A geometric degree formula for A-discriminants and Euler obstructions of toric varieties

Yutaka Matsui ${ }^{\text {a,* }}$, Kiyoshi Takeuchi ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, Kinki University, 3-4-1, Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
${ }^{\text {b }}$ Institute of Mathematics, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8571, Japan

Received 12 June 2009; accepted 20 August 2010
Available online 6 October 2010
Communicated by Takahiro Kawai

Abstract

We give explicit formulas for the dimensions and the degrees of A-discriminant varieties introduced by Gelfand, Kapranov and Zelevinsky. Our formulas can be applied also to the case where the A-discriminant varieties are higher-codimensional and their degrees are described by the geometry of the configurations A. Moreover combinatorial formulas for the Euler obstructions of general (not necessarily normal) toric varieties will be also given.

© 2010 Elsevier Inc. All rights reserved.
MSC: 14M25; 14N05; 32S60; 33C70; 35A27
Keywords: Discriminants; Toric varieties; Euler obstructions

1. Introduction

The theory of discriminants is on the crossroad of various branches of mathematics, such as commutative algebra, combinatorics, algebraic geometry, singularity theory and topology. In [14], Gelfand, Kapranov and Zelevinsky generalized this classical theory to polynomials of several variables by introducing A-discriminant varieties and obtained many deep results. They thus laid the foundation of the modern theory of discriminants. The first aim of this paper is to give formulas for the dimensions and the degrees of A-discriminant varieties.

[^0]Now let $M \simeq \mathbb{Z}^{n}$ be a \mathbb{Z}-lattice (free \mathbb{Z}-module) of rank n and $M_{\mathbb{R}}:=\mathbb{R} \otimes_{\mathbb{Z}} M$ the real vector space associated with M. Let $A \subset M$ be a finite subset of M and denote by P its convex hull in $M_{\mathbb{R}}$. In this paper, we assume that $\operatorname{dim} P=n$. If $A=\{\alpha(1), \alpha(2), \ldots, \alpha(m+1)\}$, we can define a morphism $\Phi_{A}: T \rightarrow \mathbb{P}^{m}(m:=\sharp A-1)$ from an algebraic torus $T:=\operatorname{Spec}(\mathbb{C}[M])=\left(\mathbb{C}^{*}\right)^{n}$ to a complex projective space \mathbb{P}^{m} by

$$
\begin{equation*}
x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mapsto\left[x^{\alpha(1)}: x^{\alpha(2)}: \cdots: x^{\alpha(m+1)}\right], \tag{1.1}
\end{equation*}
$$

where for each $\alpha(i) \in A \subset M \simeq \mathbb{Z}^{n}$ and $x \in T$ we set $x^{\alpha(i)}=x_{1}^{\alpha(i)_{1}} x_{2}^{\alpha(i)_{2}} \cdots x_{n}^{\alpha(i)_{n}}$ as usual.
Definition 1.1. (See [14].) Let $X_{A}:=\overline{\operatorname{im} \Phi_{A}}$ be the closure of the image of $\Phi_{A}: T \rightarrow \mathbb{P}^{m}$. Then the dual variety $X_{A}^{*} \subset\left(\mathbb{P}^{m}\right)^{*}$ of X_{A} is called the A-discriminant variety. If moreover X_{A}^{*} is a hypersurface in the dual projective space $\left(\mathbb{P}^{m}\right)^{*}$, then the defining homogeneous polynomial of X_{A}^{*} (which is defined up to non-zero constant multiples) is called the A-discriminant.

Note that the A-discriminant variety X_{A}^{*} is naturally identified with (the projectivization of) the closure of the set of Laurent polynomials $f: T=\left(\mathbb{C}^{*}\right)^{n} \rightarrow \mathbb{C}$ of the form $f(x)=$ $\sum_{\alpha \in A} a_{\alpha} x^{\alpha}\left(a_{\alpha} \in \mathbb{C}\right)$ such that $\{x \in T \mid f(x)=0\}$ is a singular hypersurface in T. In order to introduce the degree formula for A-discriminants proved by Gelfand et al. [14], we need the following.

Definition 1.2. (See [14].) For a subset $B \subset M \simeq \mathbb{Z}^{n}$, we define an affine \mathbb{Z}-sublattice $M(B)$ of M by

$$
\begin{equation*}
M(B):=\left\{\sum_{v \in B} c_{v} \cdot v \mid c_{v} \in \mathbb{Z}, \sum_{v \in B} c_{v}=1\right\} . \tag{1.2}
\end{equation*}
$$

Let $\Delta \prec P$ be a face of P and denote by $\mathbb{L}(\Delta)$ the smallest affine subspace of $M_{\mathbb{R}}$ containing Δ. Then $M(A \cap \Delta)$ is a \mathbb{Z}-lattice of r ank $\operatorname{dim} \Delta=\operatorname{dim} \mathbb{L}(\Delta)$ in $\mathbb{L}(\Delta)$ and we have $(M(A \cap \Delta))_{\mathbb{R}} \simeq \mathbb{L}(\Delta)$. After fixing a \mathbb{Z}-basis of the lattice $M(A \cap \Delta)$, let vol be the Lebesgue measure of $(\mathbb{L}(\Delta), M(A \cap \Delta))$ by which the volume of the $(\operatorname{dim} \Delta)$-dimensional standard (smallest and integral) cube in it is measured to be 1 . For a subset $K \subset \mathbb{L}(\Delta)$, we set

$$
\begin{equation*}
\operatorname{Vol}_{\mathbb{Z}}(K):=(\operatorname{dim} \Delta)!\cdot \operatorname{vol}(K) \tag{1.3}
\end{equation*}
$$

We call it the normalized $(\operatorname{dim} \Delta)$-dimensional volume of K with respect to the lattice $M(A \cap \Delta)$. In other words, for the $(\operatorname{dim} \Delta)$-dimensional standard simplex S in $(\mathbb{L}(\Delta), M(A \cap \Delta))$ we set $\mathrm{Vol}_{\mathbb{Z}}(S)=1$. Then the normalized volume of any integral polytope in $(\mathbb{L}(\Delta), M(A \cap \Delta))$ is an integer. Throughout this paper, we use this normalized volume $\mathrm{Vol}_{\mathbb{Z}}$ instead of the usual one vol.

The following formula is obtained by Gelfand et al. [14, Chapter 9, Theorem 2.8].
Theorem 1.3. (See [14].) Assume that $X_{A} \subset \mathbb{P}^{m}$ is smooth and X_{A}^{*} is a hypersurface in $\left(\mathbb{P}^{m}\right)^{*}$. Then the degree of the A-discriminant is given by the formula:

$$
\begin{equation*}
\operatorname{deg} X_{A}^{*}=\sum_{\Delta<P}(-1)^{\operatorname{codim} \Delta}(\operatorname{dim} \Delta+1) \operatorname{Vol}_{\mathbb{Z}}(\Delta) \tag{1.4}
\end{equation*}
$$

In order to state our generalization of Theorem 1.3 to the case where X_{A}^{*} may be highercodimensional, recall that $T=\operatorname{Spec}(\mathbb{C}[M])$ acts naturally on X_{A} and we have a basic correspondence $(0 \leqslant k \leqslant n=\operatorname{dim} P)$:

$$
\begin{equation*}
\{k \text {-dimensional faces of } P\} \stackrel{1: 1}{\longleftrightarrow}\left\{k \text {-dimensional } T \text {-orbits in } X_{A}\right\} \tag{1.5}
\end{equation*}
$$

proved by [14, Chapter 5, Proposition 1.9]. For a face $\Delta \prec P$ of P, we denote by T_{Δ} the corresponding T-orbit in X_{A}. We denote the value of the Euler obstruction $\mathrm{Eu}_{X_{A}}: X_{A} \rightarrow \mathbb{Z}$ of X_{A} on T_{Δ} by $\operatorname{Eu}(\Delta) \in \mathbb{Z}$. The precise definition of the Euler obstruction will be given later in Section 4. Here we simply recall that the Euler obstruction of X_{A} is constant along each T-orbit T_{Δ} and takes the value 1 on the smooth part of X_{A}. In particular, for $\Delta=P$ the T-orbit T_{Δ} is open dense in X_{A} and $\operatorname{Eu}(\Delta)=1$. Then we have

Theorem 1.4. For $1 \leqslant i \leqslant m$, set

$$
\begin{equation*}
\delta_{i}:=\sum_{\Delta<P}(-1)^{\operatorname{codim} \Delta}\left\{\binom{\operatorname{dim} \Delta-1}{i}+(-1)^{i-1}(i+1)\right\} \operatorname{Vol}_{\mathbb{Z}}(\Delta) \cdot \operatorname{Eu}(\Delta) . \tag{1.6}
\end{equation*}
$$

Then the codimension $r=\operatorname{codim} X_{A}^{*}=m-\operatorname{dim} X_{A}^{*}$ and the degree of the dual variety X_{A}^{*} are given by

$$
\begin{align*}
r=\operatorname{codim} X_{A}^{*} & =\min \left\{i \mid \delta_{i} \neq 0\right\}, \tag{1.7}\\
\operatorname{deg} X_{A}^{*} & =\delta_{r} . \tag{1.8}
\end{align*}
$$

Remark 1.5.

(i) For $p \in \mathbb{Z}$ and $q \in \mathbb{Z}_{\geqslant 0}$, we used the generalized binomial coefficient

$$
\begin{equation*}
\binom{p}{q}=\frac{p(p-1)(p-2) \cdots(p-q+1)}{q!} \tag{1.9}
\end{equation*}
$$

For example, for a vertex $\Delta=\{v\} \prec P$, we have $\binom{\operatorname{dim} \Delta-1}{i}=\binom{-1}{i}=(-1)^{i}$.
(ii) The number $\operatorname{codim} X_{A}^{*}-1$ is called the dual defect of X_{A}.

Corollary 1.6. Assume that X_{A}^{*} is a hypersurface in $\left(\mathbb{P}^{m}\right)^{*}$. Then the degree of the A-discriminant is given by

$$
\begin{equation*}
\operatorname{deg} X_{A}^{*}=\sum_{\Delta<P}(-1)^{\operatorname{codim} \Delta}(\operatorname{dim} \Delta+1) \operatorname{Vol}_{\mathbb{Z}}(\Delta) \cdot \operatorname{Eu}(\Delta) . \tag{1.10}
\end{equation*}
$$

The above theorem will be proved by using Ernström's degree formula for dual varieties in [8] and our result in [24]. Note that very recently by using tropical algebraic geometry, also Dickenstein et al. [5] obtained a totally different degree formula for the A-discriminant variety X_{A}^{*}. Their main application of the results in [5] is a generalization of the degree formula for X_{A}^{*} in [14] to the case where X_{A}^{*} is higher-codimensional. Indeed, if X_{A}^{*} is a hypersurface the degree formula for X_{A}^{*} is implicit in Gelfand-Kapranov-Zelevinsky's prime factorization theorem [14,

Chapter 10, Theorem 1.2]. The formula in [5] is described by some combinatorics such as matroids related to P. On the other hand, our formula is described by the (normalized) volumes of the faces of P as the results in [14]. In particular, if X_{A} is a smooth hypersurface, our formula coincides with Gelfand-Kapranov-Zelevinsky's theorem (Theorem 1.3). In Section 4, we will give geometric formulas which express the Euler obstruction $\mathrm{Eu}_{X_{A}}: X_{A} \rightarrow \mathbb{Z}$ of X_{A} in terms of the normalized volumes of the faces of P. Note that a beautiful formula for the Euler obstructions of 2-dimensional normal toric varieties was proved by Gonzalez-Sprinberg [15]. Our formulas generalize it to arbitrary (not necessarily normal) toric varieties. Combining them with Theorem 1.4 above, we can describe the dimension and the degree of X_{A}^{*} by the geometry of P for any configuration $A \subset M=\mathbb{Z}^{n}$. Recently in [9] Esterov found some nice applications of our formulas.

Our functorial proof of the formula for the Euler obstruction $\mathrm{Eu}_{X_{A}}: X_{A} \rightarrow \mathbb{Z}$ leads us to other applications. In Section 5, we derive from it some formulas (Theorems 5.3 and 5.4) for the characteristic cycles of T-equivariant constructible sheaves on general (not necessarily normal) toric varieties. See [2] for another approach to this problem. In particular, combining it with the combinatorial description of the intersection cohomology complexes of toric varieties obtained by Bernstein, Khovanskii and MacPherson (unpublished), Denef and Loeser [4] and Fieseler [10], etc., we can derive combinatorial formulas for the characteristic cycle of the intersection cohomology complex of any normal toric variety. See Section 5 for the details. Note that in [14, Chapter 10, Theorem 2.11] also Gelfand et al. obtained a formula for the characteristic cycles in a special but important case, from which they could have obtained the same result by some generalization. However we included here a proof of Theorems 5.3 and 5.4, since we cannot find such an explicit presentation in the literature and the lack of it seems to be the source of many misunderstandings. For example, even in a special case, Schulze and Walther [27] corrected the formula in [13] for the characteristic cycles of the A-hypergeometric systems only very recently. We tried to show the power and the beauty of the sheaf-theoretical methods (see for example, $[6,16,18])$ by proving Theorems 4.7 and 5.4 functorially. Moreover, during the proof of these results, we obtained an explicit description (4.43) of the branches along torus orbits in non-normal toric varieties found in [14, Chapter 5, Theorem 3.1] and gave a rigorous justification to the argument on non-normal toric varieties in [14, Chapter 5, Theorem 3.1]. This explicit description seems to be new and useful in non-normal toric geometry. We believe that Theorems 1.4, 4.3 and 4.7 are new, although our proof of Theorem 4.7 heavily depends on some ingenious constructions in [14]. Finally, let us mention that combining our combinatorial description of the Euler obstructions of toric varieties with the result of Ehlers (unpublished) and Barthel et al. [1] we can now compute the Chern-Mather classes of complete toric varieties very easily.

2. Preliminary notions and results

In this section, we introduce basic notions and results which will be used in this paper. In this paper, we essentially follow the terminology of $[6,16,18]$. For example, for a topological space X we denote by $\mathbf{D}^{b}(X)$ the derived category whose objects are bounded complexes of sheaves of \mathbb{C}_{X}-modules on X.

Definition 2.1. Let X be an algebraic variety over \mathbb{C}. Then
(i) We say that a sheaf \mathcal{F} on X is constructible if there exists a stratification $X=\bigsqcup_{\alpha} X_{\alpha}$ of X such that $\left.\mathcal{F}\right|_{X_{\alpha}}$ is a locally constant sheaf of finite rank for any α.
(ii) We say that an object \mathcal{F} of $\mathbf{D}^{b}(X)$ is constructible if the cohomology sheaf $H^{j}(\mathcal{F})$ of \mathcal{F} is constructible for any $j \in \mathbb{Z}$. We denote by $\mathbf{D}_{c}^{b}(X)$ the full subcategory of $\mathbf{D}^{b}(X)$ consisting of constructible objects \mathcal{F}.

Recall that for any morphism $f: X \rightarrow Y$ of algebraic varieties over \mathbb{C} there exist functors

$$
\begin{equation*}
R f_{*}: \mathbf{D}^{b}(X) \rightarrow \mathbf{D}^{b}(Y), \quad R f_{*}: \mathbf{D}_{c}^{b}(X) \rightarrow \mathbf{D}_{c}^{b}(Y) \tag{2.1}
\end{equation*}
$$

of direct images. For other basic operations $R f_{!}, f^{-1}, f^{!}$, etc. in derived categories, see [18] for the details.

Next we introduce the notion of constructible functions.

Definition 2.2. Let X be an algebraic variety over \mathbb{C}. Then we say a \mathbb{Z}-valued function $\rho: X \rightarrow \mathbb{Z}$ on X is constructible if there exists a stratification $X=\bigsqcup_{\alpha} X_{\alpha}$ of X such that $\left.\rho\right|_{X_{\alpha}}$ is constant for any α. We denote by $\mathrm{CF}_{\mathbb{Z}}(X)$ the abelian group of constructible functions on X.

For a constructible function $\rho: X \rightarrow \mathbb{Z}$ take a stratification $X=\bigsqcup_{\alpha} X_{\alpha}$ of X such that $\left.\rho\right|_{X_{\alpha}}$ is constant for any α as above. Denoting the Euler characteristic of X_{α} by $\chi\left(X_{\alpha}\right)$ we set

$$
\begin{equation*}
\int_{X} \rho:=\sum_{\alpha} \chi\left(X_{\alpha}\right) \cdot \rho\left(x_{\alpha}\right) \in \mathbb{Z}, \tag{2.2}
\end{equation*}
$$

where x_{α} is a reference point in X_{α}. Then we can easily show that $\int_{X} \rho \in \mathbb{Z}$ does not depend on the choice of the stratification $X=\bigsqcup_{\alpha} X_{\alpha}$ of X. We call $\int_{X} \rho \in \mathbb{Z}$ the topological (Euler) integral of ρ over X.

Among various operations in derived categories, the following nearby and vanishing cycle functors introduced by Deligne will be frequently used in this paper (see [6, Section 4.2] for an excellent survey of this subject).

Definition 2.3. Let $f: X \rightarrow \mathbb{C}$ be a non-constant regular function on an algebraic variety X over \mathbb{C}. Set $X_{0}:=\{x \in X \mid f(x)=0\} \subset X$ and let $i_{X}: X_{0} \hookrightarrow \underset{\widetilde{C}}{X}, j_{X}: X \backslash X_{0} \hookrightarrow X$ be inclusions. Let $p: \widetilde{\mathbb{C}^{*}} \rightarrow \mathbb{C}^{*}$ be the universal covering of $\mathbb{C}^{*}=\mathbb{C} \backslash\{0\}\left(\widetilde{\mathbb{C}^{*}} \simeq \mathbb{C}\right)$ and consider the Cartesian square

Then for $\mathcal{F} \in \mathbf{D}^{b}(X)$ we set

$$
\begin{equation*}
\psi_{f}(\mathcal{F}):=i_{X}^{-1} R\left(j_{X} \circ p_{X}\right)_{*}\left(j_{X} \circ p_{X}\right)^{-1} \mathcal{F} \in \mathbf{D}^{b}\left(X_{0}\right) \tag{2.4}
\end{equation*}
$$

and call it the nearby cycle of \mathcal{F}. We also define the vanishing cycle $\varphi_{f}(\mathcal{F}) \in \mathbf{D}^{b}\left(X_{0}\right)$ of \mathcal{F} to be the third term of the distinguished triangle:

$$
\begin{equation*}
i_{X}^{-1} \mathcal{F} \longrightarrow \psi_{f}(\mathcal{F}) \longrightarrow \varphi_{f}(\mathcal{F}) \xrightarrow{+1} \tag{2.5}
\end{equation*}
$$

in $\mathbf{D}^{b}\left(X_{0}\right)$, where $i_{X}^{-1} \mathcal{F} \rightarrow \psi_{f}(\mathcal{F})$ is the morphism induced by id $\rightarrow R\left(j_{X} \circ p_{X}\right)_{*}\left(j_{X} \circ p_{X}\right)^{-1}$.
Since nearby and vanishing cycle functors preserve the constructibility, in the above situation we obtain functors

$$
\begin{equation*}
\psi_{f}, \varphi_{f}: \mathbf{D}_{c}^{b}(X) \rightarrow \mathbf{D}_{c}^{b}\left(X_{0}\right) \tag{2.6}
\end{equation*}
$$

The following theorem will play a crucial role in this paper. For the proof, see for example, [6, Proposition 4.2.11].

Theorem 2.4. (See [6].) Let $\pi: Y \rightarrow X$ be a proper morphism of algebraic varieties over \mathbb{C} and $f: X \rightarrow \mathbb{C}$ a non-constant regular function on X. Set $g:=f \circ \pi: Y \rightarrow \mathbb{C}, X_{0}:=\{x \in X \mid$ $f(x)=0\}$ and $Y_{0}:=\{y \in Y \mid g(y)=0\}=\pi^{-1}\left(X_{0}\right)$. Then for any $\mathcal{G} \in \mathbf{D}_{c}^{b}(Y)$ we have

$$
\begin{array}{r}
R\left(\left.\pi\right|_{Y_{0}}\right)_{*} \psi_{g}(\mathcal{G})=\psi_{f}\left(R \pi_{*} \mathcal{G}\right), \\
R\left(\left.\pi\right|_{Y_{0}}\right)_{*} \varphi_{g}(\mathcal{G})=\varphi_{f}\left(R \pi_{*} \mathcal{G}\right) \tag{2.8}
\end{array}
$$

in $\mathbf{D}_{c}^{b}\left(X_{0}\right)$, where $\left.\pi\right|_{Y_{0}}: Y_{0} \rightarrow X_{0}$ is the restriction of π.
Let us recall the definition of characteristic cycles of constructible sheaves. Let X be a smooth algebraic variety over \mathbb{C} and $\mathcal{F} \in \mathbf{D}_{c}^{b}(X)$. Then there exists a Whitney stratification $X=\bigsqcup_{\alpha} X_{\alpha}$ of X consisting of connected strata X_{α} such that $\left.H^{j}(\mathcal{F})\right|_{X_{\alpha}}$ is a locally constant sheaf for any $j \in \mathbb{Z}$ and α. For a point $x_{\alpha} \in X_{\alpha}$, take a holomorphic function $f: U_{\alpha} \rightarrow \mathbb{C}$ defined in a neighborhood U_{α} of x_{α} in X which satisfies the conditions
(i) $f\left(x_{\alpha}\right)=0$,
(ii) $\left(x_{\alpha} ; \operatorname{grad} f\left(x_{\alpha}\right)\right) \in T_{X_{\alpha}}^{*} X \backslash\left(\bigcup_{\beta \neq \alpha} \overline{T_{X_{\beta}}^{*} X}\right)$,
(iii) $x_{\alpha} \in X_{\alpha}$ is a non-degenerate critical point of $\left.f\right|_{X_{\alpha}}$,
and set

$$
\begin{align*}
m_{\alpha} & :=-\chi\left(\varphi_{f}(\mathcal{F})_{x_{\alpha}}\right) \tag{2.9}\\
& =-\sum_{j \in \mathbb{Z}}(-1)^{j} \operatorname{dim}_{\mathbb{C}}\left(H^{j}\left(\varphi_{f}(\mathcal{F})\right)_{x_{\alpha}}\right) \in \mathbb{Z} . \tag{2.10}
\end{align*}
$$

Then we can show that the integer m_{α} does not depend on the choice of the stratification $X=$ $\bigsqcup_{\alpha} X_{\alpha}, x_{\alpha} \in X_{\alpha}$ and f.

Definition 2.5. By using the above integers $m_{\alpha} \in \mathbb{Z}$, we define a Lagrangian cycle $\operatorname{CC}(\mathcal{F})$ in the cotangent bundle $T^{*} X$ of X by

$$
\begin{equation*}
C C(\mathcal{F}):=\sum_{\alpha} m_{\alpha}\left[\overline{T_{X_{\alpha}}^{*} X}\right] . \tag{2.11}
\end{equation*}
$$

We call $C C(\mathcal{F})$ the characteristic cycle of $\mathcal{F} \in \mathbf{D}_{c}^{b}(X)$. Its coefficient $m_{\alpha} \in \mathbb{Z}$ is called the multiplicity of \mathcal{F} along the Lagrangian subvariety $\overline{T_{X_{\alpha}}^{*} X} \subset T^{*} X$.

Recall that in $\mathbf{D}_{c}^{b}(X)$ there exists a full abelian subcategory $\operatorname{Perv}(X)$ of perverse sheaves (see [16,18], etc. for the details of this subject). Although for the definition of perverse sheaves there are some different conventions of shifts in the literature, here we adopt the one in [16] by which the shifted constant sheaf $\mathbb{C}_{X}[\operatorname{dim} X] \in \mathbf{D}_{c}^{b}(X)$ on a smooth algebraic variety X is perverse. Then for any perverse sheaf $\mathcal{F} \in \operatorname{Perv}(X) \subset \mathbf{D}_{c}^{b}(X)$ on a smooth algebraic variety X we can easily show that the multiplicities in the characteristic cycle $C C(\mathcal{F})$ of \mathcal{F} are non-negative.

Example 2.6. Let $X=\mathbb{C}_{x}^{n}$ and $Y=\left\{x_{1}=\cdots=x_{d}=0\right\} \subset X=\mathbb{C}_{x}^{n}$. Set $\mathcal{F}:=\mathbb{C}_{Y}[n-d] \in$ $\operatorname{Perv}(X)$. Then by an easy computation

$$
\begin{equation*}
m=-\chi\left(\varphi_{f}\left(\mathbb{C}_{Y}[n-d]\right)_{0}\right)=1 \tag{2.12}
\end{equation*}
$$

for $f(x)=x_{1}+x_{d+1}^{2}+\cdots+x_{n}^{2}$ at $0 \in Y \subset X=\mathbb{C}_{x}^{n}$ we obtain

$$
\begin{equation*}
C C(\mathcal{F})=1 \cdot\left[T_{Y}^{*} X\right] . \tag{2.13}
\end{equation*}
$$

Finally, we recall a special case of Bernstein-Khovanskii-Kushnirenko's theorem [19,20].
Definition 2.7. Let $g(x)=\sum_{v \in \mathbb{Z}^{n}} a_{v} x^{v}$ be a Laurent polynomial on $\left(\mathbb{C}^{*}\right)^{n}\left(a_{v} \in \mathbb{C}\right)$. We call the convex hull of $\operatorname{supp}(g):=\left\{v \in \mathbb{Z}^{n} \mid a_{v} \neq 0\right\} \subset \mathbb{Z}^{n} \subset \mathbb{R}^{n}$ in \mathbb{R}^{n} the Newton polytope of g and denote it by $N P(g)$.

Theorem 2.8. (See [19,20].) Let Δ be an integral polytope in \mathbb{R}^{n} and g_{1}, \ldots, g_{p} generic Laurent polynomials on $\left(\mathbb{C}^{*}\right)^{n}$ satisfying $N P\left(g_{i}\right)=\Delta$. Then the Euler characteristic of the subvariety $Z^{*}=\left\{x \in\left(\mathbb{C}^{*}\right)^{n} \mid g_{1}(x)=\cdots=g_{p}(x)=0\right\}$ of $\left(\mathbb{C}^{*}\right)^{n}$ is given by

$$
\begin{equation*}
\chi\left(Z^{*}\right)=(-1)^{n-p}\binom{n-1}{p-1} \operatorname{Vol}_{\mathbb{Z}}(\Delta) \tag{2.14}
\end{equation*}
$$

where $\operatorname{Vol}_{\mathbb{Z}}(\Delta) \in \mathbb{Z}$ is the normalized n-dimensional volume of Δ with respect to the lattice $\mathbb{Z}^{n} \subset \mathbb{R}^{n}$.

3. Proof of Theorem 1.4

In this section, we prove Theorem 1.4. First, by [14, Chapter 5, Proposition 1.2] we may assume that $M(A)=M$. Recall that for $\alpha(j) \in A(1 \leqslant j \leqslant \sharp A=m+1)$ the function

$$
\begin{equation*}
T=\left(\mathbb{C}^{*}\right)^{n} \ni x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mapsto x^{\alpha(j)} \in \mathbb{C}^{*} \tag{3.1}
\end{equation*}
$$

is defined by the canonical pairing

$$
\begin{equation*}
T \times M=\operatorname{Hom}_{\mathbb{Z}}\left(M, \mathbb{C}^{*}\right) \times M \rightarrow \mathbb{C}^{*} \tag{3.2}
\end{equation*}
$$

where we consider \mathbb{C}^{*} as an abelian group (i.e. a \mathbb{Z}-module) and $\operatorname{Hom}_{\mathbb{Z}}\left(M, \mathbb{C}^{*}\right)$ denotes the group of homomorphisms of \mathbb{Z}-modules from M to \mathbb{C}^{*}. Then by the condition $M(A)=M$ we can easily see that the morphism $\Phi_{A}: T \simeq\left(\mathbb{C}^{*}\right)^{n} \rightarrow \mathbb{P}^{m}$ induces an isomorphism $T \simeq$ $\Phi_{A}(T) \simeq\left(\mathbb{C}^{*}\right)^{n}$. Note that $\Phi_{A}(T) \simeq\left(\mathbb{C}^{*}\right)^{n}$ is the largest T-orbit T_{P} in $X_{A}=\overline{\operatorname{im} \Phi_{A}} \subset \mathbb{P}^{m}$. We can construct such an isomorphism also for any T-orbit $T_{\Delta}(\Delta \prec P)$ in X_{A} as follows. For a face $\Delta<P$ of P, taking a point $\alpha(j) \in M(A \cap \Delta) \subset M \cap \mathbb{L}(\Delta)$ to be the origin of the lattices $M(A \cap \Delta)$ and $M \cap \mathbb{L}(\Delta)$, we consider $M(A \cap \Delta)$ as a sublattice (\mathbb{Z}-submodule) of $M \cap \mathbb{L}(\Delta)$. By this choice of the origin $0=\alpha(j)$ of the lattice $M(A \cap \Delta) \simeq \mathbb{Z}^{\operatorname{dim} \Delta}$, we can construct a morphism $\Phi_{A \cap \Delta}: \operatorname{Hom}_{\mathbb{Z}}\left(M(A \cap \Delta), \mathbb{C}^{*}\right) \simeq\left(\mathbb{C}^{*}\right)^{\operatorname{dim} \Delta} \rightarrow \mathbb{P}^{m}$ as follows. First, for $x \in \operatorname{Hom}_{\mathbb{Z}}\left(M(A \cap \Delta), \mathbb{C}^{*}\right) \simeq\left(\mathbb{C}^{*}\right)^{\operatorname{dim} \Delta}$ and $\alpha \in M(A \cap \Delta)$ denote by $x^{\alpha} \in \mathbb{C}^{*}$ the image of the pair (x, α) by the canonical paring

$$
\begin{equation*}
\operatorname{Hom}_{\mathbb{Z}}\left(M(A \cap \Delta), \mathbb{C}^{*}\right) \times(M(A \cap \Delta)) \rightarrow \mathbb{C}^{*} \tag{3.3}
\end{equation*}
$$

Then the morphism $\Phi_{A \cap \Delta}: \operatorname{Hom}_{\mathbb{Z}}\left(M(A \cap \Delta), \mathbb{C}^{*}\right) \rightarrow \mathbb{P}^{m}$ is defined by

$$
\begin{equation*}
\Phi_{A \cap \Delta}(x)=\left[\xi_{1}: \xi_{2}: \cdots: \xi_{m+1}\right] \tag{3.4}
\end{equation*}
$$

for $x \in \operatorname{Hom}_{\mathbb{Z}}\left(M(A \cap \Delta), \mathbb{C}^{*}\right) \simeq\left(\mathbb{C}^{*}\right)^{\operatorname{dim} \Delta}$, where we set

$$
\xi_{k}:= \begin{cases}x^{\alpha(k)} & \text { if } \alpha(k) \in A \cap \mathbb{L}(\Delta) \tag{3.5}\\ 0 & \text { otherwise }\end{cases}
$$

In this situation, by [14, Proposition 1.2 and Proposition 1.9 in Chapter 5] the T-orbit T_{Δ} coincides with the image of $\Phi_{A \cap \Delta}$ and we can easily prove that the morphism

$$
\begin{equation*}
\Phi_{A \cap \Delta}: \operatorname{Hom}_{\mathbb{Z}}\left(M(A \cap \Delta), \mathbb{C}^{*}\right) \rightarrow \Phi_{A \cap \Delta}\left(\left(\mathbb{C}^{*}\right)^{\operatorname{dim} \Delta}\right)=T_{\Delta} \tag{3.6}
\end{equation*}
$$

is an isomorphism. By making use of this very simple description of $\Phi_{A \cap \Delta}:\left(\mathbb{C}^{*}\right)^{\operatorname{dim} \Delta} \xrightarrow{\sim} T_{\Delta}$ for the faces $\Delta \prec P$, we can now give a proof of our theorem. For $1 \leqslant i \leqslant m$, we take a generic linear subspace $H \simeq \mathbb{P}^{m-1}$ (resp. $H_{i+1} \simeq \mathbb{P}^{m-i-1}$) of \mathbb{P}^{m} of codimension 1 (resp. $i+1$) and set

$$
\begin{equation*}
\delta_{i}:=(-1)^{n+i-1}\left\{i \int_{\mathbb{P}^{m}} \mathrm{Eu}_{X_{A}}-(i+1) \int_{H} \mathrm{Eu}_{X_{A}}+\int_{H_{i+1}} \mathrm{Eu}_{X_{A}}\right\} . \tag{3.7}
\end{equation*}
$$

Here we set $H_{m+1}:=\emptyset$. Then by [8, Theorem 1.1] and [24, Remark 3.3] (see also [22] and [23]) the codimension $r=\operatorname{codim} X_{A}^{*}=m-\operatorname{dim} X_{A}^{*}$ and the degree of the dual variety $X_{A}^{*} \subset\left(\mathbb{P}^{m}\right)^{*}$ of X_{A} are given by

$$
\begin{gather*}
r=\operatorname{codim} X_{A}^{*}=\min \left\{1 \leqslant i \leqslant m \mid \delta_{i} \neq 0\right\}, \tag{3.8}\\
\operatorname{deg} X_{A}^{*}=\delta_{r} . \tag{3.9}
\end{gather*}
$$

Hence it remains for us to rewrite the above integers $\delta_{i}(1 \leqslant i \leqslant m)$. First of all, since the Euler obstruction $\mathrm{Eu}_{X_{A}}: X_{A} \rightarrow \mathbb{Z}$ is constant on each T-orbit $T_{\Delta} \simeq\left(\mathbb{C}^{*}\right)^{\operatorname{dim} \Delta}$ for $\Delta \prec P$ and $\chi\left(\left(\mathbb{C}^{*}\right)^{d}\right)=0$ for $d \geqslant 1$, we have

$$
\begin{equation*}
\int_{\mathbb{P}^{m}} \mathrm{Eu}_{X_{A}}=\sum_{\substack{\Delta<P \\ \operatorname{dim} \Delta=0}} \mathrm{Eu}(\Delta) . \tag{3.10}
\end{equation*}
$$

Next, by taking a generic hyperplane

$$
\begin{equation*}
H=\left\{\left[\xi_{1}: \xi_{2}: \cdots: \xi_{m+1}\right] \in \mathbb{P}^{m} \mid \sum_{j=1}^{m+1} a_{j} \xi_{j}=0\right\} \tag{3.11}
\end{equation*}
$$

$\left(a_{j} \in \mathbb{C}\right)$ of \mathbb{P}^{m}, we can calculate the topological integral $\int_{H} \mathrm{Eu}_{X_{A}}$ as follows. Since $\Phi_{A \cap \Delta}$: $\operatorname{Hom}_{\mathbb{Z}}\left(M(A \cap \Delta), \mathbb{C}^{*}\right) \simeq\left(\mathbb{C}^{*}\right)^{\operatorname{dim} \Delta} \rightarrow T_{\Delta}$ is an isomorphism, for the Laurent polynomial

$$
\begin{array}{rll}
L_{\Delta}: \operatorname{Hom}_{\mathbb{Z}}\left(M(A \cap \Delta), \mathbb{C}^{*}\right) & \longrightarrow & \mathbb{C}^{*} \tag{3.12}\\
\psi & \longmapsto & \sum_{\alpha(j) \in A \cap \Delta} a_{j} x^{\alpha(j)}
\end{array}
$$

on the torus $\operatorname{Hom}_{\mathbb{Z}}\left(M(A \cap \Delta), \mathbb{C}^{*}\right) \simeq\left(\mathbb{C}^{*}\right)^{\operatorname{dim} \Delta}$ we have

$$
\begin{equation*}
\chi\left(T_{\Delta} \cap H\right)=\chi\left(\left\{x \in\left(\mathbb{C}^{*}\right)^{\operatorname{dim} \Delta} \mid L_{\Delta}(x)=0\right\}\right) \tag{3.13}
\end{equation*}
$$

Note that for a generic hyperplane $H \subset \mathbb{P}^{m}$ the hypersurface $\left\{x \in\left(\mathbb{C}^{*}\right)^{\operatorname{dim} \Delta} \mid L_{\Delta}(x)=0\right\}$ in the torus $\operatorname{Hom}_{\mathbb{Z}}\left(M(A \cap \Delta), \mathbb{C}^{*}\right) \simeq\left(\mathbb{C}^{*}\right)^{\operatorname{dim} \Delta}$ cut out by H satisfies the assumption of Bernstein-Khovanskii-Kushnirenko's theorem (Theorem 2.8) for any $\Delta \prec P$. By Theorem 2.8, we thus obtain

$$
\begin{equation*}
\int_{H} \mathrm{Eu}_{X_{A}}=\sum_{\substack{\Delta<P \\ \operatorname{dim} \Delta \geqslant 1}}(-1)^{\operatorname{dim} \Delta-1} \operatorname{Vol}_{\mathbb{Z}}(\Delta) \cdot \operatorname{Eu}(\Delta) \tag{3.14}
\end{equation*}
$$

Similarly, by taking a generic linear subspace

$$
\begin{equation*}
H_{i+1}=\left\{\left[\xi_{1}: \xi_{2}: \cdots: \xi_{m+1}\right] \in \mathbb{P}^{m} \mid \sum_{j=1}^{m+1} a_{j}^{(k)} \xi_{j}=0(k=1,2, \ldots, i+1)\right\} \tag{3.15}
\end{equation*}
$$

$\left(a_{j}^{(k)} \in \mathbb{C}\right)$ of \mathbb{P}^{m} of codimension $i+1$ and using Theorem 2.8, we have

$$
\begin{equation*}
\int_{H_{i+1}} \mathrm{Eu}_{X_{A}}=\sum_{\substack{\Delta<P \\ \operatorname{dim} \Delta \geqslant i+1}}(-1)^{\operatorname{dim} \Delta-i-1}\binom{\operatorname{dim} \Delta-1}{i} \operatorname{Vol}_{\mathbb{Z}}(\Delta) \cdot \operatorname{Eu}(\Delta) \tag{3.16}
\end{equation*}
$$

By (3.7), (3.10), (3.14) and (3.16), we finally obtain

$$
\begin{equation*}
\delta_{i}:=\sum_{\Delta<P}(-1)^{\operatorname{codim} \Delta}\left\{\binom{\operatorname{dim} \Delta-1}{i}+(-1)^{i-1}(i+1)\right\} \operatorname{Vol}_{\mathbb{Z}}(\Delta) \cdot \operatorname{Eu}(\Delta) \tag{3.17}
\end{equation*}
$$

This completes the proof.

4. Euler obstructions of toric varieties

In this section, we give some formulas for the Euler obstructions of toric varieties. A beautiful formula for the Euler obstructions of 2-dimensional normal toric varieties was proved by Gonzalez-Sprinberg [15]. Our result can be considered as a natural generalization of his formula.

First we recall the definition of Euler obstructions (for the details see [17], etc.). Let X be an algebraic variety over \mathbb{C}. Then the Euler obstruction Eu_{X} of X is a \mathbb{Z}-valued constructible function on X defined as follows. The value of Eu_{X} on the smooth part of X is defined to be 1 . In order to define the value of Eu_{X} at a singular point $p \in X$, we take an affine open neighborhood U of p in X and a closed embedding $U \hookrightarrow \mathbb{C}^{m}$. Next we choose a Whitney stratification $U=\bigsqcup_{\alpha \in A} U_{\alpha}$ of U such that U_{α} are connected. Then the values $\mathrm{Eu}_{X}\left(U_{\alpha}\right)$ of Eu_{X} on the strata U_{α} are defined by induction on codimensions of U_{α} as follows:
(i) If U_{α} is contained in the smooth part of U, we set $\mathrm{Eu}_{X}\left(U_{\alpha}\right)=1$.
(ii) Assume that for $k \geqslant 0$ the values of Eu_{X} on the strata U_{α} such that $\operatorname{codim} U_{\alpha} \leqslant k$ are already determined. Then for a stratum U_{β} such that $\operatorname{codim} U_{\beta}=k+1$ the value $\mathrm{Eu}_{X}\left(U_{\beta}\right)$ is defined by

$$
\begin{equation*}
\mathrm{Eu}_{X}\left(U_{\beta}\right)=\sum_{U_{\beta} \subsetneq \overline{U_{\alpha}}} \chi\left(U_{\alpha} \cap f^{-1}(\eta) \cap B(q ; \varepsilon)\right) \cdot \operatorname{Eu}_{X}\left(U_{\alpha}\right) \tag{4.1}
\end{equation*}
$$

for sufficiently small $\varepsilon>0$ and $0<\eta \ll \varepsilon$, where $q \in U_{\beta}$ and f is a holomorphic function defined on an open neighborhood W of q in \mathbb{C}^{m} such that $U_{\beta} \cap W \subset f^{-1}(0)$ and $(q ; \operatorname{grad} f(q)) \in T_{U_{\beta}}^{*} \mathbb{C}^{m} \backslash\left(\bigcup_{U_{\beta} \subsetneq \overline{U_{\alpha}}} \overline{T_{U_{\alpha}}^{*} \mathbb{C}^{m}}\right)$.

The above integers $\chi\left(U_{\alpha} \cap f^{-1}(\eta) \cap B(q ; \varepsilon)\right)$ can be calculated by the nearby cycle functor ψ_{f} as

$$
\begin{equation*}
\chi\left(U_{\alpha} \cap f^{-1}(\eta) \cap B(q ; \varepsilon)\right)=\chi\left(\psi_{f}\left(\mathbb{C}_{U_{\alpha}}\right)_{q}\right) . \tag{4.2}
\end{equation*}
$$

Indeed by [6, Proposition 4.2.2], for the Milnor fiber $F_{q}:=U \cap f^{-1}(\eta) \cap B(q ; \varepsilon)=\left(\left.f\right|_{U}\right)^{-1}(\eta) \cap$ $B(q ; \varepsilon)$ of $\left.f\right|_{U}: U \rightarrow \mathbb{C}$ at $q \in U_{\beta}$ we have an isomorphism

$$
\begin{equation*}
R \Gamma\left(F_{q} ; \mathbb{C}_{U_{\alpha}}\right) \simeq \psi_{f}\left(\mathbb{C}_{U_{\alpha}}\right)_{q} \tag{4.3}
\end{equation*}
$$

Since $F_{q}=\bigsqcup_{\gamma \in A}\left(U_{\gamma} \cap F_{q}\right)$ is also a Whitney stratification of $F_{q}\left(\left.f\right|_{U}: U \rightarrow \mathbb{C}\right.$ has the isolated stratified critical value $0 \in \mathbb{C}$ by [21, Proposition 1.3]), we obtain $\chi\left(R \Gamma\left(F_{q} ; \mathbb{C}_{U_{\alpha}}\right)\right)=$ $\chi\left(U_{\alpha} \cap F_{q}\right)=\chi\left(U_{\alpha} \cap f^{-1}(\eta) \cap B(q ; \varepsilon)\right)$ by [6, Theorem 4.1.22].

4.1. The case of affine toric varieties

From now on, we shall consider the toric case. Let $N \simeq \mathbb{Z}^{n}$ be a \mathbb{Z}-lattice of rank n and σ a strongly convex rational polyhedral cone in $N_{\mathbb{R}}=\mathbb{R} \otimes_{\mathbb{Z}} N$. We denote by M the dual lattice of N and define the polar cone σ^{\vee} of σ in $M_{\mathbb{R}}=\mathbb{R} \otimes_{\mathbb{Z}} M$ by

$$
\begin{equation*}
\sigma^{\vee}=\left\{v \in M_{\mathbb{R}} \mid\langle u, v\rangle \geqslant 0 \text { for any } u \in \sigma\right\} . \tag{4.4}
\end{equation*}
$$

Then the dimension of σ^{\vee} is n and we obtain a semigroup $\mathcal{S}_{\sigma}:=\sigma^{\vee} \cap M$ and an n-dimensional affine toric variety $X:=U_{\sigma}=\operatorname{Spec}\left(\mathbb{C}\left[\mathcal{S}_{\sigma}\right]\right)$ (see [11,26], etc.). Recall also that the algebraic torus $T=\operatorname{Spec}(\mathbb{C}[M]) \simeq\left(\mathbb{C}^{*}\right)^{n}$ acts naturally on $X=U_{\sigma}$ and the T-orbits in X are indexed by the faces $\Delta_{\alpha} \prec \sigma^{\vee}$ of σ^{\vee}. We denote by $\mathbb{L}\left(\Delta_{\alpha}\right)$ the smallest linear subspace of $M_{\mathbb{R}}$ containing Δ_{α}. For a face Δ_{α} of σ^{\vee}, denote by T_{α} the T-orbit $\operatorname{Spec}\left(\mathbb{C}\left[M \cap \mathbb{L}\left(\Delta_{\alpha}\right)\right]\right)$ which corresponds to Δ_{α}. Then we obtain a decomposition $X=\bigsqcup_{\Delta_{\alpha} \prec \sigma^{\vee}} T_{\alpha}$ of $X=U_{\sigma}$ into T-orbits. By the above recursive definition (ii) of Eu_{X}, in order to compute the Euler obstruction $\mathrm{Eu}_{X}: X \rightarrow \mathbb{Z}$ it suffices to determine the following numbers.

Definition 4.1. For two faces $\Delta_{\alpha}, \Delta_{\beta}$ of σ^{\vee} such that $\Delta_{\beta} \supsetneqq \Delta_{\alpha}\left(\Leftrightarrow T_{\beta} \subsetneq \overline{T_{\alpha}}\right)$, we define the linking number $l_{\alpha, \beta} \in \mathbb{Z}$ of T_{α} along T_{β} as follows. For a point $q \in T_{\beta}$ and a closed embedding $\iota: X=U_{\sigma} \hookrightarrow \mathbb{C}^{m}$, we set

$$
\begin{equation*}
l_{\alpha, \beta}:=\chi\left(\psi_{f}\left(\mathbb{C}_{T_{\alpha}}\right)_{q}\right) \tag{4.5}
\end{equation*}
$$

where f is a holomorphic function defined on an open neighborhood W of q in \mathbb{C}^{m} such that $T_{\beta} \cap W \subset f^{-1}(0)$ and $(q ; \operatorname{grad} f(q)) \in T_{T_{\beta}}^{*} \mathbb{C}^{m} \backslash\left(\bigcup_{\Delta_{\beta} \nsupseteq \Delta_{\gamma}} \overline{T_{T_{\gamma}}^{*} \mathbb{C}^{m}}\right)$.

Note that the above definition of $l_{\alpha, \beta}$ does not depend on the choice of $q \in T_{\beta}, \iota$ and f, etc. We will show that $l_{\alpha, \beta}$ can be described by the geometry of the cones Δ_{α} and Δ_{β}. First let us consider the \mathbb{Z}-lattice $M_{\beta}:=M \cap \mathbb{L}\left(\Delta_{\beta}\right)$ of rank $\operatorname{dim} \Delta_{\beta}$. Next set $\mathbb{L}\left(\Delta_{\beta}\right)^{\prime}:=M_{\mathbb{R}} / \mathbb{L}\left(\Delta_{\beta}\right)$ and let $p_{\beta}: M_{\mathbb{R}} \rightarrow \mathbb{L}\left(\Delta_{\beta}\right)^{\prime}$ be the natural projection. Then $M_{\beta}^{\prime}:=p_{\beta}(M) \subset \mathbb{L}\left(\Delta_{\beta}\right)^{\prime}$ is a \mathbb{Z} lattice of rank $\left(n-\operatorname{dim} \Delta_{\beta}\right)$ and $K_{\alpha, \beta}:=p_{\beta}\left(\Delta_{\alpha}\right) \subset \mathbb{L}\left(\Delta_{\beta}\right)^{\prime}$ is a proper convex cone with apex $0 \in \mathbb{L}\left(\Delta_{\beta}\right)^{\prime}$.

Definition 4.2. For two faces Δ_{α} and Δ_{β} of σ^{\vee} such that $\Delta_{\beta} \supsetneqq \Delta_{\alpha}$, we define the normalized relative subdiagram volume $\operatorname{RSV}_{\mathbb{Z}}\left(\Delta_{\alpha}, \Delta_{\beta}\right)$ of Δ_{α} along Δ_{β} by

$$
\begin{equation*}
\operatorname{RSV}_{\mathbb{Z}}\left(\Delta_{\alpha}, \Delta_{\beta}\right):=\operatorname{Vol}_{\mathbb{Z}}\left(K_{\alpha, \beta} \backslash \Theta_{\alpha, \beta}\right) \tag{4.6}
\end{equation*}
$$

where $\Theta_{\alpha, \beta}$ is the convex hull of $K_{\alpha, \beta} \cap\left(M_{\beta}^{\prime} \backslash\{0\}\right)$ in $\mathbb{L}\left(\Delta_{\beta}\right)^{\prime} \simeq \mathbb{R}^{n-\operatorname{dim} \Delta_{\beta}}$ and $\operatorname{Vol}_{\mathbb{Z}}\left(K_{\alpha, \beta} \backslash \Theta_{\alpha, \beta}\right)$ is the normalized $\left(\operatorname{dim} \Delta_{\alpha}-\operatorname{dim} \Delta_{\beta}\right)$-dimensional volume of $K_{\alpha, \beta} \backslash \Theta_{\alpha, \beta}$ with respect to the lattice $M_{\beta}^{\prime} \cap \mathbb{L}\left(K_{\alpha, \beta}\right)$. If $\Delta_{\alpha}=\Delta_{\beta}$, we set $\operatorname{RSV}_{\mathbb{Z}}\left(\Delta_{\alpha}, \Delta_{\alpha}\right):=1$.

Theorem 4.3. For two faces Δ_{α} and Δ_{β} of σ^{\vee} such that $\Delta_{\beta} \supsetneqq \Delta_{\alpha}$, the linking number $l_{\alpha, \beta}$ of T_{α} along T_{β} is given by

$$
\begin{equation*}
l_{\alpha, \beta}=(-1)^{\operatorname{dim} \Delta_{\alpha}-\operatorname{dim} \Delta_{\beta}-1} \operatorname{RSV}_{\mathbb{Z}}\left(\Delta_{\alpha}, \Delta_{\beta}\right) \tag{4.7}
\end{equation*}
$$

Proof. First recall that we have $T_{\beta}=\operatorname{Spec}\left(\mathbb{C}\left[M_{\beta}\right]\right) \simeq\left(\mathbb{C}^{*}\right)^{\operatorname{dim} \Delta_{\beta}}$. For each face Δ_{α} of σ^{\vee} such that $\Delta_{\beta} \supsetneqq \Delta_{\alpha}$, consider the semigroups $\mathcal{S}_{\alpha}:=M \cap \Delta_{\alpha}$ and $\mathcal{S}_{\alpha, \beta}:=M_{\beta}^{\prime} \cap K_{\alpha, \beta}$. In the special case when $\Delta_{\alpha}=\sigma^{\vee}$, we set also $\mathcal{S}_{\sigma, \beta}:=M_{\beta}^{\prime} \cap p_{\beta}\left(\sigma^{\vee}\right)$. Then for any face $\Delta_{\alpha} \prec \sigma^{\vee}$ such that $\Delta_{\beta} \nsupseteq \Delta_{\alpha}$ it is easy to see that

$$
\begin{equation*}
\mathcal{S}_{\alpha}+M_{\beta}=\mathcal{S}_{\alpha, \beta} \oplus M_{\beta} \tag{4.8}
\end{equation*}
$$

and in a neighborhood of T_{β} in X we have

$$
\begin{align*}
\overline{T_{\alpha}} & =\operatorname{Spec}\left(\mathbb{C}\left[\mathcal{S}_{\alpha}+M_{\beta}\right]\right) \tag{4.9}\\
& =\operatorname{Spec}\left(\mathbb{C}\left[\mathcal{S}_{\alpha, \beta}\right]\right) \times T_{\beta} \tag{4.10}
\end{align*}
$$

(see the proof of [14, Chapter 5, Theorem 3.1]). In particular, for $\Delta_{\alpha}=\sigma^{\vee}$ we have

$$
\begin{equation*}
X=\operatorname{Spec}\left(\mathbb{C}\left[\mathcal{S}_{\sigma, \beta}\right]\right) \times T_{\beta} \tag{4.11}
\end{equation*}
$$

in a neighborhood of T_{β}. More precisely, there exists a unique point $q \in X_{\sigma, \beta}:=\operatorname{Spec}\left(\mathbb{C}\left[\mathcal{S}_{\sigma, \beta}\right]\right)$ such that $\{q\} \times T_{\beta}=T_{\beta}$. Now let us take a face $\Delta_{\alpha} \prec \sigma^{\vee}$ such that $\Delta_{\beta} \nsupseteq \Delta_{\alpha}$ and set $X_{\alpha, \beta}:=$ $\operatorname{Spec}\left(\mathbb{C}\left[\mathcal{S}_{\alpha, \beta}\right]\right)$. Then by the inclusion $\mathcal{S}_{\alpha, \beta} \hookrightarrow \mathcal{S}_{\sigma, \beta}$ we obtain a surjective homomorphism

$$
\begin{equation*}
\mathbb{C}\left[\mathcal{S}_{\sigma, \beta}\right] \rightarrow \mathbb{C}\left[\mathcal{S}_{\alpha, \beta}\right] \tag{4.12}
\end{equation*}
$$

of \mathbb{C}-algebras and hence a closed embedding $X_{\alpha, \beta} \hookrightarrow X_{\sigma, \beta}$. Denote by $T_{\alpha, \beta}$ the open dense torus $\operatorname{Spec}\left(\mathbb{C}\left[M_{\beta}^{\prime} \cap \mathbb{L}\left(K_{\alpha, \beta}\right)\right]\right) \simeq\left(\mathbb{C}^{*}\right)^{\operatorname{dim} \Delta_{\alpha}-\operatorname{dim} \Delta_{\beta}}$ of the toric variety $X_{\alpha, \beta}$. Note that we have $T_{\alpha} \simeq T_{\alpha, \beta} \times T_{\beta}$. Now let $v_{1}, v_{2}, \ldots, v_{m}$ be generators of the semigroup $\mathcal{S}_{\sigma, \beta}$ and consider a surjective morphism

$$
\begin{equation*}
\mathbb{C}\left[t_{1}, t_{2}, \ldots, t_{m}\right] \rightarrow \mathbb{C}\left[\mathcal{S}_{\sigma, \beta}\right] \tag{4.13}
\end{equation*}
$$

of \mathbb{C}-algebras defined by $t_{i} \mapsto\left[v_{i}\right]$. Then it induces a closed embedding $X_{\sigma, \beta} \hookrightarrow \mathbb{C}^{m}$ by which the point $q \in X_{\sigma, \beta}$ is sent to $0 \in \mathbb{C}^{m}$. If we consider $T_{\alpha, \beta}$ as a locally closed subset of \mathbb{C}^{m} by this embedding, then the linking number $l_{\alpha, \beta}$ of T_{α} along T_{β} is given by

$$
\begin{equation*}
l_{\alpha, \beta}=\chi\left(\psi_{f}\left(\mathbb{C}_{T_{\alpha, \beta}}\right)_{0}\right) \tag{4.14}
\end{equation*}
$$

where $f: \mathbb{C}^{m} \rightarrow \mathbb{C}$ is a generic linear form. By applying Theorem 2.4 to the closed embedding $X_{\alpha, \beta} \hookrightarrow \mathbb{C}^{m}$, we obtain

$$
\begin{equation*}
l_{\alpha, \beta}=\chi\left(\psi_{g}\left(\mathbb{C}_{T_{\alpha, \beta}}\right)_{0}\right) \tag{4.15}
\end{equation*}
$$

where we set $g:=\left.f\right|_{X_{\alpha, \beta}}$. Finally it follows from [25, Corollary 3.6] (whose special case used here can be deduced also from the proof of [14, Chapter 10, Theorem 2.12]) that

$$
\begin{equation*}
l_{\alpha, \beta}=(-1)^{\operatorname{dim} \Delta_{\alpha}-\operatorname{dim} \Delta_{\beta}-1} \operatorname{Vol}_{\mathbb{Z}}\left(K_{\alpha, \beta} \backslash \Theta_{\alpha, \beta}\right) . \tag{4.16}
\end{equation*}
$$

This completes the proof.
Since the Euler obstruction $\mathrm{Eu}_{X}: X \rightarrow \mathbb{Z}$ of X is constant on each T-orbit $T_{\alpha}\left(\Delta_{\alpha} \prec \sigma^{\vee}\right)$, we denote by $\operatorname{Eu}\left(\Delta_{\alpha}\right)$ the value of Eu_{X} on T_{α}. Then we have

Corollary 4.4. All the values $\mathrm{Eu}\left(\Delta_{\alpha}\right)$ of $\mathrm{Eu}_{X}: X \rightarrow \mathbb{Z}$ are determined by induction on codimensions of faces of σ^{\vee} as follows:
(i) $\mathrm{Eu}\left(\sigma^{\vee}\right):=\mathrm{Eu}_{X}(T)=1$,
(ii) $\operatorname{Eu}\left(\Delta_{\beta}\right)=\sum_{\Delta_{\beta} \nsupseteq \Delta_{\alpha}}(-1)^{\operatorname{dim} \Delta_{\alpha}-\operatorname{dim} \Delta_{\beta}-1} \operatorname{RSV}_{\mathbb{Z}}\left(\Delta_{\alpha}, \Delta_{\beta}\right) \cdot \operatorname{Eu}\left(\Delta_{\alpha}\right)$.

4.2. The case of toric varieties associated with lattice points

We consider the situation considered in Sections 1 and 3 and inherit the notations there. From now on, we shall give a combinatorial description of $\mathrm{Eu}_{X_{A}}$ for the variety X_{A}. By our assumption $\operatorname{dim} P=n$, the rank of the affine \mathbb{Z}-lattice $M(A)$ generated by A is n. For each face Δ_{α} of P, consider the smallest affine subspace $\mathbb{L}\left(\Delta_{\alpha}\right)$ of $M_{\mathbb{R}}$ containing Δ_{α} and the affine \mathbb{Z}-lattice $M_{\alpha}:=$ $M\left(A \cap \Delta_{\alpha}\right)$ generated by $A \cap \Delta_{\alpha}$ in $\mathbb{L}\left(\Delta_{\alpha}\right)$. Now let us fix two faces $\Delta_{\alpha}, \Delta_{\beta}$ of P such that $\Delta_{\beta} \prec \Delta_{\alpha}$. By taking a suitable affine transformation of the lattice $M(A)$, we may assume that the origin 0 of $M(A)$ is a vertex of the smaller face Δ_{β}. By this choice of the origin $0 \in \Delta_{\beta} \cap$ $M(A)$, we define the subsemigroup \mathcal{S}_{α} of M_{α} generated by $A \cap \Delta_{\alpha}$. Although \mathcal{S}_{α} depends also on Δ_{β}, etc., we denote it by \mathcal{S}_{α} to simplify the notation. Denote by $M_{\alpha} / \Delta_{\beta}$ the quotient lattice $M_{\alpha} /\left(M_{\alpha} \cap \mathbb{L}\left(\Delta_{\beta}\right)\right)$ of $\operatorname{rank}\left(\operatorname{dim} \Delta_{\alpha}-\operatorname{dim} \Delta_{\beta}\right)$. Then the following definitions are essentially due to [14, Chapter 5, p. 178].

Definition 4.5. (See [14].)

(i) We denote by $\mathcal{S}_{\alpha} / \Delta_{\beta}$ the image of $\mathcal{S}_{\alpha} \subset M_{\alpha}$ in the quotient \mathbb{Z}-lattice $M_{\alpha} / \Delta_{\beta}$.
(ii) We denote by $K\left(\mathcal{S}_{\alpha} / \Delta_{\beta}\right)$ (resp. $\left.K_{+}\left(\mathcal{S}_{\alpha} / \Delta_{\beta}\right)\right)$ the convex hull of $\mathcal{S}_{\alpha} / \Delta_{\beta}$ (resp. $\left(\mathcal{S}_{\alpha} / \Delta_{\beta}\right) \backslash$ $\{0\})$ in $\left(M_{\alpha} / \Delta_{\beta}\right)_{\mathbb{R}}$ and set

$$
\begin{equation*}
K_{-}\left(\mathcal{S}_{\alpha} / \Delta_{\beta}\right):=\overline{K\left(\mathcal{S}_{\alpha} / \Delta_{\beta}\right) \backslash K_{+}\left(\mathcal{S}_{\alpha} / \Delta_{\beta}\right)} \tag{4.17}
\end{equation*}
$$

We call $K_{-}\left(\mathcal{S}_{\alpha} / \Delta_{\beta}\right)$ the subdiagram part of the semigroup $\mathcal{S}_{\alpha} / \Delta_{\beta}$ and denote by $u\left(\mathcal{S}_{\alpha} / \Delta_{\beta}\right)$ its normalized $\left(\operatorname{dim} \Delta_{\alpha}-\operatorname{dim} \Delta_{\beta}\right)$-dimensional volume with respect to the \mathbb{Z}-lattice $M_{\alpha} / \Delta_{\beta} \subset\left(M_{\alpha} / \Delta_{\beta}\right)_{\mathbb{R}}$. If $\Delta_{\alpha}=\Delta_{\beta}$, we set $u\left(\mathcal{S}_{\alpha} / \Delta_{\alpha}\right):=1$.

Finally, recall the definition of the index $i\left(\Delta_{\alpha}, \Delta_{\beta}\right) \in \mathbb{Z}_{>0}$ in [14, Chapter 5, (3.1)].
Definition 4.6. (See [14].) For two faces $\Delta_{\alpha}, \Delta_{\beta}$ of P such that $\Delta_{\beta} \prec \Delta_{\alpha}$, we define $i\left(\Delta_{\alpha}, \Delta_{\beta}\right)$ to be the index

$$
\begin{equation*}
i\left(\Delta_{\alpha}, \Delta_{\beta}\right):=\left[M_{\alpha} \cap \mathbb{L}\left(\Delta_{\beta}\right): M_{\beta}\right] . \tag{4.18}
\end{equation*}
$$

Now recall that by [14, Chapter 5, Proposition 1.9] we have the basic correspondence:

$$
\begin{equation*}
\{\text { faces of } P\} \stackrel{1: 1}{\longleftrightarrow}\left\{T \text {-orbits in } X_{A}\right\} . \tag{4.19}
\end{equation*}
$$

For a face $\Delta_{\alpha} \prec P$ of P, we denote by T_{α} the corresponding T-orbit in X_{A}. We also denote by $\mathrm{Eu}\left(\Delta_{\alpha}\right)$ the value of the Euler obstruction $\mathrm{Eu}_{X_{A}}: X_{A} \rightarrow \mathbb{Z}$ on T_{α}.

Theorem 4.7. The values $\operatorname{Eu}\left(\Delta_{\alpha}\right)$ are determined by:
(i) $\operatorname{Eu}(P)=1$,
(ii) $\operatorname{Eu}\left(\Delta_{\beta}\right)=\sum_{\Delta_{\beta} \nsupseteq \Delta_{\alpha}}(-1)^{\operatorname{dim} \Delta_{\alpha}-\operatorname{dim} \Delta_{\beta}-1} i\left(\Delta_{\alpha}, \Delta_{\beta}\right) \cdot u\left(\mathcal{S}_{\alpha} / \Delta_{\beta}\right) \cdot \operatorname{Eu}\left(\Delta_{\alpha}\right)$.

Proof. Let $\Delta_{\alpha} \prec P$ be a face of P. Then by [14, Chapter 5, Proposition 1.9] the closure $\overline{T_{\alpha}}$ of T_{α} in X_{A} is isomorphic to the projective toric variety $X_{A \cap \Delta_{\alpha}} \subset \mathbb{P}^{\sharp\left(A \cap \Delta_{\alpha}\right)-1}$ defined by the finite subset $A \cap \Delta_{\alpha}$ in the lattice $M_{\alpha}=M\left(A \cap \Delta_{\alpha}\right) \simeq \mathbb{Z}^{\operatorname{dim} \Delta_{\alpha}}$. Moreover the cone Cone $\left(\overline{T_{\alpha}}\right) \subset$ $\mathbb{C}^{\sharp}\left(A \cap \Delta_{\alpha}\right)$ over $\overline{T_{\alpha}} \subset \mathbb{P}^{\sharp\left(A \cap \Delta_{\alpha}\right)-1}$ is an affine variety as follows. Let

$$
\begin{equation*}
i_{\alpha}: M_{\alpha} \hookrightarrow \Xi_{\alpha}:=M_{\alpha} \oplus \mathbb{Z} \simeq \mathbb{Z}^{\operatorname{dim} \Delta_{\alpha}+1} \tag{4.20}
\end{equation*}
$$

be the embedding defined by $v \mapsto(v, 1)$ and $\widetilde{\mathcal{S}}_{\alpha}$ the subsemigroup of the lattice Ξ_{α} generated by $i_{\alpha}\left(A \cap \Delta_{\alpha}\right)$ and $0 \in \Xi_{\alpha}$. Then by [14, Chapter 5, Proposition 2.3] the cone $\operatorname{Cone}\left(\overline{T_{\alpha}}\right) \subset \mathbb{C}^{\sharp}\left(A \cap \Delta_{\alpha}\right)$ is isomorphic to the affine toric variety $\operatorname{Spec}\left(\mathbb{C}\left[\widetilde{\mathcal{S}}_{\alpha}\right]\right)$. In the special case when $\Delta_{\alpha}=P$, we set $\Xi:=\Xi_{\alpha}(=M(A) \oplus \mathbb{Z})$ and $\widetilde{\mathcal{S}}:=\widetilde{\mathcal{S}}_{\alpha}$ for short. Since $\widetilde{\mathcal{S}}_{\alpha}$ is a subsemigroup of $\widetilde{\mathcal{S}}$ via the inclusions $M_{\alpha} \subset M(A)$ and $\Xi_{\alpha} \subset \Xi$, there exists a natural surjection

$$
\begin{equation*}
\mathbb{C}[\widetilde{\mathcal{S}}] \rightarrow \mathbb{C}\left[\widetilde{\mathcal{S}}_{\alpha}\right] \tag{4.21}
\end{equation*}
$$

This corresponds to the closed embedding

$$
\begin{equation*}
\operatorname{Cone}\left(\overline{T_{\alpha}}\right) \simeq \operatorname{Spec}\left(\mathbb{C}\left[\tilde{\mathcal{S}}_{\alpha}\right]\right) \hookrightarrow \operatorname{Cone}\left(X_{A}\right) \simeq \operatorname{Spec}(\mathbb{C}[\widetilde{\mathcal{S}}]) \tag{4.22}
\end{equation*}
$$

Now let Δ_{α} and Δ_{β} be two faces of P such that $\Delta_{\beta} \nsupseteq \Delta_{\alpha}\left(\Leftrightarrow T_{\beta} \subsetneq \overline{T_{\alpha}}\right)$. We have to determine the linking number $l_{\alpha, \beta}$ of T_{α} along T_{β} (defined as in Definition 4.1). Since the singularity of $\overline{T_{\alpha}}$ along T_{β} is the same as that of $\operatorname{Cone}\left(\overline{T_{\alpha}}\right) \simeq \operatorname{Spec}\left(\mathbb{C}\left[\widetilde{\mathcal{S}}_{\alpha}\right]\right)$ along $\operatorname{Cone}\left(T_{\beta}\right) \simeq$ $\operatorname{Spec}\left(\mathbb{C}\left[\Xi_{\beta}\right]\right) \simeq\left(\mathbb{C}^{*}\right)^{\operatorname{dim} \Delta_{\beta}+1}$, it suffices to study the pair $\operatorname{Cone}\left(T_{\beta}\right) \subset \operatorname{Cone}\left(\overline{T_{\alpha}}\right)$. Moreover, by the proof of $\left[14\right.$, Chapter 5, Theorem 3.1], in a neighborhood of $\operatorname{Cone}\left(T_{\beta}\right)$ in $\operatorname{Cone}\left(X_{A}\right) \subset \mathbb{C}^{\sharp A}$, we have

$$
\begin{gather*}
\operatorname{Cone}\left(\overline{T_{\alpha}}\right)=\operatorname{Spec}\left(\mathbb{C}\left[\widetilde{\mathcal{S}}_{\alpha}+\Xi_{\beta}\right]\right), \tag{4.23}\\
\operatorname{Cone}\left(X_{A}\right)=\operatorname{Spec}\left(\mathbb{C}\left[\widetilde{\mathcal{S}}+\Xi_{\beta}\right]\right) \tag{4.24}
\end{gather*}
$$

and the fibers of the morphisms

$$
\begin{align*}
\operatorname{Cone}\left(\overline{T_{\alpha}}\right) \simeq \operatorname{Spec}\left(\mathbb{C}\left[\widetilde{\mathcal{S}}_{\alpha}+\Xi_{\beta}\right]\right) \rightarrow \operatorname{Cone}\left(T_{\beta}\right) \simeq \operatorname{Spec}\left(\mathbb{C}\left[\Xi_{\beta}\right]\right) \tag{4.25}\\
\operatorname{Cone}\left(X_{A}\right) \simeq \operatorname{Spec}\left(\mathbb{C}\left[\widetilde{\mathcal{S}}+\Xi_{\beta}\right]\right) \rightarrow \operatorname{Cone}\left(T_{\beta}\right) \simeq \operatorname{Spec}\left(\mathbb{C}\left[\Xi_{\beta}\right]\right) \tag{4.26}
\end{align*}
$$

induced by $\Xi_{\beta} \subset \widetilde{\mathcal{S}}_{\alpha}+\Xi_{\beta}$ and $\Xi_{\beta} \subset \widetilde{\mathcal{S}}+\Xi_{\beta}$ are $\operatorname{Spec}\left(\mathbb{C}\left[\left(\widetilde{\mathcal{S}}_{\alpha}+\Xi_{\beta}\right) / \Xi_{\beta}\right]\right)$ and $\operatorname{Spec}(\mathbb{C}[(\widetilde{\mathcal{S}}+$ $\left.\left.\Xi_{\beta}\right) / \Xi_{\beta}\right]$) respectively. Let us set

$$
\begin{align*}
Y_{\alpha} & :=\operatorname{Spec}\left(\mathbb{C}\left[\left(\widetilde{\mathcal{S}}_{\alpha}+\Xi_{\beta}\right) / \Xi_{\beta}\right]\right), \tag{4.27}\\
Y & :=\operatorname{Spec}\left(\mathbb{C}\left[\left(\widetilde{\mathcal{S}}+\Xi_{\beta}\right) / \Xi_{\beta}\right]\right) . \tag{4.28}
\end{align*}
$$

Since the natural morphism

$$
\begin{equation*}
\left(\tilde{\mathcal{S}}_{\alpha}+\Xi_{\beta}\right) / \Xi_{\beta} \rightarrow\left(\widetilde{\mathcal{S}}+\Xi_{\beta}\right) / \Xi_{\beta} \tag{4.29}
\end{equation*}
$$

is injective, we obtain a surjection

$$
\begin{equation*}
\mathbb{C}\left[\left(\widetilde{\mathcal{S}}+\Xi_{\beta}\right) / \Xi_{\beta}\right] \rightarrow \mathbb{C}\left[\left(\widetilde{\mathcal{S}}_{\alpha}+\Xi_{\beta}\right) / \Xi_{\beta}\right] \tag{4.30}
\end{equation*}
$$

and hence a closed embedding $Y_{\alpha} \hookrightarrow Y$. Note that $Y \cap \operatorname{Cone}\left(T_{\beta}\right)=Y_{\alpha} \cap \operatorname{Cone}\left(T_{\beta}\right)$ consists of a single point. We denote this point by q. Now let us consider the open subset $W_{\alpha}:=$ $\operatorname{Spec}\left(\mathbb{C}\left[\Xi_{\alpha} / \Xi_{\beta}\right]\right)$ of $Y_{\alpha}=\operatorname{Spec}\left(\mathbb{C}\left[\left(\widetilde{\mathcal{S}}_{\alpha}+\Xi_{\beta}\right) / \Xi_{\beta}\right]\right)$. It is easy to see that W_{α} is the intersection of $\operatorname{Cone}\left(T_{\alpha}\right) \simeq\left(\mathbb{C}^{*}\right)^{\operatorname{dim} \Delta_{\alpha}+1}$ and Y_{α}. Let $v_{1}, v_{2}, \ldots, v_{m}$ be generators of the semigroup $\left(\widetilde{\mathcal{S}}+\Xi_{\beta}\right) / \Xi_{\beta}$ and consider a surjective morphism

$$
\begin{equation*}
\mathbb{C}\left[t_{1}, t_{2}, \ldots, t_{m}\right] \rightarrow \mathbb{C}\left[\left(\widetilde{\mathcal{S}}+\Xi_{\beta}\right) / \Xi_{\beta}\right] \tag{4.31}
\end{equation*}
$$

of \mathbb{C}-algebras defined by $t_{i} \mapsto\left[v_{i}\right]$. Then it induces a closed embedding $Y \hookrightarrow \mathbb{C}^{m}$ by which the point $q \in Y$ is sent to $0 \in \mathbb{C}^{m}$. If we consider W_{α} as a locally closed subset of \mathbb{C}^{m} by this embedding, then the linking number $l_{\alpha, \beta}$ is given by

$$
\begin{equation*}
l_{\alpha, \beta}=\chi\left(\psi_{f}\left(\mathbb{C}_{W_{\alpha}}\right)_{0}\right) \tag{4.32}
\end{equation*}
$$

where $f: \mathbb{C}^{m} \rightarrow \mathbb{C}$ is a generic linear form. By applying Theorem 2.4 to the closed embedding $Y_{\alpha} \hookrightarrow \mathbb{C}^{m}$, we obtain also

$$
\begin{equation*}
l_{\alpha, \beta}=\chi\left(\psi_{g}\left(\mathbb{C}_{W_{\alpha}}\right)_{0}\right), \tag{4.33}
\end{equation*}
$$

where we set $g:=\left.f\right|_{Y_{\alpha}}$. In order to calculate this last term $\chi\left(\psi_{g}\left(\mathbb{C}_{W_{\alpha}}\right)_{0}\right)$, we shall investigate the structure of W_{α} more precisely. By the inclusion $\left(\Xi_{\beta}\right)_{\mathbb{R}} \subset\left(\Xi_{\alpha}\right)_{\mathbb{R}}$, we set $\Xi_{\alpha}^{\prime}:=\Xi_{\alpha} \cap\left(\Xi_{\beta}\right)_{\mathbb{R}}$. Since we assumed that the origin of the lattice M_{α} is a vertex of Δ_{β}, the two lattices Ξ_{α}^{\prime} and Ξ_{β} contain the subgroup $\left\{(0, t) \in \Xi_{\alpha} \mid t \in \mathbb{Z}\right\} \simeq \mathbb{Z}$ of Ξ_{α}. Hence we obtain an isomorphism

$$
\begin{equation*}
\Xi_{\alpha}^{\prime} / \Xi_{\beta} \simeq\left(M_{\alpha} \cap \mathbb{L}\left(\Delta_{\beta}\right)\right) / M_{\beta} \tag{4.34}
\end{equation*}
$$

Namely Ξ_{β} is a sublattice of Ξ_{α}^{\prime} with index $l:=i\left(\Delta_{\alpha}, \Delta_{\beta}\right)$. By the fundamental theorem of finitely generated abelian groups, we may assume that $G:=\Xi_{\alpha}^{\prime} / \Xi_{\beta}$ is a cyclic group $\mathbb{Z} / l \mathbb{Z}$ of order $l=i\left(\Delta_{\alpha}, \Delta_{\beta}\right)$. Now let us take a sublattice $\Xi_{\alpha}^{\prime \prime}$ of Ξ_{α} such that $\Xi_{\alpha}=\Xi_{\alpha}^{\prime} \oplus \Xi_{\alpha}^{\prime \prime}$. Then we have

$$
\begin{equation*}
\Xi_{\alpha} / \Xi_{\beta} \simeq G \oplus \Xi_{\alpha}^{\prime \prime} \tag{4.35}
\end{equation*}
$$

and

$$
\begin{align*}
W_{\alpha} & \simeq \operatorname{Spec}(\mathbb{C}[G]) \times \operatorname{Spec}\left(\mathbb{C}\left[\Xi_{\alpha}^{\prime \prime}\right]\right) \tag{4.36}\\
& \simeq\left\{z \in \mathbb{C} \mid z^{l}=1\right\} \times\left(\mathbb{C}^{*}\right)^{\operatorname{dim} \Delta_{\alpha}-\operatorname{dim} \Delta_{\beta}} \tag{4.37}
\end{align*}
$$

Let $\Psi: \Xi_{\alpha} \rightarrow G=\mathbb{Z} / l \mathbb{Z}$ be the composite of

$$
\begin{equation*}
\Xi_{\alpha} \rightarrow \Xi_{\alpha}^{\prime} \rightarrow G=\Xi_{\alpha}^{\prime} / \Xi_{\beta} \tag{4.38}
\end{equation*}
$$

For $s \in \Xi_{\alpha}$, we define an integer $e(s) \in\{0,1,2, \ldots, l-1\}$ by $\Psi(s)=[e(s)] \in G \simeq \mathbb{Z} / l \mathbb{Z}$. Then for $k=0,1, \ldots, l-1$ there exist surjective homomorphisms

$$
\begin{equation*}
I_{k}: \mathbb{C}\left[\left(\widetilde{\mathcal{S}}_{\alpha}+\Xi_{\beta}\right) / \Xi_{\beta}\right] \rightarrow \mathbb{C}\left[\left(\widetilde{\mathcal{S}}_{\alpha}+\Xi_{\alpha}^{\prime}\right) / \Xi_{\alpha}^{\prime}\right] \tag{4.39}
\end{equation*}
$$

of \mathbb{C}-algebras defined by

$$
\begin{equation*}
\sum_{s_{i} \in \widetilde{\mathcal{S}}_{\alpha}} a_{i} \cdot\left[s_{i}+\Xi_{\beta}\right] \mapsto \sum_{s_{i} \in \widetilde{\mathcal{S}}_{\alpha}} a_{i} \cdot \mu_{l}^{k e\left(s_{i}\right)} \cdot\left[s_{i}+\Xi_{\alpha}^{\prime}\right] \tag{4.40}
\end{equation*}
$$

where $\mu_{l}=\exp \left(\frac{2 \pi \sqrt{-1}}{l}\right)$ is the primitive l-th root of unity. On the other hand, since $\left\{(0, t) \in \Xi_{\alpha} \mid\right.$ $t \in \mathbb{Z}\} \simeq \mathbb{Z}$ is a subgroup of Ξ_{α}^{\prime}, we have isomorphisms

$$
\begin{gather*}
\Xi_{\alpha} / \Xi_{\alpha}^{\prime} \simeq M_{\alpha} / \Delta_{\beta}=M_{\alpha} /\left(M_{\alpha} \cap \mathbb{L}\left(\Delta_{\beta}\right)\right) \tag{4.41}\\
\left(\widetilde{\mathcal{S}}_{\alpha}+\Xi_{\alpha}^{\prime}\right) / \Xi_{\alpha}^{\prime} \simeq \mathcal{S}_{\alpha} / \Delta_{\beta} \tag{4.42}
\end{gather*}
$$

Let us set $Z_{\alpha}:=\operatorname{Spec}\left(\mathbb{C}\left[\mathcal{S}_{\alpha} / \Delta_{\beta}\right]\right)$. Then by the above surjective homomorphisms $I_{k}(k=$ $0,1,2, \ldots, l-1$) we obtain closed embeddings

$$
\begin{equation*}
\iota_{k}: Z_{\alpha} \hookrightarrow Y_{\alpha} \quad(k=0,1,2, \ldots, l-1) . \tag{4.43}
\end{equation*}
$$

We can see that the images of these embeddings $\iota_{k}: Z_{\alpha} \hookrightarrow Y_{\alpha}$ are the explicit realizations of the branches along T-orbits found in [14, Chapter 5, Theorem 3.1]. Indeed, denote by T_{0} the open dense torus $\operatorname{Spec}\left(\mathbb{C}\left[\Xi_{\alpha}^{\prime \prime}\right]\right) \simeq\left(\mathbb{C}^{*}\right)^{\operatorname{dim} \Delta_{\alpha}-\operatorname{dim} \Delta_{\beta}}$ of Z_{α}. Then the open dense subset $W_{\alpha} \subset Y_{\alpha}$ is a direct sum $T_{0} \sqcup T_{0} \sqcup \cdots \sqcup T_{0}$ of l copies of T_{0}. For $k=0,1, \ldots, l-1$, consider also surjective homomorphisms

$$
\begin{equation*}
I_{k}^{\prime}: \mathbb{C}\left[\Xi_{\alpha} / \Xi_{\beta}\right] \rightarrow \mathbb{C}\left[\Xi_{\alpha}^{\prime \prime}\right] \simeq \mathbb{C}\left[\Xi_{\alpha} / \Xi_{\alpha}^{\prime}\right] \tag{4.44}
\end{equation*}
$$

of \mathbb{C}-algebras defined by

$$
\begin{equation*}
\sum_{s_{i} \in \Xi_{\alpha}} a_{i} \cdot\left[s_{i}+\Xi_{\beta}\right] \mapsto \sum_{s_{i} \in \Xi_{\alpha}} a_{i} \cdot \mu_{l}^{k e\left(s_{i}\right)} \cdot\left[s_{i}+\Xi_{\alpha}^{\prime}\right] \tag{4.45}
\end{equation*}
$$

Then by this homomorphism I_{k}^{\prime} we obtain a closed embedding

$$
\begin{equation*}
\iota_{k}^{\prime}: T_{0} \hookrightarrow W_{\alpha} \tag{4.46}
\end{equation*}
$$

which induces an isomorphism from T_{0} to the $(k+1)$-th component of W_{α}. Moreover ι_{k}^{\prime} fits into the commutative diagram

Then we have an isomorphism

$$
\begin{equation*}
\bigoplus_{k=0}^{l-1}\left(\iota_{k}\right)_{*}\left(\mathbb{C}_{T_{0}}\right) \simeq \mathbb{C}_{W_{\alpha}} \tag{4.48}
\end{equation*}
$$

in $\mathbf{D}_{c}^{b}\left(Y_{\alpha}\right)$. Therefore, applying Theorem 2.4 to $\iota_{k}(k=0,1,2, \ldots, l-1)$, we obtain

$$
\begin{equation*}
l_{\alpha, \beta}=\sum_{k=0}^{l-1} \chi\left(\psi_{g_{k}}\left(\mathbb{C}_{T_{0}}\right)_{0}\right) \tag{4.49}
\end{equation*}
$$

where we set $g_{k}:=g \circ \iota_{k} \in \mathbb{C}\left[\mathcal{S}_{\alpha} / \Delta_{\beta}\right](k=0,1,2, \ldots, l-1)$. Finally by [25, Corollary 3.6] (see also the proof of [14, Chapter 10, Theorem 2.12]) we get

$$
\begin{equation*}
l_{\alpha, \beta}=(-1)^{\operatorname{dim} \Delta_{\alpha}-\operatorname{dim} \Delta_{\beta}-1} i\left(\Delta_{\alpha}, \Delta_{\beta}\right) \cdot u\left(\mathcal{S}_{\alpha} / \Delta_{\beta}\right) \tag{4.50}
\end{equation*}
$$

This completes the proof.
Example 4.8. We give some examples of integral polytopes for which the degrees of the A-discriminant varieties are easily computed by our method. We fix a \mathbb{Z}-basis $\left\{m_{1}, m_{2}, \ldots, m_{n}\right\}$ of the lattice $M=\mathbb{Z}^{n}$.
(i) For natural numbers $a_{1}, a_{2}, \ldots, a_{n} \geqslant 1$, consider the finite subset $A=\left\{0, m_{1}, m_{1}+\right.$ $m_{n}, \ldots, m_{1}+a_{1} m_{n}, m_{2}, m_{2}+m_{n}, \ldots, m_{2}+a_{2} m_{n}, \ldots, m_{n-1}, m_{n-1}+m_{n}, \ldots, m_{n-1}+$ $\left.a_{n-1} m_{n}, m_{n}, 2 m_{n}, \ldots, a_{n} m_{n}\right\}$ of $M=\mathbb{Z}^{n}$. Let P be the convex hull of A in $M_{\mathbb{R}}=\mathbb{R}^{n}$. Then P is an integral polytope such that $P \cap M=A$. Let Σ_{P} be the normal fan of P in $\left(M_{\mathbb{R}}\right)^{*}=\mathbb{R}^{n}$ and $X_{\Sigma_{P}}$ the (normal) toric variety associated with Σ_{P}. Since P satisfies the condition of [26, Theorem 2.13], the line bundle on $X_{\Sigma_{P}}$ associated with P is very ample. This implies that we have an isomorphism $X_{\Sigma_{P}} \simeq X_{A} \subset \mathbb{P}^{a_{1}+\cdots+a_{n}+n-1}$. Moreover we can easily see that $X_{\Sigma_{P}}$ and hence X_{A} are smooth. However, according to [3, Section 5] and [7], the dual variety X_{A}^{*} of X_{A} is not a hypersurface in general. By our method, we can compute not only the codimension but also the degree of X_{A}^{*}. Since X_{A} is smooth, the Euler obstruction $\mathrm{Eu}_{X_{A}}$ of X_{A} is the constant function 1. By (1.6), if $n=3$ we have

$$
\begin{align*}
\delta_{1}= & \sum_{\Delta<P}(-1)^{\operatorname{codim} \Delta}(1+\operatorname{dim} \Delta) \operatorname{Vol}_{\mathbb{Z}}(\Delta) \tag{4.51}\\
= & -1 \cdot 1 \cdot 6+1 \cdot 2 \cdot\left(6+a_{1}+a_{2}+a_{3}\right) \\
& -1 \cdot 3 \cdot\left(2+2 a_{1}+2 a_{2}+2 a_{3}\right)+1 \cdot 4 \cdot\left(a_{1}+a_{2}+a_{3}\right) \tag{4.52}\\
= & 0, \tag{4.53}\\
\delta_{2}= & \sum_{\Delta<P}(-1)^{\operatorname{codim} \Delta}\left\{\binom{\operatorname{dim} \Delta-1}{2}-3\right\} \operatorname{Vol}_{\mathbb{Z}}(\Delta) \tag{4.54}\\
= & -1 \cdot(-2) \cdot 6+1 \cdot(-3) \cdot\left(6+a_{1}+a_{2}+a_{3}\right) \\
& -1 \cdot(-3) \cdot\left(2+2 a_{1}+2 a_{2}+2 a_{3}\right)+1 \cdot(-2) \cdot\left(a_{1}+a_{2}+a_{3}\right) \tag{4.55}\\
= & a_{1}+a_{2}+a_{3} . \tag{4.56}
\end{align*}
$$

For $n=3$, by Theorem 1.4 we thus obtain

$$
\begin{equation*}
\operatorname{codim} X_{A}^{*}=2, \quad \operatorname{deg} X_{A}^{*}=a_{1}+a_{2}+a_{3} . \tag{4.57}
\end{equation*}
$$

More generally, for any $n \geqslant 2$ we can easily show that

$$
\begin{equation*}
\delta_{1}=\cdots=\delta_{n-2}=0, \quad \delta_{n-1}=a_{1}+\cdots+a_{n} \tag{4.58}
\end{equation*}
$$

Then by Theorem 1.4 we obtain

$$
\begin{equation*}
\operatorname{codim} X_{A}^{*}=n-1, \quad \operatorname{deg} X_{A}^{*}=a_{1}+\cdots+a_{n} \tag{4.59}
\end{equation*}
$$

(ii) For $a \geqslant 2$, let $A=\left\{0, m_{1}, \ldots, m_{n-1}, m_{n}, 2 m_{n}, \ldots, a m_{n}\right\}$ be a finite subset of M and denote by P its convex hull in $M_{\mathbb{R}}$. Then P is an n-dimensional simplex whose vertices are $v_{0}=0$, $v_{1}=m_{1}, \ldots, v_{n-1}=m_{n-1}, v_{n}=a m_{n}$. Also in this case, we have an isomorphism $X_{\Sigma_{P}} \simeq$ $X_{A} \subset \mathbb{P}^{a+n-1}$. But X_{A} is a singular variety this time. Nevertheless, we can compute the Euler obstruction $\mathrm{Eu}_{X_{A}}$ of X_{A} by our algorithm. For a subset $\alpha \subset\{0,1,2, \ldots, n\}$, we denote by Δ_{α} the face of P whose vertices are $\left\{v_{i} \mid i \in \alpha\right\}$. We can easily determine the values of $\mathrm{Eu}_{X_{A}}$ on the n - and $(n-1)$-dimensional T-orbits in X_{A} as

$$
\begin{equation*}
\operatorname{Eu}(P)=1, \quad \operatorname{Eu}\left(\Delta_{\alpha}\right)=1 \quad(\sharp \alpha=n) . \tag{4.60}
\end{equation*}
$$

Starting from the values (4.60), by Theorem 4.7 we can calculate the values of $\mathrm{Eu}_{X_{A}}$ on the lower-dimensional T-orbits in X_{A} inductively:

$$
\operatorname{Eu}\left(\Delta_{\alpha}\right)= \begin{cases}2-a & (0, n \notin \alpha) \tag{4.61}\\ 1 & \text { (otherwise) }\end{cases}
$$

By the isomorphism $X_{\Sigma_{P}} \simeq X_{A}$, we can use also Corollary 4.4 to calculate these numbers. For example, if $n=3, \operatorname{Eu}\left(\Delta_{12}\right)$ is computed as

$$
\begin{align*}
\operatorname{Eu}\left(\Delta_{12}\right)= & -u\left(\mathcal{S}_{0234} / \Delta_{12}\right) \cdot \operatorname{Eu}(P)+u\left(\mathcal{S}_{123} / \Delta_{12}\right) \cdot \operatorname{Eu}\left(\Delta_{123}\right) \tag{4.62}\\
& +u\left(\mathcal{S}_{012} / \Delta_{12}\right) \cdot \operatorname{Eu}\left(\Delta_{012}\right) \\
= & -a \cdot 1+1 \cdot 1+1 \cdot 1=2-a \tag{4.63}
\end{align*}
$$

Now let us compute the codimension and the degree of the dual variety X_{A}^{*} of X_{A}. By (1.6), we have

$$
\begin{equation*}
\delta_{1}=\cdots=\delta_{n-1}=0, \quad \delta_{n}=2 a-2 . \tag{4.64}
\end{equation*}
$$

Then by Theorem 1.4 we obtain

$$
\begin{equation*}
\operatorname{codim} X_{A}^{*}=n, \quad \operatorname{deg} X_{A}^{*}=2 a-2 \tag{4.65}
\end{equation*}
$$

5. Characteristic cycles of constructible sheaves

In this section, we give a formula for the characteristic cycles of T-invariant constructible sheaves (see Definition 5.1 below) on toric varieties and apply it to GKZ hypergeometric systems and intersection cohomology complexes.

First, let X be a (not necessarily normal) toric variety over \mathbb{C} and $T \subset X$ the open dense torus which acts on X itself. Let $X=\bigsqcup_{\alpha} X_{\alpha}$ be the decomposition of X into T-orbits.

Definition 5.1.

(i) We say that a constructible sheaf \mathcal{F} on X is T-invariant if $\left.\mathcal{F}\right|_{X_{\alpha}}$ is a locally constant sheaf of finite rank for any α.
(ii) We say that a constructible object $\mathcal{F} \in \mathbf{D}_{c}^{b}(X)$ is T-invariant if the cohomology sheaf $H^{j}(\mathcal{F})$ of \mathcal{F} is T-invariant for any $j \in \mathbb{Z}$.

Note that the so-called T-equivariant constructible sheaves on X are T-invariant in the above sense. Recall also that to any object \mathcal{F} of $\mathbf{D}_{c}^{b}(X)$ we can associate a \mathbb{Z}-valued constructible function $\rho(\mathcal{F}) \in \mathrm{CF}_{\mathbb{Z}}(X)$ defined by

$$
\begin{equation*}
\rho(\mathcal{F})(x)=\sum_{j \in \mathbb{Z}}(-1)^{j} \operatorname{dim}_{\mathbb{C}} H^{j}(\mathcal{F})_{x} \quad(x \in X) . \tag{5.1}
\end{equation*}
$$

If moreover \mathcal{F} is T-invariant, clearly $\rho(\mathcal{F})$ is constant on each T-orbit X_{α}. In this case, we denote the value of $\rho(\mathcal{F})$ on X_{α} by $\rho(\mathcal{F})_{\alpha} \in \mathbb{Z}$. By using the fact that vanishing and nearby cycle functors send distinguished triangles to distinguished triangles, we can easily prove the following.

Proposition 5.2. Let $f: X \rightarrow \mathbb{C}$ be a non-constant regular function on the toric variety X and set $X_{0}=\{x \in X \mid f(x)=0\} \subset X$. Then for any T-invariant object $\mathcal{F} \in \mathbf{D}_{c}^{b}(X)$ and $x \in X_{0}$ we have

$$
\begin{align*}
\chi\left(\psi_{f}(\mathcal{F})_{x}\right) & =\sum_{\alpha} \rho(\mathcal{F})_{\alpha} \cdot \chi\left(\psi_{f}\left(\mathbb{C}_{X_{\alpha}}\right)_{x}\right) \tag{5.2}\\
\chi\left(\varphi_{f}(\mathcal{F})_{x}\right) & =\sum_{\alpha} \rho(\mathcal{F})_{\alpha} \cdot \chi\left(\varphi_{f}\left(\mathbb{C}_{X_{\alpha}}\right)_{x}\right) \tag{5.3}
\end{align*}
$$

Now let $X \hookrightarrow Z$ be a closed embedding of the toric variety X into a smooth algebraic variety Z and $\mathcal{F} \in \mathbf{D}_{c}^{b}(X)$ a T-invariant object. We consider \mathcal{F} as an object in $\mathbf{D}_{c}^{b}(Z)$ by this embedding and denote by $C C(\mathcal{F})$ its characteristic cycle in the cotangent bundle $T^{*} Z$. Then there exist some integers $m_{\alpha} \in \mathbb{Z}$ such that

$$
\begin{equation*}
C C(\mathcal{F})=\sum_{\alpha} m_{\alpha}\left[\overline{T_{X_{\alpha}}^{*} Z}\right] \tag{5.4}
\end{equation*}
$$

in $T^{*} Z$. It is well known that the coefficients m_{α} satisfy the formula

$$
\begin{equation*}
\rho(\mathcal{F})=\sum_{\alpha}(-1)^{\operatorname{dim} X_{\alpha}} m_{\alpha} \cdot \mathrm{Eu}_{\overline{X_{\alpha}}} \tag{5.5}
\end{equation*}
$$

Moreover m_{α} are uniquely determined by this formula. Since the calculation of the Euler obstructions $\mathrm{Eu}_{\overline{X_{\alpha}}}$ does not depend on the choice of the embedding $X \hookrightarrow Z$ (see [17]), the coefficients m_{α} do not depend on the choice of the smooth ambient space Z.

Now let $N \simeq \mathbb{Z}^{n}$ be a \mathbb{Z}-lattice of rank n and σ a strongly convex rational polyhedral cone in $N_{\mathbb{R}}$. We take the dual \mathbb{Z}-lattice M of N and consider the polar cone σ^{\vee} of σ in $M_{\mathbb{R}}$ as before. Then $X=\operatorname{Spec}\left(\mathbb{C}\left[\sigma^{\vee} \cap M\right]\right)$ is a normal toric variety and its open dense torus T is $\operatorname{Spec}(\mathbb{C}[M])$. We denote by X_{α} the T-orbit which corresponds to a face Δ_{α} of σ^{\vee} and consider the decomposition $X=\bigsqcup_{\Delta_{\alpha} \prec \sigma^{\vee}} X_{\alpha}$ of X into T-orbits. In this situation, we have the following result.

Theorem 5.3. Let $X \hookrightarrow Z$ be a closed embedding of X into a smooth algebraic variety Z and $\mathcal{F} \in \mathbf{D}_{c}^{b}(X)$ a T-invariant object. Then the coefficients $m_{\beta} \in \mathbb{Z}$ in the characteristic cycle

$$
\begin{equation*}
C C(\mathcal{F})=\sum_{\Delta_{\beta} \prec \sigma^{\vee}} m_{\beta}\left[\overline{T_{X_{\beta}}^{*} Z}\right] \tag{5.6}
\end{equation*}
$$

are given by the formula

$$
\begin{equation*}
m_{\beta}=\sum_{\Delta_{\beta}<\Delta_{\alpha} \prec \sigma^{\vee}}(-1)^{\operatorname{dim} \Delta_{\alpha}} \rho(\mathcal{F})_{\alpha} \cdot \operatorname{RSV}_{\mathbb{Z}}\left(\Delta_{\alpha}, \Delta_{\beta}\right) \tag{5.7}
\end{equation*}
$$

(for the definition of the normalized relative subdiagram volume $\operatorname{RSV}_{\mathbb{Z}}\left(\Delta_{\alpha}, \Delta_{\beta}\right)$ see Definition 4.2).

Proof. Since the coefficients of the characteristic cycle $C C(\mathcal{F})$ are calculated by vanishing cycles as we explained in Section 2, by Proposition 5.2 we have

$$
\begin{equation*}
C C(\mathcal{F})=\sum_{\Delta_{\alpha}<\sigma^{\vee}} \rho(\mathcal{F})_{\alpha} \cdot C C\left(\mathbb{C}_{X_{\alpha}}\right) \tag{5.8}
\end{equation*}
$$

in $T^{*} Z$. For a face $\Delta_{\beta} \prec \sigma^{\vee}$ of σ^{\vee}, we will show (5.7). It is enough to prove that for any face $\Delta_{\alpha} \prec \sigma^{\vee}$ of σ^{\vee} such that $\Delta_{\beta} \prec \Delta_{\alpha}$ the coefficient $m_{\alpha, \beta} \in \mathbb{Z}$ of $\left[\overline{T_{X_{\beta}}^{*} Z}\right]$ in the characteristic cycle $C C\left(\mathbb{C}_{X_{\alpha}}\right)$ of $\mathbb{C}_{X_{\alpha}} \in \mathbf{D}_{c}^{b}(Z)$ is given by $m_{\alpha, \beta}=(-1)^{\operatorname{dim} \Delta_{\alpha}} \operatorname{RSV}_{\mathbb{Z}}\left(\Delta_{\alpha}, \Delta_{\beta}\right)$. Since in the case $\Delta_{\beta}=\Delta_{\alpha}$ we obtain it easily, it is enough to consider the case $\Delta_{\beta} \neq \Delta_{\alpha}$. From now on, we shall inherit and freely use the notations in the proof of Theorem 4.3. In particular, in a neighborhood of $X_{\beta}=T_{\beta}$ in X we have

$$
\begin{align*}
\overline{X_{\alpha}} & =X_{\alpha, \beta} \times T_{\beta}, \tag{5.9}\\
X & =X_{\sigma, \beta} \times T_{\beta} \tag{5.10}
\end{align*}
$$

and there exists a unique point $q \in X_{\sigma, \beta}$ such that $\{q\} \times T_{\beta}=T_{\beta}$. Let us take a closed embedding $X_{\sigma, \beta} \hookrightarrow \mathbb{C}^{m}$ by which the point $q \in X_{\sigma, \beta}$ is sent to $0 \in \mathbb{C}^{m}$. Since the coefficient $m_{\alpha, \beta}$ in the characteristic cycle $C C\left(\mathbb{C}_{X_{\alpha}}\right)$ is independent of the choice of the ambient manifold Z, we may
replace Z by $Z^{\prime}:=\mathbb{C}^{m} \times T_{\beta}$ and compute it in Z^{\prime}. Since $X_{\alpha}=T_{\alpha} \simeq T_{\alpha, \beta} \times X_{\beta}$, we obtain an isomorphism

$$
\begin{equation*}
\mathbb{C}_{X_{\alpha}} \simeq\left(\mathbb{C}_{T_{\alpha, \beta}}\left[-\operatorname{dim} \Delta_{\beta}\right]\right) \boxtimes\left(\mathbb{C}_{X_{\beta}}\left[\operatorname{dim} \Delta_{\beta}\right]\right) \tag{5.11}
\end{equation*}
$$

in $\mathbf{D}_{c}^{b}\left(Z^{\prime}\right)$. Hence we get

$$
\begin{align*}
C C\left(\mathbb{C}_{X_{\alpha}}\right) & =C C\left(\mathbb{C}_{T_{\alpha, \beta}}\left[-\operatorname{dim} \Delta_{\beta}\right]\right) \times C C\left(\mathbb{C}_{X_{\beta}}\left[\operatorname{dim} \Delta_{\beta}\right]\right) \tag{5.12}\\
& =C C\left(\mathbb{C}_{T_{\alpha, \beta}}\left[-\operatorname{dim} \Delta_{\beta}\right]\right) \times\left[T_{X_{\beta}}^{*} X_{\beta}\right] \tag{5.13}
\end{align*}
$$

in $T^{*} Z^{\prime}=T^{*}\left(\mathbb{C}^{m}\right) \times T^{*} X_{\beta}$. Since we have $\overline{T_{X_{\beta}}^{*} Z^{\prime}}=T_{\{0\}}^{*}\left(\mathbb{C}^{m}\right) \times T_{X_{\beta}}^{*} X_{\beta}, m_{\alpha, \beta}$ is equal to the coefficient of $\left[T_{\{0\}}^{*}\left(\mathbb{C}^{m}\right)\right]$ in the characteristic cycle $C C\left(\mathbb{C}_{T_{\alpha, \beta}}\left[-\operatorname{dim} \Delta_{\beta}\right]\right)$ of $\mathbb{C}_{T_{\alpha, \beta}}\left[-\operatorname{dim} \Delta_{\beta}\right] \in$ $\mathbf{D}_{c}^{b}\left(\mathbb{C}^{m}\right)$. Hence by taking a generic linear form $f: \mathbb{C}^{m} \rightarrow \mathbb{C}$ we have

$$
\begin{align*}
m_{\alpha, \beta} & =-\chi\left(\varphi_{f}\left(\mathbb{C}_{T_{\alpha, \beta}}\left[-\operatorname{dim} \Delta_{\beta}\right]\right)_{0}\right) \tag{5.14}\\
& =(-1)^{\operatorname{dim} \Delta_{\beta}+1} \chi\left(\varphi_{f}\left(\mathbb{C}_{T_{\alpha, \beta}}\right)_{0}\right) . \tag{5.15}
\end{align*}
$$

By applying Theorem 2.4 to the closed embedding $X_{\alpha, \beta} \hookrightarrow \mathbb{C}^{m}$ we obtain

$$
\begin{equation*}
m_{\alpha, \beta}=(-1)^{\operatorname{dim} \Delta_{\beta}+1} \chi\left(\varphi_{g}\left(\mathbb{C}_{T_{\alpha, \beta}}\right)_{0}\right), \tag{5.16}
\end{equation*}
$$

where we set $g:=\left.f\right|_{X_{\alpha, \beta}}$. Note that if $\Delta_{\beta} \subsetneq \Delta_{\alpha}$ the stalk of $\mathbb{C}_{T_{\alpha, \beta}}$ at $0 \in X_{\alpha, \beta}$ is zero and

$$
\begin{equation*}
\chi\left(\varphi_{g}\left(\mathbb{C}_{T_{\alpha, \beta}}\right)_{0}\right)=\chi\left(\psi_{g}\left(\mathbb{C}_{T_{\alpha, \beta}}\right)_{0}\right) . \tag{5.17}
\end{equation*}
$$

Finally by [25, Corollary 3.6] (see also the proof of [14, Chapter 10, Theorem 2.12]) we obtain the desired formula

$$
\begin{equation*}
m_{\alpha, \beta}=(-1)^{\operatorname{dim} \Delta_{\alpha}} \operatorname{RSV}_{\mathbb{Z}}\left(\Delta_{\alpha}, \Delta_{\beta}\right) \tag{5.18}
\end{equation*}
$$

This completes the proof.

By the proof of Theorem 4.7, we can prove also a similar result for projective toric varieties associated with lattice points. Let A be a finite subset of $M \simeq \mathbb{Z}^{n}$ such that the convex hull P of A in $M_{\mathbb{R}}$ is n-dimensional. We inherit the notations in Sections 3 and 4 . Let us consider the projective toric variety $X_{A} \subset Z=\mathbb{P}^{\sharp A-1}$ associated with A. For a face Δ_{α} of P, denote by X_{α} ($=T_{\alpha}$) the T-orbit which corresponds to Δ_{α}. Then we obtain a decomposition $X_{A}=\bigsqcup_{\Delta_{\alpha} \prec P} X_{\alpha}$ of X_{A} into T-orbits.

Theorem 5.4. Let $X_{A} \hookrightarrow Z=\mathbb{P}^{\sharp A-1}$ be the projective embedding of X_{A} and $\mathcal{F} \in \mathbf{D}_{c}^{b}\left(X_{A}\right)$ a T-invariant object. Then the coefficients $m_{\beta} \in \mathbb{Z}$ in the characteristic cycle

$$
\begin{equation*}
C C(\mathcal{F})=\sum_{\Delta_{\beta}<P} m_{\beta}\left[\overline{T_{X_{\beta}}^{*} Z}\right] \tag{5.19}
\end{equation*}
$$

are given by the formula

$$
\begin{equation*}
m_{\beta}=\sum_{\Delta_{\beta}<\Delta_{\alpha}<P}(-1)^{\operatorname{dim} \Delta_{\alpha}} \rho(\mathcal{F})_{\alpha} \cdot i\left(\Delta_{\alpha}, \Delta_{\beta}\right) \cdot u\left(\mathcal{S}_{\alpha} / \Delta_{\beta}\right) \tag{5.20}
\end{equation*}
$$

(for the definitions of $i\left(\Delta_{\alpha}, \Delta_{\beta}\right)$ and $u\left(\mathcal{S}_{\alpha} / \Delta_{\beta}\right)$ see Definitions 4.5 and 4.6).
Since the proof of this theorem is similar to that of Theorem 5.3, we omit it.
Example 5.5. Assume that the finite set $A=\{\alpha(1), \alpha(2), \ldots, \alpha(m+1)\} \subset \mathbb{Z}^{n}$ generates $M=\mathbb{Z}^{n}$. For $j=1,2, \ldots, m+1$, set $\widetilde{\alpha(j)}:=(\alpha(j), 1) \in \mathbb{Z}^{n+1}$ and consider the $(n+1) \times(m+1)$ integer matrix

$$
\widetilde{A}:=\left(\begin{array}{llll}
{ }^{t} \widetilde{\alpha(1)} & { }^{t} \widetilde{\alpha(2)} & \ldots & { }^{t} \alpha \widetilde{\alpha(m+1)} \tag{5.21}
\end{array}\right)=\left(a_{i j}\right) \in M(n+1, m+1 ; \mathbb{Z})
$$

whose j-th column is ${ }^{t} \widetilde{\alpha(j)}$. For $\gamma \in \mathbb{C}^{n+1}$, we set

$$
\begin{gather*}
P_{i}:=\sum_{j=1}^{m+1} a_{i j} x_{j} \frac{\partial}{\partial x_{j}}-\gamma_{i} \quad(1 \leqslant i \leqslant n+1), \tag{5.22}\\
\square_{b}:=\prod_{b_{j}>0}\left(\frac{\partial}{\partial x_{j}}\right)^{b_{j}}-\prod_{b_{j}<0}\left(\frac{\partial}{\partial x_{j}}\right)^{-b_{j}} \quad\left(b \in \operatorname{Ker} \widetilde{A} \cap \mathbb{Z}^{m+1}\right) . \tag{5.23}
\end{gather*}
$$

Then the GKZ hypergeometric system on \mathbb{C}_{x}^{m+1} associated with \tilde{A} and the parameter $\gamma \in \mathbb{C}^{n+1}$ is

$$
\begin{cases}P_{i} f(x)=0 & (1 \leqslant i \leqslant n+1), \tag{5.24}\\ \square_{b} f(x)=0 & \left(b \in \operatorname{Ker} \widetilde{A} \cap \mathbb{Z}^{m+1}\right)\end{cases}
$$

(see $[12,13,28]$). Let $\mathcal{D}_{\mathbb{C}_{x}^{m+1}}$ be the sheaf of differential operators with holomorphic coefficients on \mathbb{C}_{x}^{m+1}. Then the coherent $\mathcal{D}_{\mathbb{C}_{x}^{m+1}}$-module

$$
\begin{equation*}
\mathcal{M}_{A, \gamma}:=\mathcal{D}_{\mathbb{C}_{x}^{m+1}} /\left(\sum_{1 \leqslant i \leqslant n+1} \mathcal{D}_{\mathbb{C}_{x}^{m+1}} P_{i}+\sum_{b \in \operatorname{Ker} \widetilde{A} \cap \mathbb{Z}^{m+1}} \mathcal{D}_{\mathbb{C}_{x}^{m+1}} \square_{b}\right) \tag{5.25}
\end{equation*}
$$

which corresponds to the above GKZ system is holonomic. Let \mathbb{C}_{ξ}^{m+1} be the dual vector space of \mathbb{C}_{x}^{m+1} and $\mathcal{M}_{A, \gamma}^{\wedge}$ the Fourier transform of $\mathcal{M}_{A, \gamma}$ on \mathbb{C}_{ξ}^{m+1} (see [16], etc.). We denote by S_{0} the image of the map $\Psi_{\tilde{A}}:\left(\mathbb{C}^{*}\right)^{n+1} \rightarrow \mathbb{C}_{\xi}^{m+1}$ defined by $\Psi_{\tilde{A}}(y)=\left(y_{1}^{\alpha \widetilde{\alpha(1)}}, y_{2}^{\widetilde{\alpha(2)}}, \ldots, y_{m+1}^{\alpha(m+1)}\right)$ and let $j: S_{0} \hookrightarrow \mathbb{C}_{\xi}^{m+1}$ be the inclusion. Then $S_{0} \subset \mathbb{C}_{\xi}^{m+1}$ is the cone over the open dense T-orbit in $X_{A} \subset \mathbb{P}^{m}$. In [12], for a local system \mathcal{L} of rank one on S_{0} Gelfand et al. constructed a morphism

$$
\begin{equation*}
j!\mathcal{L}[n+1] \rightarrow R \operatorname{Hom}_{\mathcal{D}_{\mathbb{C}_{\xi}^{m+1}}}\left(\mathcal{M}_{A, \gamma}^{\wedge}, \mathcal{O}_{\mathbb{C}_{\xi}^{m+1}}\right)[m+1] \tag{5.26}
\end{equation*}
$$

in $\operatorname{Perv}\left(\mathbb{C}_{\xi}^{m+1}\right)$. In [12, Theorem 4.6], by calculating the characteristic cycles of both sides of (5.26), they proved that (5.26) is an isomorphism if $\gamma \in \mathbb{C}^{n+1}$ is generic (non-resonant in the sense of [12, Theorem 4.6]). For each face $\Delta \prec P$ let $V_{0}(\Delta) \subset\left(\mathbb{P}^{m}\right)^{*}$ be the dual variety of the closure $\overline{T_{\Delta}} \subset \mathbb{P}^{m}$ of the T-orbit in X_{A} which corresponds to Δ and denote by $V(\Delta) \subset \mathbb{C}_{x}^{m+1}$ the cone over $V_{0}(\Delta) \subset\left(\mathbb{P}^{m}\right)^{*}$. Then by Theorem 5.4 we have

$$
\begin{equation*}
C C(j!\mathcal{L}[n+1])=\operatorname{Vol}_{\mathbb{Z}}(P)\left[T_{\mathbb{C}_{x}^{m+1}}^{*} \mathbb{C}_{x}^{m+1}\right]+\sum_{\Delta<P} i(P, \Delta) \cdot u(\Delta)\left[\overline{T_{V(\Delta)_{\mathrm{reg}}}^{*} \mathbb{C}_{x}^{m+1}}\right] \tag{5.27}
\end{equation*}
$$

in $T^{*} \mathbb{C}_{\xi}^{m+1} \simeq T^{*} \mathbb{C}_{x}^{m+1}$, where for $\Delta_{\beta}=\Delta \prec \Delta_{\alpha}=P$ we set $u\left(\mathcal{S}_{\alpha} / \Delta_{\beta}\right)=: u(\Delta) \in \mathbb{Z}_{\geqslant 1}$. Moreover if $\gamma \in \mathbb{C}^{n+1}$ is non-resonant, by the proof of [13, Theorem 5] and (4.43) we can show that the characteristic cycle $C C\left(\mathcal{M}_{A, \gamma}\right)=C C\left(\mathcal{M}_{A, \gamma}^{\wedge}\right)=C C\left(R \mathcal{H o m}_{\mathcal{D}_{\xi}^{m+1}}\left(\mathcal{M}_{A, \gamma}^{\wedge}, \mathcal{O}_{\mathbb{C}_{\xi}^{m+1}}\right)[m+1]\right)$ has the same expression. It seems that the integers $i(P, \Delta)$ are forgotten in [13, Theorem 5]. Recently in [27, Theorem 4.21] Schulze and Walther proved it in the wider case where γ is not rank-jumping.

From now on, we shall apply Theorem 5.3 to the intersection cohomology complexes on projective toric varieties. Let $M \simeq \mathbb{Z}^{n}$ be a \mathbb{Z}-lattice of rank n and N its dual lattice. Let P be an integral polytope in $M_{\mathbb{R}}$ such that $\operatorname{dim} P=n=\operatorname{dim} M_{\mathbb{R}}$ and Σ_{P} its normal fan in $N_{\mathbb{R}}$. Denote by $X_{\Sigma_{P}}$ the (normal) toric variety associated with Σ_{P}. Then by [26, Theorem 2.13], if P is sufficiently large and $A=P \cap M$, the natural morphism $\Phi_{A}: X_{\Sigma_{P}} \rightarrow \mathbb{P}^{\sharp A-1}$ induces an isomorphism $X_{\Sigma_{P}} \xrightarrow{\sim} X_{A}$. Let us consider the intersection cohomology complex $I C_{X_{A}} \in$ $\mathbf{D}_{c}^{b}\left(X_{A}\right)$ of such a projective toric variety $X_{A} \simeq X_{\Sigma_{P}} \subset \mathbb{P}^{\sharp A-1}$. For simplicity, we set $X:=X_{A}$ and $Z:=\mathbb{P}^{\sharp A-1}$. For a face $\Delta_{\alpha} \prec P$ of P, denote by X_{α} the T-orbit in X which corresponds to Δ_{α}. Then $\mathcal{F}=I C_{X}[n] \in \mathbf{D}_{c}^{b}(X)$ is a T-equivariant perverse sheaf on X. Considering \mathcal{F} as a perverse sheaf on $Z=\mathbb{P}^{\sharp A-1}$ via the embedding $X \hookrightarrow Z$, we obtain the following results. For $\Delta_{\beta} \prec \Delta_{\alpha} \prec P$, we set $V_{\alpha, \beta}:=\operatorname{RSV}_{\mathbb{Z}}\left(\Delta_{\alpha}, \Delta_{\beta}\right)$ and $V_{P, \beta}:=\operatorname{RSV}_{\mathbb{Z}}\left(P, \Delta_{\beta}\right)$ for short.

Example 5.6. For $n=2,3,4$ the characteristic cycle of $\mathcal{F}=I C_{X}[n] \in \operatorname{Perv}(Z)$ in $T^{*} Z$ is given by
(i) $n=2$:

$$
\begin{equation*}
C C(\mathcal{F})=\left[\overline{T_{T}^{*} Z}\right]+\sum_{\substack{\Delta_{\beta}<P \\ \operatorname{dim} \Delta_{\beta}=0}}\left(V_{P, \beta}-1\right)\left[\overline{T_{X_{\beta}}^{*} Z}\right], \tag{5.28}
\end{equation*}
$$

(ii) $n=3$:

$$
\begin{align*}
C C(\mathcal{F})= & {\left[\overline{T_{T}^{*} Z}\right]+\sum_{\substack{\Delta_{\beta}<P \\
\operatorname{dim} \Delta_{\beta}=1}}\left(V_{P, \beta}-1\right)\left[\overline{T_{X} Z}\right] } \\
& +\sum_{\substack{\Delta_{\beta}<P \\
\operatorname{dim} \Delta_{\beta}=0}}\left\{V_{P, \beta}-\sum_{\substack{\Delta_{\beta}<\Delta_{\alpha} \prec P \\
\operatorname{dim} \Delta_{\alpha}=2}} V_{\alpha, \beta}+2\right\}\left[\overline{T_{X_{\beta}}^{*} Z}\right], \tag{5.29}
\end{align*}
$$

(iii) $n=4$:

$$
\begin{align*}
C C(\mathcal{F})= & {\left[\overline{T_{T}^{*} Z}\right]+\sum_{\substack{\Delta_{\beta}<P \\
\operatorname{dim} \Delta_{\beta}=2}}\left(V_{P, \beta}-1\right)\left[\overline{T_{X_{\beta}}^{*} Z}\right] } \\
& +\sum_{\substack{\Delta_{\beta}<P \\
\operatorname{dim} \Delta_{\beta}=1}}\left\{V_{P, \beta}-\sum_{\substack{\Delta_{\beta}<\Delta_{\alpha}<P \\
\operatorname{dim} \Delta_{\alpha}=3}} V_{\alpha, \beta}+2\right\}\left[\overline{T_{X_{\beta}}^{*} Z}\right] \\
& +\sum_{\substack{\Delta_{\beta}<P \\
\operatorname{dim} \Delta_{\beta}=0}}\left\{V_{P, \beta}-\sum_{\substack{\Delta_{\beta}<\Delta_{\alpha}<P \\
\operatorname{dim} \Delta_{\alpha}=3}}\left(V_{\alpha, \beta}+1\right)+\sum_{\substack{\Delta_{\beta}<\Delta_{\alpha}<P \\
\operatorname{dim} \Delta_{\alpha}=2}} V_{\alpha, \beta}+1\right\}\left[\overline{\left.T_{X_{\beta}}^{*} Z\right] .}\right. \tag{5.30}
\end{align*}
$$

Note that (i) is a consequence of the main result of Gonzalez-Sprinberg [15]. Also (i) and (ii) can be deduced from Theorem 5.3 and the combinatorial formula for the intersection cohomology complex $I C_{X} \in \mathbf{D}_{c}^{b}(X)$ proved by Fieseler [10], etc. We leave the proof to the reader. By (i) and a result of Gonzalez-Sprinberg [15], we obtain the following.

Corollary 5.7. If $n=2$, then the following three conditions are equivalent:
(i) $X=X_{A} \simeq X_{\Sigma_{P}}$ is smooth.
(ii) $\mathrm{Eu}_{X} \equiv 1$ on X.
(iii) The characteristic cycle $C C(\mathcal{F})$ of $\mathcal{F}=I C_{X}[n]$ is irreducible.

Motivated by some calculations in the dimensions $n=2,3$ and 4, we conjecture that the above equivalence of (i) and (ii) holds also for $n \geqslant 3$.

Acknowledgment

We thank the referee for many valuable suggestions which improved this paper.

References

[1] G. Barthel, J.-P. Brasselet, K.-H. Fieseler, Classes de Chern des variétés toriques singuliéres, C. R. Math. Acad. Sci. Paris 315 (1992) 187-192.
[2] T.-C. Braden, Characteristic cycles of toric varieties; Perverse sheaves on rank stratifications, PhD thesis, MIT, 1995.
[3] R. Curran, E. Cattani, Restriction of A-discriminants and dual defect toric varieties, J. Symbolic Comput. 42 (2007) 115-135.
[4] J. Denef, F. Loeser, Weights of exponential sums, intersection cohomology, and Newton polyhedra, Invent. Math. 106 (1991) 275-294.
[5] A. Dickenstein, E.-M. Feichtner, B. Sturmfels, Tropical discriminants, J. Amer. Math. Soc. 20 (2007) 1111-1133.
[6] A. Dimca, Sheaves in Topology, Universitext, Springer-Verlag, Berlin, 2004.
[7] S. Di Rocco, Projective duality of toric manifolds and defect polytopes, Proc. Lond. Math. Soc. 93 (2006) 85-104.
[8] L. Ernström, A Plücker formula for singular projective varieties, Comm. Algebra 25 (1997) 2897-2901.
[9] A. Esterov, Newton polyhedra of discriminants of projections, Discrete Comput. Geom. 44 (1) (2010) 96-148.
[10] K.-H. Fieseler, Rational intersection cohomology of projective toric varieties, J. Reine Angew. Math. 413 (1991) 88-98.
[11] W. Fulton, Introduction to Toric Varieties, Princeton Univ. Press, 1993
[12] I.-M. Gelfand, M.-M. Kapranov, A.-V. Zelevinsky, Generalized Euler integrals and A-hypergeometric functions, Adv. Math. 84 (1990) 255-271.
[13] I.-M. Gelfand, M.-M. Kapranov, A.-V. Zelevinsky, Hypergeometric functions and toral manifolds, Funct. Anal. Appl. 23 (1989) 94-106. Its correction: Funct. Anal. Appl. 27 (1993) 295.
[14] I.-M. Gelfand, M.-M. Kapranov, A.-V. Zelevinsky, Discriminants, Resultants and Multidimensional Determinants, Birkhäuser, 1994.
[15] G. Gonzalez-Sprinberg, Cycle maximal et invariant d'Euler local des singularités isolées de surfaces, Topology 21 (1982) 401-408.
[16] R. Hotta, K. Takeuchi, T. Tanisaki, D-Modules, Perverse Sheaves, and Representation Theory, Birkhäuser, Boston, 2008.
[17] M. Kashiwara, Systems of Microdifferential Equations, Birkhäuser, 1983.
[18] M. Kashiwara, P. Schapira, Sheaves on Manifolds, Springer-Verlag, 1990.
[19] A.-G. Khovanskii, Newton polyhedra and toroidal varieties, Funct. Anal. Appl. 11 (1978) 289-296.
[20] A.-G. Kouchnirenko, Polyédres de Newton et nombres de Milnor, Invent. Math. 32 (1976) 1-31.
[21] D. Massey, Hypercohomology of Milnor fibers, Topology 35 (1996) 969-1003.
[22] Y. Matsui, K. Takeuchi, Generalized Plücker-Teissier-Kleiman formulas for varieties with arbitrary dual defect, in: Proceedings of Australian-Japanese Workshop on Real and Complex Singularities, World Scientific, 2007, pp. 248270.
[23] Y. Matsui, K. Takeuchi, Microlocal study of topological Radon transforms and real projective duality, Adv. Math. 212 (2007) 191-224.
[24] Y. Matsui, K. Takeuchi, Topological Radon transforms and degree formulas for dual varieties, Proc. Amer. Math. Soc. 136 (2008) 2365-2373.
[25] Y. Matsui, K. Takeuchi, Milnor fibers over singular toric varieties and nearby cycle sheaves, arXiv:0809.3148.
[26] T. Oda, Convex Bodies and Algebraic Geometry. An Introduction to the Theory of Toric Varieties, Springer-Verlag, 1988.
[27] M. Schulze, U. Walther, Irregularity of hypergeometric systems via slopes along coordinate subspaces, Duke Math. J. 142 (2008) 465-509.
[28] K. Takeuchi, Monodromy at infinity of A-hypergeometric functions and toric compactifications, Math. Ann. 348 (2010) 815-831.

[^0]: * Corresponding author.

 E-mail addresses: matsui@math.kindai.ac.jp (Y. Matsui), takemicro@nifty.com (K. Takeuchi).

