
standard adjuvant therapy for high risk melanoma patients. Our purpose
in this example is to illustrate the proposed multivariate cure rate model in
(2.3) and demonstrate several of its properties. We emphasize here that our
proposed model is valid only when sufficient follow-up is available on all
of the time-to-event endpoints and the calendar date of entry is assumed to
be noninformative on the outcome variables.

We consider the two failure-time random variables, T1=time to relapse
from randomization, and T2=relapse to death. We note that all of the
patients who died in this study had also relapsed. Three covariates and an
intercept are included in the model. The covariates are age (x1), sex (x2)
(male, female), and performance status (x3) (fully active, other). Perfor-
mance status is abbreviated by PS in the tables below. Tables I and II
give statistical summaries for (T1 , T2) and the covariates, respectively.
A total of n=274 observations are used in the analysis. In all of the
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TABLE I

Summary of Survival and Relapse Times

Time to Relapse (T1) Status Relapse to Death (T2) Status
(years) (frequency) (years) (frequency)

median 0.537 censored 88 median 0.660 censored 110
IQR 1.247 relapse 186 IQR 1.014 death 164

computations, we standardized all the covariates to have mean 0 and
standard deviation 1 in order to improve the convergence of the MCMC
algorithm. Specifically, standardizing the covariates greatly reduces the
correlation between the intercept term and the other regression coefficients.
We use the noninformative improper prior in (4.1), with ?(;) B 1,
*k tN(0, 10, 000), !k tgamma(1, 0.01), and independent for each k=1, 2.
Also, we take a uniform prior for : on the interval (0, 1). In this example,
50,000 MCMC iterations were used in all of the computations after a burn-in
of 1,000 iterations. Convergence was checked using the methods discussed
in Cowles and Carlin (1996). Specifically, trace plots, autocorrelations, and
Gelman�Rubin statistics (Gelman and Rubin, 1992) were computed, and
convergence was observed to occur before 500 iterations.

Table III gives posterior estimates of ;=(;1 , ;2), !=(!1 , !2), *=
(*1 , *2), and :, where ;k=(;k0 , ;k1 , ;k2 , ;k3)$, k=1, 2. We see from
Table 3 that all of the highest posterior density (HPD) intervals for the
regression coefficients of the covariates contain 0. Also, from Table 3, we
see that the posterior mean of : is 0.709, with a 950 HPD interval of
(0.585, 0.840). As discussed in Section 2, this indicates a moderate associa-
tion between time to relapse and relapse to death for these data, as was
expected. A plot of the marginal posterior distribution of : is given in
Fig. 1. We see in this figure that the posterior distribution of : appears quite
symmetric with a mode at 0.699. Fig. 2 shows a box plot of the posterior
means of the cure rates for each failure time variable. We note that when
covariates are included in the model, each subject has an individual cure

TABLE II

Summary of Covariates

Age (x1) Gender (x2) PS (x3)
(years) (frequency) (frequency)

mean 46.663 Male 165 Fully Active 243
SD 12.818 Female 109 Other 31
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TABLE III

Posterior Estimates

parameter mean SD 950 HPD interval

;10 0.234 0.116 (0.004, 0.459)
;11 0.072 0.101 (&0.122, 0.274)
;12 0.008 0.104 (&0.202, 0.206)
;13 0.020 0.105 (&0.191, 0.222)
;20 0.922 0.170 (0.585, 1.256)
;21 0.147 0.116 (&0.077, 0.383)
;22 &0.195 0.122 (&0.434, 0.041)
;23 &0.199 0.121 (&0.435, 0.039)
: 0.709 0.066 (0.585, 0.840)
!1 1.258 0.101 (1.064, 1.457)
!2 1.496 0.124 (1.253, 1.737)
*1 &0.852 0.178 (&1.209, &0.516)
*2 &1.421 0.240 (&1.895, &0.966)

FIG. 1. The marginal posterior density of :.

FIG. 2. Box plots of the posterior means of the cure rates for all patients.

117MULTIVARIATE SURVIVAL DATA



TABLE IV

Summary of Box Plots

Failure time mean SD median IQR min max

time to relapse 0.285 0.026 0.283 0.045 0.228 0.346
relapse to death 0.103 0.078 0.082 0.094 0.023 0.405

rate. From Fig. 2, we see that the median cure rate for time to relapse
(0.285) is much higher than the median cure rate for relapse to death
(0.103). In general, there is much more variability in the estimated cure
rates for the relapse to death variable. Table IV gives numerical summaries
for both box plots of Fig. 2. In Table 4, IQR denotes interquartile range.

Figure 3 shows two superimposed plots, where plot (a) represents time
to relapse and plot (b) represents relapse to death. The covariates are not
used in constructing plots (a) and (b). In plot (a), the two superimposed
plots correspond to the Kaplan�Meier estimate of survival and the maxi-
mum likelihood estimate of the marginal survival function based on the
multivariate cure rate model. We see that the two curves in plot (a) are
nearly identical and appear to plateau after approximately 6 years of
follow-up. In plot (b), the relapse to death variable appears to plateau after
approximately 4 years of follow-up. Figure 4 shows a three-dimensional
plot of the posterior mean survival surface based on average age for males
with fully active performance status. We see in this plot how the survival
curve plateaus for each failure time variable. The joint survival function
approaches a joint cure fraction, and the marginal survival functions each
approach a cure fraction. From this figure, it is clear that the estimated
cure rate for the time to relapse variable is larger than the estimated cure
rate for the relapse to death variable.

FIG. 3. Superimposed survival curves.
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FIG. 4. The bivariate posterior survival surface.

Finally, we compared the individual fits of the univariate models for T1

and T2 to the marginal models induced by the bivariate cure rate model.
The 950 HPD intervals for the univariate model were all narrower than
those based on the multivariate model. For example, for T1 , the 950 HPD
interval for ;1 was (&0.083, 0.199), which is narrower than the 950 HPD
interval for ;1 given in Table II. In general, there is no general trend to
these HPD intervals. The width of the HPD intervals for the multivariate
model depends on the frailty distribution and the data, and therefore these
intervals can be narrower or wider than intervals based on the correspond-
ing univariate model. Therefore, in general, it becomes difficult to assess the
efficiency in the multivariate model, since the width of the HPD intervals
and posterior standard deviations heavily depend on the frailty distribution
and the dataset at hand.

7. DISCUSSION

We have proposed a new multivariate cure rate model and have
examined several of its properties. This model is useful for jointly modelling
any type of failure time data with a surviving fraction. We emphasize here
that cure rate models should only be used when sufficient follow-up is
available on all of the time-to-event endpoints. This is a critical practical
issue that arises with the use of any cure rate model. We never recommend
using a cure rate model when there is insufficient follow-up on the patients
and�or when there is heavy censoring. The type of follow-up necessary cer-
tainly depends on the application and�or disease type, and thus we cannot
give specific recommendations here, but only provide caution. In Section 6,
we demonstrated that the model is computationally feasible with several
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covariates included. We observed from Fig. 3 how well the proposed model
matches the Kaplan�Meier non-parametric estimate of the marginal sur-
vival function. For ease and clarity of exposition, we have focused our
development on the bivariate cure rate model. Extensions to the general
multivariate case are quite straightforward, as all of the methodology and
the theorems given remain valid in the general multivariate case. We men-
tion here that model-checking techniques need to to be developed to
investigate the fit of the model in Section 6. This is a very important issue
for these types of highly parametric models. Future work with this model
includes developing methods for hypothesis testing, model selection, and
model adequacy.

APPENDIX: THE PROOFS OF THE THEOREMS

Proof of the Theorem 3.1

Throughout the derivation, we make use of the fact that the Laplace
transform of w, where wtStable, (:) is,

E(exp(&sw))=exp(&s:). (A.1)

To prove Theorem 3.1, we need to derive an expression of the likelihood
after summing L(;,# | D) over the possible values of (N1i , N2i). From (3.1),
it is easy to see that given wi , N1i and N2i are conditionally independent.
Thus, after summing over the possible values of (N1i , N2i), we obtain

L(;, # | w, Dobs)= `
2

k=1
_`

n

i=1

(wi %k fk ( yki | #k))$ki

_exp[&wi %k (1&Sk ( yki | #k))]& . (A.2)

Simplification of (A.2) yields

L(;, # | w, Dobs)=%d1
1 %d2

2 _ `
2

k=1

`
n

i=1

fk ( yki | #k)$ki&
_ `

n

i=1

[w$i
i exp[&wi (%1 F1 ( y1i | #1)+%2F2 ( y2i | #2))]],

(A.3)
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where $i=$1i+$2i for i=1, 2, ..., n. Using (A.3), the likelihood based on
the observed data can be expressed as

L(;, #, : | Dobs)=%d1
1 %d2

2 _ `
2

k=1

`
n

i=1

fk ( yki | #k)$ki&
_ `

n

i=1
|

�

0
w$i

i exp[&wi (%1F1 ( y1i | #1)

+%2 F2 ( y2i | #2))] fs (wi | :) dwi . (A.4)

Now, we consider the following three cases: (i) $i=0, (ii) $i=1, and (iii)
$i=2.

For case (i), using (A.1), we integrate out wi for the i th observation,
leading to

Li0 (%, #, : | Dobs)=|
�

0
exp(&wi (%1F1 ( y1i | #1)+%2F2 ( y2i | #2))) fs (wi | :) dwi

=exp[&[%1F1 ( y1i | #1)+%2F2 ( y2i | #2)]:]. (A.5)

For case (ii), the contribution to the last term of the right side of (A.4)
for the i th observation is given by

Li1 (%, #, : | Dobs)=|
�

0
wi exp(&wi (%1 F1 ( y1i | #1)

+%2F2 ( y2i | #2)) fs (wi | :) dwi . (A.6)

Now, we note that (A.1) implies that E[wi exp(&swi)]=:s:&1 exp(&s:),
so that (A.6) equals

Li1 (%, #, : | Dobs)=:(%1F1 ( y1i | #1)+%2F2 ( y2i | #2)):&1

_exp(&[%1F1 ( y1i | #1)+%2F2 ( y2i | #2)]:). (A.7)

For case (iii), for the i th observation, we write

Li2 (%, #, : | Dobs)=|
�

0
w2

i exp(&wi (%1 F1 ( y1i | #1)

+%2F2 ( y2i | #2))) fs (wi | :) dw i . (A.8)

From (A.1), we have

E(w2
i exp(&swi))=:(1&:) s:&2 exp(&s:)+:2s2(:&1) exp(&s:)

=:2s2(:&1) (:&1 (1&:) s&:+1) exp(&s:). (A.9)
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Now letting s=%1F1 ( y1i | #1)+%2F2 ( y2i | #2) in (A.9), we get the closed-
form expression of Li2 (%, #, : | Dobs). Multiplying the terms, we get

L(;, #, : | Dobs)=%d1
1 %d2

2 _ `
2

k=1

`
n

i=1

fk ( yki | #k)$ki&
= `

n

i=1

L1[$i=0]
i0 (%, #, : | Dobs)

_L1[$i=1]
i1 (%, #, : | Dobs) L1[$i=2]

i2 (%, #, : | Dobs),

where 1[$i= j] is the indicator function for j=0, 1, 2, and this coincides with
Eq. (3.3). This completes the proof.

Proof of Theorem 4.1

To prove Theorem 4.1, it suffices to show that

|| L(;, # | w, Dobs) _`
n

i=1

fs (wi | :)&_ `
2

k=1

?(!k | &0 , {0) ?(*k)& d� dw<�,

(A.10)

where L(;, # | w, Dobs) is given in (A.2) with %k being replaced by %ki .
We first prove

(wi%ki fk ( yki | #k))$ki exp[&w i%ki (1&Sk ( yki | #k))]�M!$ki
k , (A.11)

where M�1 is a constant. When $ki=0, (A.11) is obviously true since
exp[&wi %ki (1&Sk ( yki | #k))]�1. For $ki=1, the left side of (A.11) can be
rewritten as

y&1
ki

!k y!k
ki e

*k exp(&e*ky!k
ki)

1&exp(&e*ky!k
ki)

_[(1&Sk ( yki | #k)) wi %ki exp(&wi %ki (1&Sk ( yki | #k)))]. (A.12)

Let

g1 (z)=
ze&z

1&e&z , g2 (z)=ze&z, for z>0.

Thus, there exists a common constant g0 such that 1� g0<�,

g1 (z)� g0 , and g2 (z)� g0 for all z>0. (A.13)
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Using (A.13), (A.12) is less than or equal to y&1
ki !k g2

0 . Thus, taking
M*= g2

0 max(k, i): $ki=1 [ y&1
ki ] and M=max[1, M*], we obtain (A.11).

Next we prove (A.10). Since Xk* is of full rank, there must exist p linearly
independent row vectors x$kik1

, x$kik2
,..., x$kikp

such that $kik1
=$kik2

= } } } =
$kikp

=1. Using (A.11), the left side of (A.10) is less than or equal to

|
1

0
|

R+n |
�

&�
|

�

&�
|

�

0
|

�

0 { `
2

k=1 _M n& p!dk& p
k |

Rp
`

p

j=1

fk ( ykikj
| #k)

wikj
exp[x$kikj

;k&(1&Sk ( ykikj
| #k)) wikj

exp(x$kikj
;k)]& d;k=

_`
n

i=1

fs(wi | :)&_ `
2

k=1

?(!k | &0 , {0) ?(*k)& d!1 d!2 d*1 d*2 dw d:. (A.14)

Now we make the transformation ukj=x$kikj
;k+log(wikj

) for j=1, 2, ..., p.
This is a one-to-one linear transformation from ;k to uk=(uk1 , ..., ukp)$.
Thus, (A.14) is proportional to

|
1

0
|

R+n |
�

&�
|

�

&�
|

�

0
|

�

0 { `
2

k=1
_!dk& p

k |
R p

`
p

j=1

fk ( ykikj
| #k)

_exp[ukj&(1&Sk ( ykikj
| #k)) exp(ukj)]& duk=

_`
n

i=1

fs(wi | :)&_ `
2

k=1

?(!k | &0 , {0) ?(*k)& d!1 d!2 d*1 d*2 dw d:. (A.15)

Integrating out uk , (A.15) reduces to

|
1

0
|

R+n |
�

&�
|

�

&�
|

�

0
|

�

0 { `
2

k=1

!dk& p
k `

p

j=1

fk ( ykikj
| #k)

1&Sk ( ykikj
| #k)=

_`
n

i=1

fs(wi | :)&_ `
2

k=1

?(!k | &0 , {0) ?(*k)& d!1 d!2 d*1 d*2 dw d:. (A.16)

In (A.16), using (A.13), we have

fk ( ykikj
| #k)

1&Sk ( ykikj
| #k)

�M!k .
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Thus, (A.16) is less than or equal to

M p `
2

k=1
_|

�

0
!dk

k ?(!k | &0 , {0) d!k |
�

&�
?(*k) d*k&

_|
1

0 _`
n

i=1
|

�

0
fs (wi | :) dw i& d:<� (A.17)

by conditions (C2) and (C3) and the fact that fs (w i | :) is a proper density.
This completes the proof.
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