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Abstract

Historically popular, the well established monocular-SLAM is however subject to some limitations. The advent of cheap depth

sensors allowed to circumvent some of these. Related methods frequently focus heavily on depth data. However these sensors have

their own weaknesses. In some cases it is more appropriate to use both intensity and depth informations equally. We first conduct

a few experiments in optimal conditions to determine how to use good quality information in our monocular based SLAM. From

this we propose a lightweight SLAM designed for small constrained environments.
c© 2014 The Authors. Published by Elsevier B.V.
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1. Introduction

SLAM is the ability for an autonomous mobile device to create a model of the unknown environment it moves in

while localizing itself in the model. Applications range from robotics to augmented reality, including autonomous

vehicles. Several kind of sensors are available to accomplish this task. When using a single camera, one speaks of

monocular SLAM. In the calibrated case and for general moves, the camera pose has 6 degrees of freedom. In a

point cloud representation of the environment, each point position have 3 degrees of freedom. Monocular SLAM is

difficult since it requires estimating the camera pose and points positions using mesures lying a 2 dimensional space.

Many approaches have been formulated to solve the task, and two main classes established. The first one is based on

filtering, Kalman filters as in4 or particular filters as in13, and incrementally fuses measurements through the update of

the camera pose and points positions probability distributions. The second one is based on the adaptation of Structure
From Motion methods to the incremental nature of SLAM carrying bundle adjustments on a temporal,14, or spatial, 7,

subset of cameras. In20 Strasdat et al compared filtered and Structure From Motion approaches and concluded the

latter are generally more efficients.

Recently low cost structured light based depth sensors became available. These sensors provide informations lying

in 3 dimensional space. Several approaches have been devised to take advantage of these, coupled or not to classical
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RGB cameras. In10 Henry et al realised a SLAM combining an ICP approach,2, and a bundle adjustment approach

in a single cost function. Interestingly, their experiments showed their hybrid cost function provides better results

than any of the methods taken singly. In5 Fioraio and Konolige realised an ICP based SLAM. They observed better

results when taking visual intensity informations into account. In15 Newcombe et al only use depth informations and

fuse these in a dense environment map at each acquisition step. Their method provides the advantage to achieve loop

closures naturally if the system’s drift is moderate. However if drift is too large it isn’t corrigible. In19 Scherer et al
fuse visual and depth informations in a hybrid cost function modyfing the monocular SLAM of7.

2. Visual SLAM

2.1. Our approach

Notation: The term camera pose defines the orientation of the camera’s axes and the position of its focal point.

Using the term camera we usually refer to the camera pose at a given time and the associated image captured at this

time. Using the term point we usually refer to a map point belonging to R
3. The camera trajectory and the recorded

video stream then define a set of cameras. We note Ci the i-th camera pose and Ii its associated image and P j the j-th
map’s point’s position. Then we note m j

i the measure in the image plane of the j-th point observed by the ith camera

and z j
i is its measured depth.

We took inspiration from Mouragnon et al14 to design our visual SLAM. The approach is based on the definition

of keyframes, or keycameras. Keyframes are a subset of cameras ensuring that two consecutive ones have at least a

certain amount of shared information. In a classic fashion the map is a cloud of points lying in R
3. We suppose the

camera calibrated, we thus know intrinsic parameters of the camera and the distorsion affecting image formation. We

first describe the operating of the SLAM initialized, then we skim the initialization.

At each image acquisition we define a new camera. Its pose is initialized according to the last camera’s one. Then

we undistort the image and apply an interest points detection and description method. To reduce ambiguities we

prefer the term measures over interest points. Measures are matched against those of the last keyframe and filtered

through a RANSAC procedure, from Fischer and Bolles6, applied to the 5-points algorithm from Nister et al, 16, for

essential matrix estimation. The filtered matchings allow to link inliers measures from the new camera to map’s

points. Then the camera pose can be adjusted through bundle adjustment, see3 or21, with its parameters defined as

the only optimizable ones through the process.

Shared information between the current camera and the last keyframe is evaluated as the number of inlier match-

ings. Shall this number fall below a treshold M or the number of observed map’s points fall below a treshold M′, with

M′ < M, the preceding camera is promoted to keyframe.

The new keyframe pose is precisely estimated, hence it is possible to seek to link some map’s points to unmatched

camera measures. Indeed, interest points’ detectors and descriptors aren’t perfectly accurate and some points observed

in, or matched between, images Ii−2 and Ii may not be detected, or matched, in image Ii−1. To do so, we browse the

points observed in keyframes preceding the last one, within the limit of l = 1000 points, and reproject them in the new

keyframe image plane. Descriptors of these points are then matched against those of unmatched measures. Matching

results are accepted if the distance between the measure and the reprojected point is below 5.99 ·σ2 measure units,

with σ being the standard error of measure detection. The treshold’s value is taken from Hartley and Zisserman’s9,

chapter 4. We observed in some cases this step is crucial for the algorithm success, especially when the camera field

of view is narrow. In a broader sense, this provides a tighter constraint of the problem.

Following this a local bundle adjustment is performed. In this bundle adjustment, following14, the last n = 3

keyframes see their pose parameters defined as optimizable while those of the N = 7 preceding keyframes are fixed,

but contribute to error evaluation. The locality of bundle adjustment is necessary to guarantee reasonnable execution

times. Fixed parameters are important as they permit to constrain the problem. Finally, inliers between the new

keyframe and the preceding one are triangulated if no map point is linked to them.

Initialisation is realised as follow: the very first frame is the first keyframe, its orientation is the identity and position

the origin, 0. Cameras are matched against it until the number of inliers falls below M′. Then the third keyframe is

defined as the preceding camera. The second keyframe is chosen between the first and third. Inlier measures are

triangulated and a bundle adjustment is performed with fixed parameters for the first keyframe pose.
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2.2. The need for depth

This system provides good results as long as a map of good quality is available. As a matter of fact, triangulation

needs to happen frequently so that the system can be better constrained, particularly to reduce noise measurement

impact, and because measures can only be matched as long as the point of view they’re seen under hasn’t too much

changed. However, the accuracy of triangulation grows with the distance between cameras’ positions, thus an accurate

triangulation requires to happen more occasionally. These two constraints are opposites, and the first one being the

strongest, there are some cases where the second constraint needs to be relaxed. It is the case when the camera

performs a purely rotational move or if the translation part is too small for its effect to be larger than interest points

detection’s noise. Then point’s triangulation is very likely to be extremely inaccurate.

Pure rotational moves are detectables and it is possible to forbid keyframe creation or point triangulation to prevent

deviant estimations. This at best allows to avoid some failure cases, hoping the number of matchings will stay

sufficiently high to constrain the system or that the camera will come back to some already mapped parts of the

environment, as in17 from Pirchheim et al.
The best way to solve this problem is probably to make use of some depth informations. There are at least two ways

to obtain depth. The first one is to use a second camera, the second one is to use a Kinect-like depth camera. The latter

provides direct depth measurement but have a limited range, some areas in depth image may contain no information

and some environments, particularly exteriors, subject to infra-red radiation can’t be mapped. The former needs to

perform an additional matching step, thus requires more computational power. In both cases, depth informations being

obtained on the triangulation principle measures are not perfectly accurate. To limit the computational needs of our

system we choose to use a depth camera Xtion Pro Live from ASUS.

3. Using depth

Unlike the majority of approaches using depth camera as the main sensor to perform SLAM, observing the limits

in terms of use case for the depth sensor, we choose to keep the RGB camera at the heart of our solution. Depth infor-

mations are thus used to replace the triangulation step when available. However, triangulation is only an initialisation

for points’ positions, which are afterwards refined through bundle adjustment. We thus wondered what use should be

made of depth measures through bundle adjustment. We distinguish several cases. Differences between these cases lie

in the way points are treated though bundle adjustment and the dimensionality of the space in which error evaluation

occurs.

In bundle adjustments camera pose parameters are treated the same way as they are in our monocular approach.

But errors, also called residuals, can be evaluated in three different ways. We note σi and σd the standard deviations

for image and depth measures. σi is considered to be about 1 pixel and we follow Scherer et al results to estimate σd .

• 2D:

Depth information is not used. Residuals are the usual 2D reprojection errors

f ({C,P}) = ∑
i

∑
j

h
(
(p(Ci,P j)−mi

j)
)

Where p() is the projection function of P j in Ci’s image plane and h() a robustified cost function. The role of it

is to limit the influence of outlier measures. We use the Huber cost function. This function grows quadratically

below a predefined threshold, and linearly above. As errors lie in a 2-dimensional space we set the threshold as

5.99 ·σ2
i , again from9.

• 3D:

Residuals are evaluated in 3D space, and we consider z j
i ·m j

i to be a 3D measure of the jth point position

according to camera i.

f ({C,P}) = ∑
i

∑
j

1

σi2 · z j
i

2
·h

(
(t(Ci,P j)− z j

i ·m j
i )
)
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Function t(.) replace the point P j in the reference of camera Ci. We recall that for a random variable x with a

gaussian distribution N (μ,σ2), the resulting random variable from multiplication with a scalar α has the gaus-

sian distribution N (α ·μ,α2 ·σ2). Thus we set the Huber function threshold as min
(

7.81 ·σ2
d , 7.81 · (z j

i ·σm)
2
)

.

As noted by Scherer et al in19, the drawback of this cost function is that the standard deviations of measures z j
i

and m j
i are not of the same order.

• 2+1D:

This is the solution of Scherer et al in19. Image and depth residuals are evaluated separately

f ({C,P}) = ∑
i

∑
j

1

σ2
i
·h((p(Ci,P j)−mi

j)
)
+

1

σ2
d
·h

(
(t(Ci,P j))[3]− z j

i

)

It is easy in this case to take the different standard deviations of measures into account. For depth errors, the

Huber function threshold is set to 3.84 ·σ2
d .

Points can be treated in two ways:

• opt: points can be optimized in bundle adjustment.

• fix: points are not optimizable, thus are anchored to the 3D position they have been initialized to.

These 3 residuals evaluation methods and 2 treatments define 6 strategies. We use the ceres library to optimize cost

functions. We consider a pinhole camera of 640×480 resolution with the following intrinsic parameters:

K =

⎛
⎝

546.04 0 316.66

0 546.05 234.71

0 0 1

⎞
⎠

4. Evaluations in small constrained environments

First we evaluated the 6 strategies in a small constrained environments with close objects so that depth measures

can be considered of good quality. We recorded 6 RGB-D streams, comprising between 3000 and 16000 images. We

tried to perform canonical moves with the camera. These canonical moves are either pure translations along a single

axis of the camera, X , Y , or Z, or near pure rotations around a single axis X , Y or Z. We name these sequences SeqX ,

SeqY , SeqZ and Seqθ , Seqφ , Seqψ . For each sequence we performed 3 round trips. For SeqX the maximal amplitude

of a round trip is about 100cm and scene’s depth is about 50cm, for SeqY 60cm and 50cm, for SeqZ 100cm and depth

belongs to the [50,150]cm interval. For rotational sequences movements amplitudes vary between 0 and π
2 radians.

Depths belong to the [50,100]cm interval for Seqθ , [50,150]cm for Seqφ , and [40,50]cm for Seqψ . Figure 1 displays

the first experimental scene and the result of a SLAM application.

For each sequence the last camera pose is almost the same as the first. We applied the 6 strategies to the 6

sequences. We use the OpenSURF implementation of the SURF, 8, detector and descriptor. In table 1 we show

position and orientation errors between the last and first camera pose. Each cell contains:

• The norm of the distance between cameras origins.

• The norm of the 3-vector made of the angular differences between axes. For readability these are expressed in

degrees.

Unsurprisingly, initializations of points positions being of good quality, we observe all 3 cost functions perform

well, the 2+1D appearing to be most accurate.

We find it much more interesting to observe that fixing points positions gives better estimations than not. Thus, it

appears in such small constrained environments to be possible without lost of accuracy to lighten bundle adjustment

costs. Indeed, when removing points from the set of parameters to optimize, the size of the matrix inversed during

bundle adjustment becomes significantly smaller since there are usually much more points parameters than camera

parameters. For all 6 sequences we measured a speed up of a factor between 3 and 4 during bundle adjustments.
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Fig. 1: (a) three images from SeqX . (b) reconstructions and frames’ positions obtained with fixed points and the 3D
cost function. Axes X , Y and Z are colored in red, green and blue.

5. Application: a relatively lightweight SLAM

From these observations we modified our general SLAM, refered to as Gen, to adapt it to these kind of small

constrained environments. Since in that case fixing map points is at least as efficient as optimizing them, performing

local bundle adjustments doesn’t provide much more improvements than using the most efficient cost function for

error minimization during pose estimation. We can thus remove the local bundle adjustment step from the algorithm.

We refer to this lightened version as Light.
On the road to elaborate a more efficient SLAM, several other improvements can be made. As we earlier indicated,

in the previous experiments we made use of SURF detector-descriptor. While it provides highly accurate point detec-

tion and good repeatability it is quite computationally expensive. On our machine SURF interest points detection and

description takes ususally between 150ms and 250ms. Though more erroneous, lighter weight alternatives exist. For

interest point detection we choose to use Harris corners and Censure points,1, named STAR in the OpenCV library.

For interest point description we observed binary descriptors ORB, 18, and BRISK, 12, provide similar accuracy, thus

we can use one or the other. In table 2, we use the acronym HCB to refer to the combination of Harris corners detector,

Censure points detector and BRISK descriptor.
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2D 3D 2+1D
opt fix opt fix opt fix

SeqX
cm
◦

6.41

10.18

4.98

8.82

3.46

7.57

2.06
6.52

4.93

9.24

3.11

7.46

SeqY
cm
◦

1.31

3.58

0.51

3.94

0.76

3.62

0.39

3.51
0.61

3.68

0.34
3.65

SeqZ
cm
◦

1.99

1.17

1.77

1.08

3.35

1.80

3.02

1.58

2.58

1.48

1.59
0.99

Seqθ
cm
◦

0.38

3.48

0.15
3.14

1.09

3.74

0.89

3.36

0.53

3.20

0.47

3.21

Seqφ
cm
◦

1.72

2.98

0.87
3.62

2.71

2.66

3.50

2.59
1.36

3.75

1.15

3.48

Seqψ
cm
◦

4.50

4.43

0.41

1.31

0.58

0.68

0.30

0.66
0.63

1.17

0.18
0.84

Mean
cm
◦

2.72

4.3

1.45

3.65

1.99

3.35

1.69

3.04

1.77

3.75

1.14

3.27

Table 1: Pose errors for the last camera in position (cm) and orientation (degrees) for the six sequences for each

strategy. For each one the best result is outlined in bold red.

While those descriptors can be fastly matched, they exhibit a significant quantity of outliers. Thus the drawback

is the 5points-RANSAC based filtering may need a significant number of iterations to reach consensus, reducing the

speed up gained during the matching step.

This can be circumvented using an inertial measurements unit, IMU. We use an XSens IMU which internally uses an

extended Kalman filter to estimate its orientation. While orientations show drift accumulation over time, we observed

it growing sufficiently slowly between two keyframes to provide good estimations of the camera relative rotation,

provided the IMU’s axes and the camera’s axes are aligned. Alignement is easily achieved via a quick calibration of

the hybrid sensor. Knowing the relative rotation of camera greatly simplifies the filtering step, since we only need to

estimate the translation part of the essential matrix. We thus need to estimate only 2 parameters. The computational

impact during RANSAC filtering of outliers matchings is then greatly reduced.The Light version applied with this

scheme is refered as Light imu. The reader might be interested to know Kneip et al made the same observations in11.

We recorded a sequence similar to the SeqX one with inertial measures. This one is however about only one round

trip, its whole length is thus about 2m. We applied the light versions of our SLAM on the sequence. In table 2 we

compare the precedently devised RGB-D SLAM using the 2+1D cost function, with the lightweight version.

Framerate Errors

Position Orientation

Gen SURF 3.2 fps 1.56cm 2.11◦
Light SURF 3.3 fps 1.25cm 2.88◦
Gen HCB 4.1 fps 2.78cm 1.71◦
Light HCB 6.5 fps 1.51cm 4.17◦
Light imu HCB 8.9 fps 0.78cm 3.86◦

Table 2: Comparison between our general RGB-D SLAM and some lightweight alternatives designed for small con-

strained environments.

Using SURF interest points we don’t see important speed-up. The time needed to compute these being significantly

more important than those of the other parts of the process.

However processing times are drastically reduced using the HCB points. We observe speed up of 1.58 and 2.17.

We also observe the camera pose estimation doesn’t suffer from these improvements.
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6. Conclusion

We compared six ways of using depth informations in visual SLAM: we compared three cost functions and found

one being more efficient than the others. We observed in some cases it may be more interesting not to optimize map

points and from this devised some modifications to lighten our SLAM. Real results proved the efficiency of these

modifications.
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