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Abstract

We give explicit formulas for the dimensions and the degrees of A-discriminant varieties introduced by
Gelfand, Kapranov and Zelevinsky. Our formulas can be applied also to the case where the A-discriminant
varieties are higher-codimensional and their degrees are described by the geometry of the configurations A.
Moreover combinatorial formulas for the Euler obstructions of general (not necessarily normal) toric vari-
eties will be also given.
© 2010 Elsevier Inc. All rights reserved.
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1. Introduction

The theory of discriminants is on the crossroad of various branches of mathematics, such
as commutative algebra, combinatorics, algebraic geometry, singularity theory and topology.
In [14], Gelfand, Kapranov and Zelevinsky generalized this classical theory to polynomials of
several variables by introducing A-discriminant varieties and obtained many deep results. They
thus laid the foundation of the modern theory of discriminants. The first aim of this paper is to
give formulas for the dimensions and the degrees of A-discriminant varieties.
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Now let M >~ 7" be a Z-lattice (free Z-module) of rank n and Mk := R ®7 M the real vector
space associated with M. Let A C M be a finite subset of M and denote by P its convex hull
in M. In this paper, we assume thatdim P =n. If A = {« (1), «¢(2), ...,a(m+1)}, we can define
a morphism @4 : T — P" (m := A — 1) from an algebraic torus T := Spec(C[M]) = (C*)" to
a complex projective space P”* by

X =(X1,%2,...,%Xp) > [x“(l) cx?@ . :x“(’"H)], (1.1)

where for each (i) € A C M ~7" and x € T we set x*) = )cﬁ)‘(i)‘)c‘z)’(i)2 x5 usual,

Definition 1.1. (See [14].) Let X 4 :=im @4 be the closure of the image of @4 : T — P™. Then
the dual variety X% C (P")* of X, is called the A-discriminant variety. If moreover X% is
a hypersurface in the dual projective space (P")*, then the defining homogeneous polynomial

of X7 (which is defined up to non-zero constant multiples) is called the A-discriminant.

Note that the A-discriminant variety X% is naturally identified with (the projectivization
of) the closure of the set of Laurent polynomials f : T = (C*)" — C of the form f(x) =
Y wes dax® (ay € C) such that {x € T | f(x) =0} is a singular hypersurface in 7. In order
to introduce the degree formula for A-discriminants proved by Gelfand et al. [14], we need the
following.

Definition 1.2. (See [14].) For a subset B C M >~ Z", we define an affine Z-sublattice M (B)
of M by

M(B) := {ch-v

veB

cv€Z, chz1}. (1.2)

veB

Let A < P be a face of P and denote by IL(A) the smallest affine subspace of MR con-
taining A. Then M(A N A) is a Z-lattice of rank dim A = dimL(A) in L(A) and we have
(M(ANA))r ~L(A). After fixing a Z-basis of the lattice M (A N A), let vol be the Lebesgue
measure of (L(A), M(AN A)) by which the volume of the (dim A)-dimensional standard (small-
est and integral) cube in it is measured to be 1. For a subset K C L(A), we set

Volz(K) := (dim A)! - vol(K). (1.3)

We call it the normalized (dim A)-dimensional volume of K with respect to the lattice M(ANA).

In other words, for the (dim A)-dimensional standard simplex S in (IL(A), M(A N A)) we set

Volz(S) = 1. Then the normalized volume of any integral polytope in (L(A), M(A N A)) is an

integer. Throughout this paper, we use this normalized volume Volz, instead of the usual one vol.
The following formula is obtained by Gelfand et al. [14, Chapter 9, Theorem 2.8].

Theorem 1.3. (See [14].) Assume that X 4 CP"™ is smooth and X7 is a hypersurface in (P™)*.
Then the degree of the A-discriminant is given by the formula:

deg X = Z (=1)4mA (dim A + 1) Volz(A). (1.4)
A<P
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In order to state our generalization of Theorem 1.3 to the case where X’ may be higher-
codimensional, recall that 7 = Spec(C[M]) acts naturally on X4 and we have a basic corre-
spondence (0 < k < n =dim P):

{k-dimensional faces of P} <=> {k-dimensional T-orbits in X 4} (1.5)

proved by [14, Chapter 5, Proposition 1.9]. For a face A < P of P, we denote by T the corre-
sponding T -orbit in X 4. We denote the value of the Euler obstruction Euyx, : X4 — Z of X4 on
Ta by Eu(A) € Z. The precise definition of the Euler obstruction will be given later in Section 4.
Here we simply recall that the Euler obstruction of X4 is constant along each T-orbit 7o and
takes the value 1 on the smooth part of X 4. In particular, for A = P the T-orbit T is open dense
in X4 and Eu(A) = 1. Then we have

Theorem 1.4. For 1 <i <m, set

8§ = Z (—1)C°dimA{ (dimé B 1) + (=D + 1)}VOIZ(A) -Eu(A). (1.6)

l
A<P

Then the codimension r = codimX’ = m — dim X’} and the degree of the dual variety X’ are
given by

r =codimX’j = min{i | §; # 0}, 1.7)
deg X% =5, (1.8)

Remark 1.5.

(1) For p € Z and g € Z, we used the generalized binomial coefficient

(p):p(p—l)(p—2)~-(p—q+1)' (19)

q q!

For example, for a vertex A = {v} < P, we have (dimiA_l) = (_ll) =(=1)".

(ii) The number codimX* — 1 is called the dual defect of X 4.

Corollary 1.6. Assume that X’ is a hypersurface in (P™)*. Then the degree of the A-discriminant
is given by

deg X* = Z (=D®4MA (dim A + 1)Volz(A) - Eu(A). (1.10)
A<P

The above theorem will be proved by using Ernstrom’s degree formula for dual varieties in [8]
and our result in [24]. Note that very recently by using tropical algebraic geometry, also Dick-
enstein et al. [5] obtained a totally different degree formula for the A-discriminant variety X% .
Their main application of the results in [5] is a generalization of the degree formula for X% in
[14] to the case where X is higher-codimensional. Indeed, if X7 is a hypersurface the degree
formula for X7 is implicit in Gelfand—Kapranov—Zelevinsky’s prime factorization theorem [14,
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Chapter 10, Theorem 1.2]. The formula in [5] is described by some combinatorics such as ma-
troids related to P. On the other hand, our formula is described by the (normalized) volumes of
the faces of P as the results in [14]. In particular, if X4 is a smooth hypersurface, our formula
coincides with Gelfand-Kapranov—Zelevinsky’s theorem (Theorem 1.3). In Section 4, we will
give geometric formulas which express the Euler obstruction Euy, : X4 — Z of X4 in terms
of the normalized volumes of the faces of P. Note that a beautiful formula for the Euler ob-
structions of 2-dimensional normal toric varieties was proved by Gonzalez-Sprinberg [15]. Our
formulas generalize it to arbitrary (not necessarily normal) toric varieties. Combining them with
Theorem 1.4 above, we can describe the dimension and the degree of X’ by the geometry of P
for any configuration A C M = Z". Recently in [9] Esterov found some nice applications of our
formulas.

Our functorial proof of the formula for the Euler obstruction Euy , : X4 — Z leads us to other
applications. In Section 5, we derive from it some formulas (Theorems 5.3 and 5.4) for the char-
acteristic cycles of T-equivariant constructible sheaves on general (not necessarily normal) toric
varieties. See [2] for another approach to this problem. In particular, combining it with the com-
binatorial description of the intersection cohomology complexes of toric varieties obtained by
Bernstein, Khovanskii and MacPherson (unpublished), Denef and Loeser [4] and Fieseler [10],
etc., we can derive combinatorial formulas for the characteristic cycle of the intersection co-
homology complex of any normal toric variety. See Section 5 for the details. Note that in [14,
Chapter 10, Theorem 2.11] also Gelfand et al. obtained a formula for the characteristic cycles
in a special but important case, from which they could have obtained the same result by some
generalization. However we included here a proof of Theorems 5.3 and 5.4, since we cannot find
such an explicit presentation in the literature and the lack of it seems to be the source of many
misunderstandings. For example, even in a special case, Schulze and Walther [27] corrected the
formula in [13] for the characteristic cycles of the A-hypergeometric systems only very recently.
We tried to show the power and the beauty of the sheaf-theoretical methods (see for example,
[6,16,18]) by proving Theorems 4.7 and 5.4 functorially. Moreover, during the proof of these re-
sults, we obtained an explicit description (4.43) of the branches along torus orbits in non-normal
toric varieties found in [14, Chapter 5, Theorem 3.1] and gave a rigorous justification to the ar-
gument on non-normal toric varieties in [14, Chapter 5, Theorem 3.1]. This explicit description
seems to be new and useful in non-normal toric geometry. We believe that Theorems 1.4, 4.3
and 4.7 are new, although our proof of Theorem 4.7 heavily depends on some ingenious con-
structions in [14]. Finally, let us mention that combining our combinatorial description of the
Euler obstructions of toric varieties with the result of Ehlers (unpublished) and Barthel et al. [1]
we can now compute the Chern—Mather classes of complete toric varieties very easily.

2. Preliminary notions and results

In this section, we introduce basic notions and results which will be used in this paper. In this
paper, we essentially follow the terminology of [6,16,18]. For example, for a topological space
X we denote by D?(X) the derived category whose objects are bounded complexes of sheaves
of Cx-modules on X.

Definition 2.1. Let X be an algebraic variety over C. Then

(i) We say that a sheaf F on X is constructible if there exists a stratification X =| |, Xo of X
such that F |, is a locally constant sheaf of finite rank for any .
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(i) We say that an object F of D (X) is constructible if the cohomology sheaf H I(F) of Fis
constructible for any j € Z. We denote by Dlg (X) the full subcategory of D”(X) consisting
of constructible objects F.

Recall that for any morphism f : X — Y of algebraic varieties over C there exist functors
Rf.:D°(X) > D?(Y),  Rf.:D(X)— Di(Y) Q2.1

of direct images. For other basic operations Rfi, f -1 f ! etc. in derived categories, see [18] for
the details.
Next we introduce the notion of constructible functions.

Definition 2.2. Let X be an algebraic variety over C. Then we say a Z-valued function p : X — Z
on X is constructible if there exists a stratification X =| |, Xo of X such that p|x, is constant
for any . We denote by CFz(X) the abelian group of constructible functions on X.

For a constructible function p : X — Z take a stratification X =| |, Xo of X such that p|x,
is constant for any « as above. Denoting the Euler characteristic of X, by x (Xy) we set

/xp:=2x(xa>-p<xa)ez, 2.2)

where x, is a reference point in X,. Then we can easily show that [’ x P € Z does not depend
on the choice of the stratification X =] |, X, of X. We call [ x P € Z the topological (Euler)
integral of p over X.

Among various operations in derived categories, the following nearby and vanishing cycle
functors introduced by Deligne will be frequently used in this paper (see [6, Section 4.2] for an
excellent survey of this subject).

Definition 2.3. Let f : X — C be a non-constant regular function on an algebraic variety X
over(C.iet Xo:={xeX| f(x)=0}C Xandletiy: Xg = X, jx : X\ Xo— X be inclusions.
Let p : C* — C* be the universal covering of C* = C \ {0} (C* ~ C) and consider the Cartesian
square
X\ Xy — C*
lm . lp 2.3)

X\ Xog —— C*.
Then for F € D?(X) we set

Y (F) =iy R(jx o px)s(jx o px) ' F € D’ (Xo) (2.4)

and call it the nearby cycle of F. We also define the vanishing cycle ¢ ¢ (F) € D’ (X) of F to be
the third term of the distinguished triangle:
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. 1
ix'F—> Y (F) — ¢ (F) AN (2.5)
in D?(Xo), where iy ' F — 1 ;(F) is the morphism induced by id — R(jx o px)«(jx o px)~".

Since nearby and vanishing cycle functors preserve the constructibility, in the above situation
we obtain functors

Yr, or:D(X) — DE(Xo). (2.6)

The following theorem will play a crucial role in this paper. For the proof, see for example,
[6, Proposition 4.2.11].

Theorem 2.4. (See [6].) Let w : Y — X be a proper morphism of algebraic varieties over C
and f : X — C a non-constant regular function on X. Set g .= fon:Y - C, Xg:={x € X |
fx)=0}and Yo:={y €Y | g(y) =0} =7~ (X¢). Then for any G € D2(Y) we have

R(7|vy)«Vg(9) = ¥ p(Rm:G), 2.7)
R(7yy)«9g(9) = @y (R74G) (2.8)

in DIC’(X()), where 1|y, : Yo — X is the restriction of 7.

Let us recall the definition of characteristic cycles of constructible sheaves. Let X be a smooth
algebraic variety over C and F € Df? (X). Then there exists a Whitney stratification X = |, X¢
of X consisting of connected strata X, such that H/(F)|x, is a locally constant sheaf for any
J €7 and «. For a point x, € X, take a holomorphic function f : U, — C defined in a neigh-
borhood U, of x, in X which satisfies the conditions

(1) f(xe) =0,
(i) (v grad f (xe)) € T, X \ (U T3, X),
(iii) x4 € X 1S a non-degenerate critical point of f|x,,

and set
My = —X (‘Pf (]:)xa) (2.9)
= =) (=D dimc(H/ (¢5(F), ) € Z. (2.10)
JEZ

Then we can show that the integer m, does not depend on the choice of the stratification X =
L), Xe, ¥« € Xo and f.

Definition 2.5. By using the above integers m, € Z, we define a Lagrangian cycle CC(F) in the
cotangent bundle 7*X of X by

CC(F):=) mo[T§ X]. 2.11)



2046 Y. Matsui, K. Takeuchi / Advances in Mathematics 226 (2011) 2040-2064

We call CC(F) the characteristic cycle of F € D? (X). Its coefficient m, € Z is called the multi-
plicity of F along the Lagrangian subvariety T;ga XCT*X.

Recall that in D’C7 (X) there exists a full abelian subcategory Perv(X) of perverse sheaves (see
[16,18], etc. for the details of this subject). Although for the definition of perverse sheaves there
are some different conventions of shifts in the literature, here we adopt the one in [16] by which
the shifted constant sheaf Cy[dim X] € Dﬁ? (X) on a smooth algebraic variety X is perverse.
Then for any perverse sheaf F € Perv(X) C D?(X ) on a smooth algebraic variety X we can
easily show that the multiplicities in the characteristic cycle CC(F) of F are non-negative.

Example 2.6. Let X =Cl and Y ={xj=---=x4 =0} C X =C}. Set F :=Cy[n —d] €
Perv(X). Then by an easy computation

m=—x(¢s(Cyln—dl]),) =1 (2.12)
for f(x) =x1 +x5+1 +---4x2at0eY C X =C" we obtain
CC(F)=1-[TyX]. (2.13)
Finally, we recall a special case of Bernstein—Khovanskii—Kushnirenko’s theorem [19,20].
Definition 2.7. Let g(x) =) _7» ayx” be a Laurent polynomial on (C*)" (a, € C). We call the
convex hull of supp(g) :={v e Z" | ay, # 0} C Z" C R" in R” the Newton polytope of g and
denote it by NP(g).
Theorem 2.8. (See [19,20].) Let A be an integral polytope in R" and g1, ..., g, generic Laurent

polynomials on (C*)" satisfying NP(g;) = A. Then the Euler characteristic of the subvariety
Zr={xe(C)"|gi(x)="--=gp(x) =0} of (C*)" is given by

x(z*)=(n"r (Z B i)VolZ(A), (2.14)

where Volz(A) € Z is the normalized n-dimensional volume of A with respect to the lattice
7" Cc R".

3. Proof of Theorem 1.4

In this section, we prove Theorem 1.4. First, by [14, Chapter 5, Proposition 1.2] we may
assume that M (A) = M. Recall that for a(j) € A (1 < j <A =m + 1) the function

T=(C*""3x=(x1,x2.... %) > x*Y) e C* 3.1)
is defined by the canonical pairing

T x M =Homgz(M,C*) x M — C*, (3.2)
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where we consider C* as an abelian group (i.e. a Z-module) and Homz (M, C*) denotes the
group of homomorphisms of Z-modules from M to C*. Then by the condition M(A) = M
we can easily see that the morphism @4 : T >~ (C*)" — P™ induces an isomorphism 7 =~
@A (T) =~ (C*)". Note that @4(T) =~ (C*)" is the largest T-orbit Tp in X4 = im®4 C P".
We can construct such an isomorphism also for any 7 -orbit Tpo (A < P) in X4 as follows.
For a face A < P of P, taking a point a(j) € M(AN A) C M NL(A) to be the origin of the
lattices M(A N A) and M NIL(A), we consider M(A N A) as a sublattice (Z-submodule) of
M N L(A). By this choice of the origin 0 = «(j) of the lattice M(A N A) =~ Z4mA we can
construct a morphism @ 4na : Homz (M (A N A), C*) ~ (C*)4mA _ P a5 follows. First, for
x € Homz(M(A N A), C*) ~ (C*)4MA and @ € M(A N A) denote by x* € C* the image of the
pair (x, o) by the canonical paring

Homz (M (AN A),C*) x (M(ANA)) — C*. (3.3)

Then the morphism @ 4na : Homz (M (A N A), C*) — P™ is defined by

Pana(x) =[81:82: - 1§l (3.4)

for x € Homz (M (A N A), C*) >~ (C*)4MA where we set

£ = {x“(k) if a(k) € ANL(A), 3.5)
0 otherwise.

In this situation, by [14, Proposition 1.2 and Proposition 1.9 in Chapter 5] the T -orbit Ta coin-
cides with the image of @ 4na and we can easily prove that the morphism

®4na - Homz (M(A N A), C*) = D ana ((C) ™) = Ta (3.6)
is an isomorphism. By making use of this very simple description of ®@na : (C* 5 Ta
for the faces A < P, we can now give a proof pf our theorem. For 1 < i < m, we take a generic
linear subspace H ~P"~! (resp. H; 11 ~P"~'~1) of P" of codimension 1 (resp. i + 1) and set

8 = (—l)"“l{i/ Eux, — (G + l)/ Eux, +/ Eux, } (3.7
pm H Hip

Here we set Hy, 11 := . Then by [8, Theorem 1.1] and [24, Remark 3.3] (see also [22] and [23])
the codimension r = codim X’ =m — dim X} and the degree of the dual variety X C (P")*
of X 4 are given by

)dim A

r=codim X} = min{l <i <m|§; #0}, (3.8)
deg X =6, (3.9)
Hence it remains for us to rewrite the above integers §; (1 < i < m). First of all, since the Eu-

ler obstruction Eux, : X4 — Z is constant on each T-orbit Tx =~ (C*dmA for A < P and
X(((C*)d) =0ford > 1, we have
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/EuXA: > Eua). (3.10)

A<P
dim A=0

Next, by taking a generic hyperplane
m+1
H={[Sliézimié‘mﬂlép'"’Zajgjzo} 3.11)
j=1

(aj € C) of P, we can calculate the topological integral f g Bux, as follows. Since ®@4na :
Homgz (M (A N A), C*) ~ (C*)4mA _ T, is an isomorphism, for the Laurent polynomial

La : Homz(M(ANA),C*) — Cc*
w w

. 3.12

X — > apx*W) @12
a(j)eANA

on the torus Homz (M (A N A), C*) ~ (C*)4mA e have
x(Ta N H) = x(fx € (€)™ | La(x) =0}). (3.13)

Note that for a generic hyperplane H C P the hypersurface {x € (C*4mA | 1, A (x) = 0} in the
torus Homz (M (A N A), C*) ~ (C*)4mA cut out by H satisfies the assumption of Bernstein—
Khovanskii—Kushnirenko’s theorem (Theorem 2.8) for any A < P. By Theorem 2.8, we thus
obtain

/ Euy, = Y (=D"™27!Volz(A) - Eu(A). (3.14)
" A<P
dimA>1
Similarly, by taking a generic linear subspace

m—+1
Hifl = {[sl £ :sm+1]er\Za}k’s,:ow:1,2,...,i+1)} (3.15)

j=1

(a;.k) € C) of P of codimension i + 1 and using Theorem 2.8, we have

ma_i1 (dimA =1
f Buy,= 3. (_1)dImA—'—1<lm, )VolZ(A)-Eu(A). (3.16)
Hit A<P !

dimAZi+1

By (3.7), (3.10), (3.14) and (3.16), we finally obtain

. codim A dimA — _1\i=lgs .
8 = Z( 1) 4+ (—=1)"""@{ 4+ 1) Volz(A) - Eu(A). (3.17)

A<P

This completes the proof.
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4. Euler obstructions of toric varieties

In this section, we give some formulas for the Euler obstructions of toric varieties. A beau-
tiful formula for the Euler obstructions of 2-dimensional normal toric varieties was proved by
Gonzalez-Sprinberg [15]. Our result can be considered as a natural generalization of his formula.

First we recall the definition of Euler obstructions (for the details see [17], etc.). Let X be
an algebraic variety over C. Then the Euler obstruction Euy of X is a Z-valued constructible
function on X defined as follows. The value of Euy on the smooth part of X is defined to
be 1. In order to define the value of Euy at a singular point p € X, we take an affine open
neighborhood U of p in X and a closed embedding U — C™. Next we choose a Whitney
stratification U = I_Iae 4 Uy of U such that Uy, are connected. Then the values Euy (Uy) of Euy
on the strata U, are defined by induction on codimensions of U, as follows:

(i) If Uy is contained in the smooth part of U, we set Euy (Uy) = 1.

(i) Assume that for k > O the values of Euy on the strata U, such that codimU, < k are already
determined. Then for a stratum Upg such that codim Ug = k + 1 the value Eux (Up) is defined
by

Eux(Up)= Y x(UaN £~ ()N B(g;:e) - Eux (Ua) 4.1)
UpCUx

for sufficiently small ¢ > 0 and 0 < n < &, where g € Ug and f is a holomorphic func-
tion defined on an open neighborhood W of g in C" such that Ugs "W C f ~1(0) and

(¢: grad f(9)) € T} C" \ Uy, i, T0,C™-

The above integers x (U, N £~ () N B(g; €)) can be calculated by the nearby cycle functor Yy
as

x(Ua N ) N B(g; ©)) = x (¥ £(Cu,)q)- (4.2)

Indeed by [6, Proposition 4.2.2], for the Milnor fiber F, :=UN f~'(n)NB(q; &) = (flo)"tapn
B(g;¢) of fly : U — Cat g € Ug we have an isomorphism

RI'(Fy; Cy,) =¥ (Cy,)g. 4.3)
Since Fy =| |, c4(Uy N Fy) is also a Whitney stratification of Fy (f|y : U — C has the iso-
lated stratified critical value 0 € C by [21, Proposition 1.3]), we obtain x (RI"(Fy; Cy,)) =
xWUe NFy) = x(UygN f_l(n) N B(q; €)) by [6, Theorem 4.1.22].
4.1. The case of affine toric varieties
From now on, we shall consider the toric case. Let N >~ Z" be a Z-lattice of rank n and o

a strongly convex rational polyhedral cone in Ng = R ®z N. We denote by M the dual lattice
of N and define the polar cone 0¥ of o in Mr =R ®7 M by

o ={veMg|(u,v)>0foranyuco}. (4.4)
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Then the dimension of 0¥ is n and we obtain a semigroup S, := o~ N M and an n-dimensional
affine toric variety X := U, = Spec(C[S,]) (see [11,26], etc.). Recall also that the algebraic
torus T = Spec(C[M]) >~ (C*)" acts naturally on X = U, and the T-orbits in X are indexed
by the faces A, < 0¥ of oV. We denote by L(A,) the smallest linear subspace of Mg contain-
ing A,. For aface A, of 0¥, denote by Ty, the T-orbit Spec(C[M NIL(A)]) which corresponds
to A, . Then we obtain a decomposition X = |_| A<V T, of X = U, into T -orbits. By the above
recursive definition (ii) of Euy, in order to compute the Euler obstruction Euy : X — Z it suffices
to determine the following numbers.

Definition 4.1. For two faces Ay, Ag of 0¥ such that Ag 2 Ay (& Tg C T,), we define the

linking number I, g € Z of T, along Tg as follows. For a point g € T and a closed embedding
1: X =U,; — C", we set

lo.g = x (¥ (Cr,)q), 4.5

where f is a holomorphic function defined on an open neighborhood W of g in C™ such that
TgNW C f71(0) and (¢; grad f (¢)) € T7,C" \ (Uas2a, T£,CM-

Note that the above definition of /, g does not depend on the choice of g € Tg, ¢ and f, etc.
We will show that [, g can be described by the geometry of the cones A, and Ag. First let
us consider the Z-lattice Mg := M NL(Ap) of rank dim Ag. Next set L(Ag)" := Mr/L(Ap)
and let pg : Mr — L(Ap)’ be the natural projection. Then M//S == pg(M) C L(Ap) is a Z-
lattice of rank (n —dim Ag) and Ky g := pg(Ay) C L(A,g)’ is a proper convex cone with apex
0eL(Ap).

Definition 4.2. For two faces A, and Ag of o such that Ag 2 Ay, we define the normalized
relative subdiagram volume RSVz (A, Ag) of A, along Ag by

RSVZ(Ag, Ag) :=Volz(Ky.p \ Ou.p), (4.6)

where O g is the convex hull of Ky 5N (M \{0}) in L(Ap) = R" 4™ A5 and Volz(Ke. 5\ Ou,p)
is the normalized (dim A, — dim Ag)-dimensional volume of Ky g \ &y g with respect to the
lattice M:g NL(Kep). If Ay = Ag, we set RSVz(Aq, Ay) :=1.

Theorem 4.3. For two faces Ay and Ag of o such that Ag 3 Aq, the linking number Iy g of Ty,
along Tg is given by

ly.p = (—1)ImAa—dmAs=IRSV Y (Ay, Ap). 4.7
Proof. First recall that we have Tg = Spec(C[Mg]) >~ (C*)4mAs For each face Ay of o such
that Ag = Ay, consider the semigroups Sy := M N A, and S = M}/g N Kg,g. In the special

case when A, =0, we set also S, g 1= M/g N pg(c"). Then for any face A, < o such that
Apg 2 Aq itis easy to see that

So+Mpg=S8upD Mg 4.8)
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and in a neighborhood of T in X we have

Ty = Spec(C[Sy + Mg)) (4.9)
= Spec(C[Sy.p1) x T (4.10)

(see the proof of [14, Chapter 5, Theorem 3.1]). In particular, for A, = o we have
X = Spec(C[Ss,p]) x Tp 4.11)
in a neighborhood of T. More precisely, there exists a unique point g € X, g := Spec(C[Sy,g])

such that {g} x Tg = Tg. Now let us take a face Ay < oY such that Ag 2 A, and set Xo,p =
Spec(C[Sy,g]). Then by the inclusion Sy g <> S, 5 We obtain a surjective homomorphism

ClSs.p1 — ClSy,p] (4.12)
of C-algebras and hence a closed embedding Xy g <> X, g. Denote by Ty g the open dense
torus Spec(C[Mg NL(Kq,p)]) =~ (C*ydimAa—dimAg of the toric variety X, g. Note that we have

Ty =~ Top x Tg. Now let vy, v2, ..., v, be generators of the semigroup S, g and consider a
surjective morphism

Clti, t2, ..., tm] = C[Ss g] (4.13)
of C-algebras defined by #; — [v;]. Then it induces a closed embedding X, g — C™ by which

the point ¢ € X, g is sent to 0 € C™. If we consider Ty g as a locally closed subset of C™ by this
embedding, then the linking number /g of T, along Tp is given by

la.p = x (V1 (Cr,4)0). (4.14)

where f : C™ — C is a generic linear form. By applying Theorem 2.4 to the closed embedding
Xq,p — C™, we obtain

la.p = X (¥5(Cr, 4)0). (4.15)

where we set g := f|x, PE Finally it follows from [25, Corollary 3.6] (whose special case used
here can be deduced also from the proof of [14, Chapter 10, Theorem 2.12]) that

ly.p = (—D)ImABa=dimAs=lyg], (K, 5\ Oy p). (4.16)
This completes the proof. O

Since the Euler obstruction Euy : X — Z of X is constant on each T-orbit T, (Ay < V), we
denote by Eu(Ay) the value of Euy on 7,. Then we have

Corollary 4.4. All the values Eu(Ay) of Euy : X — Z are determined by induction on codimen-
sions of faces of ¢ as follows:
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(i) Bu(cV) :=Eux(T) =1,
(i) Bu(Ap) =2 a, =4, (= DdimAa=dimAs—IRGV (A4, Ag) - Eu(Ay).

4.2. The case of toric varieties associated with lattice points

We consider the situation considered in Sections 1 and 3 and inherit the notations there. From
now on, we shall give a combinatorial description of Euy, for the variety X 4. By our assumption
dim P = n, the rank of the affine Z-lattice M (A) generated by A is n. For each face Ay of P,
consider the smallest affine subspace L(A,) of MR containing A, and the affine Z-lattice M, :=
M (AN Agy) generated by AN Ay in L(Ag). Now let us fix two faces Ay, Ag of P such that
Ag < Ag. By taking a suitable affine transformation of the lattice M (A), we may assume that
the origin 0 of M (A) is a vertex of the smaller face Ag. By this choice of the origin 0 € Ag N
M (A), we define the subsemigroup S, of M, generated by A N A,. Although S, depends also
on Ag, etc., we denote it by S, to simplify the notation. Denote by M, /Ag the quotient lattice
My /(Mg NI1L(Ap)) of rank (dim A, — dim Ag). Then the following definitions are essentially
due to [14, Chapter 5, p. 178].

Definition 4.5. (See [14].)
(i) We denote by S,/Apg the image of S, C M, in the quotient Z-lattice My /Ag.

(ii) We denote by K (Sy/Ap) (resp. K4 (Sy/Ap)) the convex hull of S, /Ag (resp. (Sa/Apg) \
{0}) in (My/Apg)Rr and set

K_(Sa/Ap) = KSalDp)\ K1 (Su/Ap). (4.17)
We call K_(Sy/Ap) the subdiagram part of the semigroup S, /Ag and denote by u(Sy/Ag)
its normalized (dim A, — dim Ag)-dimensional volume with respect to the Z-lattice
My/Apg C(My/Ap)R. If Ay = Ag, we set u(Sq/Ay) :=1.
Finally, recall the definition of the index i (A, Ag) € Z~¢ in [14, Chapter 5, (3.1)].

Definition 4.6. (See [14].) For two faces Ay, Ag of P such that Ag < Ay, we define i (Ay, Ag)
to be the index

i(Ag, Ag) :=[Mo NL(Ap) : Mg]. (4.18)

Now recall that by [14, Chapter 5, Proposition 1.9] we have the basic correspondence:

{faces of P} PN {T-orbits in X 4}. 4.19)

For a face A, < P of P, we denote by T, the corresponding 7 -orbit in X 4. We also denote by
Eu(A) the value of the Euler obstruction Euy, : X4 — Z on T,.
Theorem 4.7. The values Eu(Ay) are determined by:

(i) Eu(P) =1,
(i) Bu(Ap) =3 5, za, (DI AT (A, Ap) - u(Su/Ap) - Eu(Ad).
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Proof. Let Ay, < P be a face of P. Then by [14, Chapter 5, Proposition 1.9] the closure T,
of Ty, in X4 is isomorphic to the projective toric variety Xana, C PAANAD=T defined by the
finite subset A N A, in the lattice My, = M (AN Ay) ~ Z3m A« Moreover the cone Cone(T,) C
CHANAD over T, ¢ PHANAD=T s an affine variety as follows. Let

ig: My > By = My @7~ 79m2at] (4.20)
be the embedding defined by v — (v, 1) and ga the subsemigroup of the lattice Z, generated by
in(ANA,) and 0 € E,. Then by [14, Chapter 5, Prgposition 2.3] the cone Cone(T) C CHANA)
is isomorphic to the affine toric VgrietyNSpec((C[Sa]). In thg special case when A, =P, we

set & :=5E, (=M(A) ®7Z)and S := S5, for short. Since S, is a subsemigroup of S via the
inclusions M, C M(A) and E, C Z, there exists a natural surjection

C[S] — C[S,]. 4.21)

This corresponds to the closed embedding
Cone(Ty) ~ Spec((C[ga]) <> Cone(X 1) >~ Spec((C[g]). 4.22)
Now let A, and Ag be two faces of P such that Ag 3 Ay (& T C T,). We have to de-
termine the linking number [, g of T, along Tg (defined as in Definition 4.1). Since the sin-
gularity of T, along Tg is the same as that of Cone(T,) =~ Spec(C[S,]) along Cone(Tg) ~
Spec(C[Zg]) =~ (C*)dimAs+1 it suffices to study the pair Cone(Tg) C Cone(T,). Moreover, by

the proof of [14, Chapter 5, Theorem 3.1], in a neighborhood of Cone(73) in Cone(X 4) C CrA,
we have

Cone(Ty,) = Spec(C[S, + Zp]), (4.23)
Cone(X ) = Spec(C[S + Ep1) (4.24)

and the fibers of the morphisms

Cone(T,) ~ Spec((C[ga + E,g]) — Cone(Tg) =~ Spec(C[E,g]), (4.25)
Cone(X4) ~ Spec((C[g—i- Z4]) — Cone(Tp) =~ Spec(C[Zp]) (4.26)

induced by &g C ga + &g and Eg C §~|— Ep are Spec(C[(ga + Ep)/Eg]) and Spec(C[(g—i—
Epg)/Eg]) respectively. Let us set

Yy := Spec(C[(Sy + Ep)/Ep]), 4.27)
Y :=Spec(C[(S + 5p)/55)). (4.28)

Since the natural morphism

Su+ Bp)/Ep — S+ Ep)/Zp (4.29)
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is injective, we obtain a surjection

C[S+ Ep)/Ep] — C[(Su + Ep)/Ep] (4.30)

and hence a closed embedding Y, < Y. Note that ¥ N Cone(7g) = Y, N Cone(Tg) consists
of a single point. We denote this point by g. Now let us consider the open subset W, :=
Spec(C[Ey/Eg]) of Yy = Spec(C[(Sy + Ep)/Eg]). It is easy to see that W, is the intersec-
tion of Cone(7y) =~ (C*)ydimAatl ang y,. Let vy, va,..., Uy be generators of the semigroup
(S + Ep)/Ep and consider a surjective morphism

Clt1, 12, - tm] = C[(S + 8p)/ 55] (4.31)

of C-algebras defined by #; — [v;]. Then it induces a closed embedding ¥ < C™ by which
the point g € Y is sent to 0 € C™. If we consider W,, as a locally closed subset of C™ by this
embedding, then the linking number [y g is given by

la.p = X (¥ (Cw,)o) (4.32)

where f : C" — C is a generic linear form. By applying Theorem 2.4 to the closed embedding
Y, — C™, we obtain also

lo.p = X (¥¢(Cw,)o), (4.33)

where we set g := f|y,. In order to calculate this last term x (¥,(Cw,)o), we shall investigate
the structure of W,, more precisely. By the inclusion (Zg)r C (Eq)r, We set 5, := 5, N (Zp)R.
Since we assumed that the origin of the lattice My, is a vertex of Ag, the two lattices E/ and EZp
contain the subgroup {(0,¢) € &y |t € Z} = Z of E,. Hence we obtain an isomorphism

E,/Eg~ (Mg NL(Ap))/Mg. (4.34)

Namely Zj is a sublattice of &/, with index [ :=i(Aqy, A g). By the fundamental theorem of

finitely generated abelian groups, we may assume that G := &,/ &g is a cyclic group Z/IZ of
order I =i(Ay, Ag). Now let us take a sublattice =] of Z, such that 5, = &, @ &,. Then we

o
have

Ey/Ep=G®E! (4.35)

and
Wy > Spec(C[G]) x Spec(C[E,]) (4.36)
~{zeC| 7= 1} x (C*)dimA“_dimAﬁ. 4.37)

Let¥ : B, — G =Z/1Z be the composite of

Q|

a—»E’—»G:E//Eﬁ. (4.38)

o o
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For s € &, we define an integer e(s) € {0, 1,2,...,] — 1} by ¥ (s) = [e(s)] € G = Z/IZ. Then
fork=0,1,...,1 — 1 there exist surjective homomorphisms

I : C[(Sy + Bp) /8] — C[(Sa + EL)/EL] (4.39)

of C-algebras defined by

> ailsi+Eple> 3o a ™ [+ 5] (4.40)

S[ESQ Si ES

where u; = exp(%_—l) is the primitive /-th root of unity. On the other hand, since {(0, t) € Z |
t € Z} ~Z is a subgroup of &/, we have isomorphisms

Eo/EL > My/Ap=My/(My NL(Ap)), (4.41)
(Su+ EL)/EL =~ Su/Ap. (4.42)

Let us set Z, := Spec(C[Sy/Agl). Then by the above surjective homomorphisms [ (k =
0,1,2,...,1 — 1) we obtain closed embeddings

:Zy—>Yy k=0,1,2,...,1—1). (4.43)
We can see that the images of these embeddings ¢ : Z, < Y, are the explicit realizations of the

branches along 7'-orbits found in [14, Chapter 5, Theorem 3.1]. Indeed, denote by Ty the open
dense torus Spec(C[&]]) ~~ (C*)dimAq—dimAg of 7 Then the open dense subset W, C Y, is a

direct sum Tp U Tp U --- U Ty of [ copies of Ty. For k=0, 1,...,] — 1, consider also surjective
homomorphisms
I :C[Eq/Epl - C[E) | ~ C[ &4/ E]] (4.44)

of C-algebras defined by

S ai-lsi+ 81 > a5 + 8. (4.45)

S;i€EEy Si€EEy
Then by this homomorphism /; we obtain a closed embedding
U To > Wy (4.46)

which induces an isomorphism from Ty to the (k 4 1)-th component of W,,. Moreover t,’< fits into
the commutative diagram

Lk

ZaCH Y,

ﬂ ﬂ (4.47)
%

To— W,.



2056 Y. Matsui, K. Takeuchi / Advances in Mathematics 226 (2011) 2040-2064

Then we have an isomorphism

-1

P w)+(Cr,) ~Cw, (4.48)

k=0
in DLI?(YQ). Therefore, applying Theorem 2.4 to ¢, (k=0,1,2,...,/ — 1), we obtain

-1

lop =Y x (Vg (Cro). (4.49)
k=0

where we set gi 1= go, € C[So/Ap]l (k=0,1,2,...,1—1). Finally by [25, Corollary 3.6] (see
also the proof of [14, Chapter 10, Theorem 2.12]) we get

lyp = (—1)ImAa=dmAS=Li (AL Ag) - u(Se/Ap). (4.50)
This completes the proof. O

Example 4.8. We give some examples of integral polytopes for which the degrees of the
A-discriminant varieties are easily computed by our method. We fix a Z-basis {m, my, ..., m,}
of the lattice M = Z".

(i) For natural numbers ay,as,...,a, > 1, consider the finite subset A = {0,m,m; +
Mpy,...,my +aymy,my,my +my,...,my + amy,, ... My_1,Mpy—1 + My, ..., My—_1 +
Ap—_ 1My, My, 2my, ...,apmy} of M = 7". Let P be the convex hull of A in M = R".
Then P is an integral polytope such that P N M = A. Let Xp be the normal fan of P in
(MRr)* =R" and X5, the (normal) toric variety associated with X'p. Since P satisfies the
condition of [26, Theorem 2.13], the line bundle on X 5, associated with P is very ample.
This implies that we have an isomorphism X5, ~ X4 C P4+ +a+1=1 Moreover we can
easily see that X x-, and hence X4 are smooth. However, according to [3, Section 5] and [7],
the dual variety X’ of X, is not a hypersurface in general. By our method, we can com-
pute not only the codimension but also the degree of X7%. Since X4 is smooth, the Euler
obstruction Euyx, of X4 is the constant function 1. By (1.6), if n = 3 we have

81 = Z(—nw‘”mA(l + dim A)Volz(A) 4.51)
A<P

=—1-1-64+41-2-(6+a;+a+a3z)
—1-3-Q2+2a1+2ar+2a3)+1-4- (a1 + a2 + a3) (4.52)
=0, (4.53)

. dimA —1
8 = —1)codimA — 3t Volz(A 4.54
2A§)(>{<2)}oz<) (4.54)

=—1:(=2)-6+1-(=3) - 6+a1 +ar +a3)
—1-(=3)-24+2a; +2a>+2a3)+1-(=2) (a1 +ar +az) (4.55)
=a) +ax + as. (4.56)
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For n = 3, by Theorem 1.4 we thus obtain

codimX} =2, deg X% =a) +ax +a3. (4.57)

More generally, for any n > 2 we can easily show that

S§1=---=08,_2=0, Sn_1=ai+---+ay,. (4.58)

Then by Theorem 1.4 we obtain

codimX} =n — 1, deg X% =aj+ - +ay. (4.59)

Fora>2,let A={0,my,...,my,_1,my,,2m,,...,am,} be a finite subset of M and denote
by P its convex hull in MR. Then P is an n-dimensional simplex whose vertices are vg =0,
V] =M1, ..., Uy—] =Myu_1, Uy =am,. Also in this case, we have an isomorphism X 5, ~
X4 Cc Petn=1 But X4 is a singular variety this time. Nevertheless, we can compute the
Euler obstruction Euy, of X4 by our algorithm. For a subset oo C {0, 1,2, ..., n}, we denote
by A, the face of P whose vertices are {v; | i € «}. We can easily determine the values of
Euy, on the n- and (n — 1)-dimensional T -orbits in X 4 as

Eu(P) =1, Eu(Ay) =1 (fa =n). (4.60)

Starting from the values (4.60), by Theorem 4.7 we can calculate the values of Euy, on the
lower-dimensional T -orbits in X 4 inductively:

2—a O,né¢a),

1 (otherwise). (4.61)

Eu(Aq) = {

By the isomorphism X 5, ~ X 4, we can use also Corollary 4.4 to calculate these numbers.
For example, if n = 3, Eu(A13) is computed as

Eu(A12) = —u(Sp234/ A12) - Bu(P) + u(S123/A12) - Eu(A123) (4.62)
+ u(So12/A12) - Eu(Aopi2)
= a-1+1-141-1=2—a. (4.63)

Now let us compute the codimension and the degree of the dual variety X’} of X 4. By (1.6),
we have

81 =---=06y—1=0, 8p =2a —2. (4.64)
Then by Theorem 1.4 we obtain

codim X% =n, deg X =2a — 2. (4.65)
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5. Characteristic cycles of constructible sheaves

In this section, we give a formula for the characteristic cycles of T-invariant constructible
sheaves (see Definition 5.1 below) on toric varieties and apply it to GKZ hypergeometric systems
and intersection cohomology complexes.

First, let X be a (not necessarily normal) toric variety over C and 7 C X the open dense torus
which acts on X itself. Let X = |, X be the decomposition of X into T'-orbits.

Definition 5.1.

(i) We say that a constructible sheaf F on X is T-invariant if 7|y, is a locally constant sheaf
of finite rank for any «.

(i) We say that a constructible object F € D’C7 (X) is T -invariant if the cohomology sheaf H/ (F)
of F is T-invariant for any j € Z.

Note that the so-called T -equivariant constructible sheaves on X are T -invariant in the above
sense. Recall also that to any object F of DZC’(X ) we can associate a Z-valued constructible
function p(F) € CFz(X) defined by

p(F)@) =) (=1)/ dimg H/(F)x  (x € X). .1
JEZ

If moreover F is T-invariant, clearly p(F) is constant on each T-orbit X, . In this case, we
denote the value of p(F) on Xy by p(F)y € Z. By using the fact that vanishing and nearby
cycle functors send distinguished triangles to distinguished triangles, we can easily prove the
following.

Proposition 5.2. Let f : X — C be a non-constant regular function on the toric variety X and

set Xo={x € X | f(x) =0} C X. Then for any T -invariant object F € DIC’(X) and x € Xg we
have

x(¥r(F)x) Zp(}")a- (¥r(Cx,)x), (5.2)

X (95 (F)x) mea x (95 (Cx,)z). (5.3)

Now let X < Z be a closed embedding of the toric variety X into a smooth algebraic va-
riety Z and F € Df. (X) a T-invariant object. We consider F as an object in Df (Z) by this
embedding and denote by CC(F) its characteristic cycle in the cotangent bundle 7*Z. Then
there exist some integers m, € Z such that

CC(F) =) mo[Ty Z] (5.4)

in T*Z. It is well known that the coefficients m,, satisfy the formula

p(F) = (=D Xem . Bug-. (5.5)
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Moreover m, are uniquely determined by this formula. Since the calculation of the Euler ob-
structions Euy- does not depend on the choice of the embedding X < Z (see [17]), the coeffi-
cients m, do not depend on the choice of the smooth ambient space Z.

Now let N >~ Z" be a Z-lattice of rank n and o a strongly convex rational polyhedral cone
in Ng. We take the dual Z-lattice M of N and consider the polar cone o of o in Mg as
before. Then X = Spec(C[o” N M]) is a normal toric variety and its open dense torus 7 is
Spec(C[M]). We denote by X, the T-orbit which corresponds to a face A, of oV and consider
the decomposition X =|_| Ay <oV Xo Of X into T-orbits. In this situation, we have the following
result.

Theorem 5.3. Let X — Z be a closed embedding of X into a smooth algebraic variety Z and
Fe DIC’ (X) a T-invariant object. Then the coefficients mg € Z in the characteristic cycle

CCF = ) mp[T},Z] (5.6)
Ag=aV
are given by the formula
mg= Y (=)W p(F)y - RSVz(Ag, Ap) (5.7)
Ag<Ag=<cV

(for the definition of the normalized relative subdiagram volume RSVyz(Ay, Ag) see Defini-
tion 4.2).

Proof. Since the coefficients of the characteristic cycle CC(F) are calculated by vanishing cy-
cles as we explained in Section 2, by Proposition 5.2 we have

CC(F)= Y p(Fa-CC(Cx,) (5.8)

Ag=<oV

in T*Z. For a face Ag <o of 0¥, we will show (5.7). It is enough to prove that for any face
Ay < 0¥ of 0¥ such that Ag < A, the coefficient my g € Z of [TX*—ﬂZ] in the characteristic
cycle CC(Cy,) of Cx, € D2(Z) is given by mgy g = (—1)IMA«RSVz(Ay, Ag). Since in the
case Ag = A, we obtain it easily, it is enough to consider the case Ag # A,. From now on,
we shall inherit and freely use the notations in the proof of Theorem 4.3. In particular, in a
neighborhood of Xg = Tg in X we have

Xo = Xo,p x Tg, (5.9
X=X5pxTp (5.10)
and there exists a unique point g € X, g such that {g} x Tg = Tg. Let us take a closed embedding

X5, <> C™ by which the point g € X, g is sent to 0 € C™. Since the coefficient mq g in the
characteristic cycle CC(Cy,) is independent of the choice of the ambient manifold Z, we may
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replace Z by Z' := C™ x T and compute it in Z’. Since Xo = Ty > Ty p X X g, We obtain an
isomorphism

Cx, ~ (Cr, 4 [—dim Ag]) X (Cx4[dim Ag]) (5.11)

in D2(Z’). Hence we get
CC(Cx,) = CC(Cr, 4[—dim Ag]) x CC(Cx,4ldim Ag]) (5.12)
= CC(Cr, y[—dimApl) x [Ty, Xp] (5.13)

in T*Z' = T*(C™) x T*Xg. Since we have Tx*ﬁ Z' = T{"(‘)}((C’”) X T;ﬁXﬂ, Mmq,p is equal to the
coefficient of [T{’B} (C™)] in the characteristic cycle CC(Cr, ,[—dim Ag]) of Cr,, ,[—dim Ag] €
D’(C™). Hence by taking a generic linear form f : C" — C we have

ma,p ==x(¢s(Cr, 1= dim Ag])y) (5.14)
= (=DM Hy (9 (Cr, 5)o).- (5.15)

By applying Theorem 2.4 to the closed embedding X, g < C™ we obtain

Me,p = (—DImastly (95(Cr,4)0). (5.16)

where we set g := f|x, ;. Note thatif Ag C Ay the stalk of Cr,, , at 0 € Xy g is zero and

x(95(Cr, 1)0) = x (¥¢(Cr, 4)0)- (5.17)

Finally by [25, Corollary 3.6] (see also the proof of [14, Chapter 10, Theorem 2.12]) we obtain
the desired formula

map = (=DM ARSVz(Aa, Ap). (5.18)
This completes the proof. O

By the proof of Theorem 4.7, we can prove also a similar result for projective toric varieties
associated with lattice points. Let A be a finite subset of M =~ Z" such that the convex hull P
of A in My is n-dimensional. We inherit the notations in Sections 3 and 4. Let us consider the
projective toric variety X4 C Z = P#~1 associated with A. For a face A, of P, denote by X,
(= Ty) the T-orbit which corresponds to A,. Then we obtain a decomposition X4 =|_| Ay<P Xo
of X 4 into T -orbits.

Theorem 5.4. Let X 4 <> Z = PP~ pe the projective embedding of X o and F € D(lﬁ (Xa) a
T -invariant object. Then the coefficients mg € Z in the characteristic cycle

CCF) =) mp[T3,Z] (5.19)
Ap=<P
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are given by the formula

mp= Y (=D p(F)gi(Ag, Ap) - u(Se/Ap) (5.20)
Ap<Ay=<P

(for the definitions of i (Ay, Ag) and u(Sy/Ap) see Definitions 4.5 and 4.6).
Since the proof of this theorem is similar to that of Theorem 5.3, we omit it.

Example 5.5. Assume that the finite set A = {a(1),a(2),...,a(m + 1)} C Z" generates
M=7"Forj=1,2,....,m+1,seta(j):= (a(j), 1) € Z"+" and consider the (n+1) x (m +1)
integer matrix

A=(ta() 'a@) - 'amtD))=(@j)eMn+1,m+1;2) (5.21)
whose j-th column is ’o[(7’). For y € C"!, we set

m+1
3
P; :=Za,~jxjg—y,~ A<i<n+1), (5.22)
j=1 ’

0 =[] <i " I KRN (b e KerANZ"™*) (5.23)
) ij ) 8xj . ‘
]<

Then the GKZ hypergeometric system on C"*+! associated with A and the parameter y € C"+!
is

Opf(x) =0 (beKerANnz"*)

(see [12,13,28]). Let D(C’T'“ be the sheaf of differential operators with holomorphic coefficients
on C™*+1. Then the coherent Dem+i-module

My, = 'DC;HI/( Z D(C;{H—] P+ Z chw]‘jb) (5.25)
1<i<n+1 beKer ANZm+1

which corresponds to the above GKZ system is holonomic. Let C’E"H be the dual vector space of
(CZ’H and ./\/lﬁ’ y the Fourier transform of M, , on (ng+l (see [16], etc.). We denote by Sp the

image of the map ¥y : (C*)"+! — C’g‘“ defined by ¥3(y) = (y‘f‘“), yg(z), s yz(flﬁ)) and let
Jj:So— (an+1 be the inclusion. Then Sy C (Cg"Jrl is the cone over the open dense T-orbit in

X4 C P™.1In [12], for a local system L of rank one on Sy Gelfand et al. constructed a morphism

JiLln+ 11— RHomp,,., (M3, OC?H)[m +1] (5.26)
3
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in Perv((Cg“H). In [12, Theorem 4.6], by calculating the characteristic cycles of both sides

of (5.26), they proved that (5.26) is an isomorphism if y € C"*! is generic (non-resonant in
the sense of [12, Theorem 4.6]). For each face A < P let Vyp(A) C (P™)* be the dual variety of
the closure Tx C P of the T-orbit in X 4 which corresponds to A and denote by V (A) ¢ C*!
the cone over Vy(A) C (P"*)*. Then by Theorem 5.4 we have

CC(jiLln + 11) = Vol (P T5n CYH ] + 37 i (P &) - u(A)[ Ty, CHH'] (527)
A<P

in T*(Cg”] ~ T*(C;"“, where for Ag = A < Ay = P we set u(Sy/Ap) =: u(A) € Z>1. More-

over if y € C"*! is non-resonant, by the proof of [13, Theorem 5] and (4.43) we can show that
the characteristic cycle CC(My ) = CC(MQJ,) = CC(RHomDCgM (Mﬁyy, OCrEnJrl)[m +1))

has the same expression. It seems that the integers i (P, A) are forgotten in [13, Theorem 5].
Recently in [27, Theorem 4.21] Schulze and Walther proved it in the wider case where y is not
rank-jumping.

From now on, we shall apply Theorem 5.3 to the intersection cohomology complexes on
projective toric varieties. Let M ~ 7" be a Z-lattice of rank n and N its dual lattice. Let P
be an integral polytope in My such that dim P = n = dim Mg and X'p its normal fan in Ng.
Denote by X5, the (normal) toric variety associated with X'p. Then by [26, Theorem 2.13],
if P is sufficiently large and A = P N M, the natural morphism @4 : X 5, — P*4~! induces

an isomorphism Xy, S Xg4. Let us consider the intersection cohomology complex ICx, €
Df(X 4) of such a projective toric variety X4 ~ X5, C P#4=1. For simplicity, we set X := X
and Z :=P*~! For a face A, < P of P, denote by X, the T-orbit in X which corresponds
to Ay. Then F = ICx[n] € DZ(X ) is a T-equivariant perverse sheaf on X. Considering F as a
perverse sheaf on Z = P#~! via the embedding X < Z, we obtain the following results. For
Ag <Ay < P,weset Vy g:=RSVz(Ay, Ag) and Vp g :=RSVz(P, Ag) for short.

Example 5.6. For n = 2, 3, 4 the characteristic cycle of F = ICx[n] € Perv(Z) in T*Z is given

by
i) n=2:
CCF) =[T7Z]+ Y (Vep—D[T},Z], (5.28)
Ap=<P
dim Ag=0
(i) n=3:

CCH =[T7Z]+ Y (Vep—DI[T},Z]

Ag=<P
dim Ag=1
+ Y {Vp,,g— > va,ﬂ+2}[TX*ﬂz], (5.29)
Ag=<P Ap=<Aq=<P

dim Ag=0 dim Ay,=2
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(iii) n = 4:

CCH =[T7z]+ Y. (Vpg—D[T},Z]

Ag=<P
dim Ag=2
+ Y {Vp,,g— > Va,ﬂ+2}[T;gﬂz]
Ag=<P Ap<Ag=<P
dimAg= dimAy,=3
+ 0y {Vp,,s— Y Vapt+h+ > Va,,s+1}[;gﬁz].
Ap=<P Ap<Ay<P Ap<Ag=<P
dim Ag=0 dim Ay,=3 dim Ay,=2

(5.30)

Note that (i) is a consequence of the main result of Gonzalez-Sprinberg [15]. Also (i) and (ii)
can be deduced from Theorem 5.3 and the combinatorial formula for the intersection cohomology
complex ICy € DIC’ (X) proved by Fieseler [10], etc. We leave the proof to the reader. By (i) and
a result of Gonzalez-Sprinberg [15], we obtain the following.

Corollary 5.7. If n = 2, then the following three conditions are equivalent:

(1) X =Xa = X5, is smooth.
(ii) Eux =1o0n X.
(iii) The characteristic cycle CC(F) of F = ICx[n] is irreducible.

Motivated by some calculations in the dimensions n = 2, 3 and 4, we conjecture that the above
equivalence of (i) and (ii) holds also for n > 3.
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