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Abstract. Some results on th: dis,ribu:ion of critic;al subgraphs in colour-critical graphs arc ob- 
tained. Characterizations rf /:-cri ical graphs in terms of their (k .- 1 )-critical subgrapls are gi- 
ven. The special case k = 4 is con: ic!ered. and it is proved that if a 4-critical t:raph I‘ h:rs a wrtex 
x of large valency (compared to f+c number of vertices of I’ not adjacent to x1. tF FYI I’ contains 
vertices of valewy 3. Finally. a list of dll4-*:ritical graphs with 5 9 vertices is exhibltcd. 

1. Terminology and intmductior. 

We consider fihite graphs without Imps md multiple cdgcs. The set 
of vertiws an:1 the set of edges of a graph r are denoted V’(r) and E(P), 
respectively. The compkte k-grqdz is denoted t:k >. The terms pu th and 
circuit are used in the S~IEX in which the corrrspondinr; terms L% eg and 
Kreis are Llsed in [ 61. Tli e Itwgtk of a path or circuit is the number of 
edges contained in it. We ailow a path to have length 0, but a circuit 
has lenglh > 3. A path or- a circuit is odd or even according to whether 
its length is odd or even. 

If A and r are graphs c;atisfying V(A) E l’(r) and E(A) C_ E(T), then 
A is a subgruph of J?, der;oted A G r. If T C_ V(r), then I’(T) denotes 
the subgraph of r spamrld by T, i.e., V(C( 7’) j = T and E(r( Tjj consists 
of all edges of E(r;d “;lavhrg both endvertLzs in T. If &I’(T)) = 8, then T 
is an indepmdtwt set of :ertices of r, and T is muirrza(! ittdepcndolt if 
it is not a proper subset o! any ether independe.nt set of vertices of r. 
Thz valeNL:F; of a vertex x of I’, denoted val(x, I’), is the gumber of edges 
of !C incident with _I-. If V’ E V(r) ?.nd E’ G E(r), then II‘ -- V’ - E’ de- 
notes the subgraph of r obtained by deleting from I’ all vertices of P” 
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and all edges of I’ incident +th vertices of V’, and then deleting all ed- 
ges of E’ that remain, without deleting any more vertices. If I’ is con- 
nected and I? - E’ is disconnected, then E’ is a separating set of edges 
OfF. 

A graph I’ is k-coZouratZe if ‘V(r) can be partitioned into al: most k 
mutually disjoint (colour) classes in such a way that each class is an in- 
dependent set of vertices. If k is the least integer for which f’ is k-colour- 
able, then k is the chromutic rumher of I’ and P is k-chromatic. An ele- 
ment t E V(r) u E(r) of a k-chromatic graph I‘ is critical if I’ - t is 
(k - I)-colourable. A connected graph I’ is crifislal k-chromatic (or sim- 
ply k-vritital) if it has chroenatic number k anti all edges - and conse- 
quently all vertices -- of r ;m ~itical. Each vertex of a k-critical gmph 
has valency 2 k -- 1. 

The 1- and 2-critical graphs dre the ( 1) and the (2), respectively. The 
3-critical graphs are the odd circuits ([ 6, p. 15 1, Sate 121). Hence each 
vertex of a k-critical grdijh with k 5 3 has valerncy k - I. It seems hope- 
less to determine the structure of all 4,-critical graphs. T. GEllai con- 
structed an infinite class of regular 4-critical griiphs of valency 4, thus 
proving that a 4-critical graph need not contain a vertex of valency 3 
(see [4, p. 172, (2.3)J and [S] ). M. Simonovits and the present author 
even proved that for any natural number 12, there exist 4-critical graphs 
in which all vertices have valcncy > h (see [ 8, Chapter 61 and [ 9 ] ). 
However, it is still unk-nown wh,ether any planar 4-critical graph neres- 
stirily contains a vertex of valericy 3 (see [ 51). 

In Section 4 of this paper, we shall prove that if I? is a 4-critical graph 
having a vertex adjacent to all except 01 vertices of I’, then there is al? 
upper bound nz(c~) depending only on 1y for the number of vertices of I’ 
of valency 2 4, i.e., if i V(r)1 > M(U), then I’ contains at least I V(r)1 - 

FYI(~) vertices of valency 3. The possible structures of I- in the cases 
la = 2 and cy = 3 are determined. This enables us to est blish a catalogue 
‘of all 4-critical graphs with at most 8 vertices. Also the case of 9 vertices 
is mentioned. The proofs in Section 4 are based on a characterization in 
Section 3 of k-critical graphs in terms of their (k - I)-critical subgraphs. 
In Section 2, a more elementary result is obtained and also a new, sim- 
ple proof of the result, that any separating set of edges in a k-critical 
graph cont;Lins 2 k - 1 edges, is presented. 
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2. Critical subgraphs 

By deleting any vertex or any edge from a k-critical i,raph, the re- 
maining graph has chromatic number k - 1 and therefc re contains :tt 
least one (k - 1 I-critical s:lbgraph. Theorem 2.1 gives extensions of this 
statement. 

Theorem 2.1. Let F bc a 
satisfJ&g 1 I a 5 k - 2. 

(a) By deleting a~ most LY vertices fbcm r. there exist q Ji)i. wch vtwex 
x of the rern&ing graph A, a (k - a)-criticul wbgraph CI~ A coiltairl,irzgx. 

(b) By deleting at most ar edges from I’, there exists for each edge t’ Q+!‘ 
the remaining graph A, a (k - cw)-critical wbgraph of A mntainirlg e, but 
net containing both endvertices of’any o, f the deleted edges. 

Theorem 2.1(a) follows easily by induction from the case at = 1, and 
the case ar = 1 is an immediate corollary of a characterization of k-criti- 
cal graphs given in Section 3. Theorem 2.1(a) was obtained earlier by 
Dirac [3, p. 45, (4)], >,nd the fcllowir,s proof of Theortm 2. ! (b) is si- 
milar to the proof in [ 3 ] of Theorem 2.1 (a). 

Proof of Theorem 2.l{b). Let e , . . . . e, be a set of v edges of I’, where 
v<ar,andletebeanedgeofr-e, -... -e,(=&).r--zhasa(k--l)- 
colouring K with &ours 1,2, . ., k - 1 such ttrat the two endvertices 
of e both have the colour k - 1 and such that for i = 1, . . . . Y, at least 
one endvertex of ei has .a colour among 1, . . . . v. Deiete from I’ alli ver- 
tices having colours 1 q . ,,. , LU in K and call the remaining graiJh A’. 
ei 4 E(A’) for i = 1, . . . . ~3, but since (Y <_ k - 2, e E E(A’,. A’ has chro- 
matic number > k - 01, because if A‘ were (k - a -- I )-c,oiourab!e. then 
r would be (k - I)-colousable. However, K’s restriction to 4’ -- LJ 
shows that A‘ - e is (k - (Y - I )-clDlourable, hence e is ‘,ontained in any 
(k - cw)-critical subgraph of A’. This proves Theorem 2. I(b). 

For CY = k -- 2,, The )*em 2. I(a) is equivalent to the statement that 
each vertex of a k-cri:lcal graph has valency 2 k -~- 1, and (b) is trivial. 
The case o = k - 1 of (b) gives a simple proof of the following well- 
knowr result [ 2, p. 45, Theorem I]: 
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A separating set Of edge& Of a. k-critical graph (k 2 3) contaim 

at least k - I edges. 

Proof, For k = 3, the statement is true. Suppose that k 2 4 and let E be 
a separating set of edges of the k-critical graph r. If we delete from P 
a!1 edges of E except one, then the remaining edge of E is not contained 
in any circuit of the remaining graph. Then by Theorem 2.1 (b) with 
01= k - 3, at least k - 2 edges have been deleted, i.e., El 2 k - 1, and 
(1) has been proved. Another versic>n of this proof based on the case 
~1= 1 of Theorem 2.1(b) and by imiuction over k can be given. 

The negation of the following statement (2) would - if true - have 
generalized both parts of Theorem 2.1 in the case (Y = 1. 

(2) 

,4n edge of a gmj2h F - 9, w*here r is k-critical (k > 4) aid 

.-, E V(r), is riot necessarily co$tt&lled iu a (k - I )-criticd 

.~+~firph 0.f r - X. 

Proof. Let I’ be ;I graph obtained from two disjoint, k-critical graphs A, 
and A, (k 2 4) by Hajos’ l;onstruction, i.e., delete an edge (x~ , _,vl ) 

from A1 and an edge (.‘cZ, yz) from A,, identify .yl and x2 to a new 
vertex x and join ~‘r and ):2 by a new edge: e. T’ is k-critical and the edge 
e is not contained in any tk - I)-critical subgraph of I’ - s. This proves 

(2). 

The above considerations give rise to an unsolved problem: For P k- 
critical (k 2 4) and x E V(r), characteriz’e the set E, of those edges of 
T’ - x that are not contaircd in any (k -- &critical subgraph of I’ - X. 
By (I ), any edge containeld in a separating set of <_ k -- 3 edges of 
r - x belongs to EX . A reult of Dirac [3, p. 48, Corollary to Theorem 
3 ] i:mplies that for k = 4, illso the converse of this statement is true, i.= , 
for k =: 4, EX consists of precisely the separating edges (also called the 
bridges) of r - _I:. ThTs implies that the above ex;mlples showing (2) arc 
th.e only such ex:lmplea for k = 4. However, the situat;on changes for 

‘k 2 5. Fig. I shows a 5critical graph I’ (we leave it to the render to 
check this) in which -the edge el belongs to EX, but where it is not cor- 
tained in any separating set af <_ 2 edges of r - .r:. To see that pI E E-y 
assume on the ce>ntrary that there exists a 4-criti& subgraph A of r - .Y 
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Fig. 1. 

containing el . Then by (! ), also e2 and e3 are contained in A. However, 

(e3, e4} is a separating set 0.f two edges of I’ - .r, and tz3 is therefore 
not contained in A. This is a contradiction. The exampie of Fig. 1 may 

be generalize:; to larger’values of k by replacing each of the vertices 

21 , z2, z3 and z4 by a (k - 4), showing the existence of a k-critical 
graph (k 2 5) with an edge e E EX , where e is not contained in any se- 
parating set of 5 k - 3 edges of r - x. 

3. Characterizations 02 critical graphs 

Let for a graph r and any vertex x of l7, X, denote the set of vertices 
of I not adjacent to x and let B, der,ote the set of vertices of I’ adjacent 
to X. V(r) is thus the disjoint union of {x}, ,I, and B, . Let A, denote 

the subgraph I? I - x - E(r(A, 1). 

Theorenl3.1. LC.P r’ be a rzorz-empty graph and let k 2 3. The following 

four stfi tenzen ts me eql:ivalen t. 

(a) I? is k-critical. 

(b) For all x E V(r), the following statemerzt holds: 

Let tht* n~axirnal independent sets of vertices of r(A, ) bc 

5, .,.? $. TElcn for ,i = 1, . . . . p, r - JC - I; coWaius a ( k -. I )- 

critical sllbgmph. Let for i = 1, . . . . p, Bj denote arly such 

(k -- 1 I-mticai strbgraph of I’ -- x - If. The/z A,x C: !_$ I Oi. 

(cj Let I,, . . . . l”” be al! maximal indeperldcn c sets oj‘ vcrticcs of I?. 

Then (ri:* j holds. 
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(**I 
Fcv j = 1, . ..) v, r --- ii contams a {k - I )-critical subgrap h. Let 
‘gi be any such (k- I)-criticalsubgraph of I’-.li. Then F = 
q 1 e#i. 

(d) There exi.st indlfpendent sets I, , . . . . I, of vertices of r such that 
(:k*) holds and such that fcv at least one vertex x of F all maximai inde- 
pcndent sets of vertices of I’ containing x are among I, , . . . . I,, . 

Remark 3.2. In Section 4, only the statement (a) -3 (b) will be used. 

Remark 3.3. The 13~‘s in (*) and (**) are not necessarily different and 
not necessarily uniquely determined. 

Remark 3.4. The assertion of Theor <n 2.1 (a) in the case (w = 1 is an im- 
mediate consequence of (b). 

Proof of Theorem 3.1. (a) * (b). Let I’ be k-critical and let x E V(r). 
We shall prove that (*) holds. For each j,, 1 5 j 5: 11, {x} U it is an inde- 
pendent set of vertices of r. hence i1 - 3” - ,$F is (k -- I)-chromatic and 
therefore contains a ik - ? )-critical subgraph Oi. Let t E V(A,) U E(A_, 1. 
In order to finish the prooi of (*) we shall prove chat d E 8, u . . . (J 8,. 

I’ is k-critical, hence Es - t has a (k - 1 )-colourirIg K. Let P denote the 
set of” verticlzs of A, having thl,.: same coltiur as x i:l K. (x} u I is one of 
the k - 1 colour-classes of K, hence r - x - I - r is (k - L)-colourable 
and since t E AX, {x) U I is an independent set of vertices c Y J?. Ir: fol- 
lows that I’ - x - 1 is (k - I)-chromatic and that I is contained in any 
(k -- 1 )-crlt ical subgraph of r - - x - 1. There exists a j such that I C_ I,?, 
hence either t E ~~ or I E 13~. If’ t I= I,,?, then a (k - I)-colouring of r 
may be obtained from:: K by giving to t the coloi:r of x in K. But r is k- 
ch;.omatic, hence t E 8,. This proves (a) * (b). 

rb) * (cl. Let I’ satisfy (b). For e,ach integer j, 1 5 j < v, and x E 1’ 
there exists an integer h such that I/ = (x} u Ii, hence by (*), r - 1j = 
P‘ - .Y - 1; 2 8j, where 13~ is (k -- I)-critical. Thigs proves the first part 
of (**I and implies I V(r)1 2 k. By Remark 3.4, ane have that for any 
vertex s of I’, each vertex of I’ -- x is contained ,.P a ik - I)-critical sub- 
graph of I’ - :c, hence: no connected component of r i: a ( 1) or a (19, 
which imp;.ies that U X-‘E E’IrJAX - l?. For each x E ;‘(I’) Jnd each I$, 
thcrre i:xist:8 a j such that {XI U it = zfj, hence by (*j, 
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Fig. 2. 

r= U AXc- t e,C_r, 
X E Qr, j=l 

which prr:ses (b) =* (c). 
(c) * (d). Trivial. 
(dj * (ii). Let I’ satisfy (d). Suppose that l? has a (k - I)-colouring K 

a:ld let C ic the colour-class of R containing x. Then I’ - C is (k - 2)- 
c(>lourablc and since .r E C, there exists a i such that C C_ Ii, hence also 
1, - Jj is (,‘r -. 2)-colcurabIe. This contradicts (**). Hence r has. chroma- 
t-c number 2 k. In order to prove that r is k-critical it is therefore suf- 
f icient to Iprove that for a:ly element t E T/(r) u E(r), I’ - t is (k - I)- 

c.olourablc. Let t E V(P) V E(F). By (**), there exists ai such that t is 
1iecessarib.r contained in any (k - I)-critical subgraph of r - Ij, because 
otherwise each Oj could be chosen such that 0j E I’ - t, contradicting 
!’ = UTzI 0,;. It follow:; that there exists ai such that r - Ij - t is (k -- 2)- 
I:olourablc, but then I1 - c is (k - 1 )-colourable, because Ij is an inde- 
LIendent sl:t of vertices. This proves (dj * (a). 

Theorem 3.1 hi,s f hen been proved. 

Let us :remark trla,, the proof of (a) * (b) may be applied also in the 
case where r E E(i”(A, )) if I-’ - d has a (k - I )-colouring in which the 
two endvl::rtices 0: t and x have not all rhree the same colour. This im- 
plies th.at if t E EA (defined in Szction 2), then in any (k - 1 j-colouring 
of I’ - ,” the two cndvertices of P and x have necessarily all three the 
same colour. 

’ The corldition ‘:>f (!d), that there exists a vertex x such that all maxi- 
mal independent sets containing x are among I,, . . . . I,,, cannot be omit- 
ted, for k I? 4 not hen if .J, , . . . . f , v, are required alI to be maximal inde- 

pendent. This is shown, for k i? 4, by the graph I’ of Fig. 2. For this 
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graph l?, the maximal independent Frets I, = {x2, v2], “2 = {x3, y2 I, 

I3 = {x4,yI} andI = ,{x,, Jam) satisfy (**), but r is (k - l)-colour- 
able. It can, however, be proved that a non-empty graph I’ is 3-criti,cal, 
i.e., an odd circuit, if and only if there exist maximal inciependent sets 

4 , . . . . I, of vertices of P such that (**) with k = 3 is satisfied. 
The following well-known re, Q*:~CS on k-critical graphs are easy conse- 

quences of Theorem 3.1 (b). 

(3) 
lf A, + 9, then each vmex of I’(A, ) h4a valemy 2 I ill 
I’(A,Y ), especially 114, I 2 2. 

Prolof. If y E A,, then y E V(4, ), hence by (*), y is n 9 contained in all 
maximal independent sets of vertices of l?(d, ). This proges (3). 

(4) 
If A, + 9, then I’(&) does not contain a (k - I)-critica; 
subgraph. 

Proof. If 0 is a (k - I )-critical subgraph of T<BX), then we may choose 
ej = 6 for all j, contradicting ifX 2 U$‘= 1 8i = 8. 

4. 4-critical graphs 

Let now I’ be a 4-critical graph. By Theorem 3.1, r satisfies Theorem 
3.1(b) in the case k = 4 in which the graphs Bi are odd circuits. M. Simo- 
novits made me aware of this extension (for k = 4) or (4): 

Proof. Suppose that 9 is a circuit of I’(& ). By (4), 6 is even and there- 
fore the two endvertices of dn edge e E E(C) have difierent CO~OUJS in a 

3-colouring of r .- C. But then r is .3-colourable, which is a contrz.die- 
tion. This proves (5). 

By (5) I’(B, ) n oj is either empty or it consists SJf a set of mutually 
disjoint paths. If I’(&. ) n t$ # $9, then let ;he:;e paths be P’; , Pi, . . . . F{tn, 

where f(/) 2 ! , otherwise let f(i) = 0. 

LetlIj<m<~and:let1~iIj’~)an~I1I&IIf(m). 
Then Pi n P/y is either empty or a path. 
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Roof. if .:~ot, thtn P(B,) wouIJ contain a circuit, contradicting (5). 
This prcvi:s (6). 

On the basis of Theorem 3.1 (b) and (5) we get: 

Remark 4.2. The st it ;me it for S-critical graphs corresponding to (b) of 
Theorem 1.1 (i.e., the statement obtained from (b) by replacing 3 an 1 4 
by 4, 5, respectively) is n>t true fo:- any value of ar. Counterexample!; 
of infinitely many $-critic al graphs r containing vertices x of valencies 
I V(r) I - CY -- 1 in v;hich ~11 vertices have valencies > It, where Iz is a gi- 
ven integer > 5, may be constr.iWed from the 4-critical graphs having 
large minimal valency (they rnky be constructed such that the resuiting 
graphs have separating ser s of two vertices of which x is one). 

Proof of Theoren 4.1. kt t r be d-critical and let x E V(F) have vaiency 
I V(I’)l - a - 1 in I’, i.e., iA, I = LX. The number of edges of I’@,) is at 
most IB’, I - 1 by (5 j. Th: mmber of edges of I’(A, ) is at most 
%ar(a - 1). The number of edgrs having one endvertex in A,V and the 
other in B,X is < 2 l IZ& l j’:j) by Theorem 3.1 (b). I-( is bounded by the 
number of different non-:mpty subsets of A,, i.e., p < 2” .--- 1. in fict) 
p < 2O - 2 since the vert ces of ;I, arc not independent by (3). j‘(j) 5 
Q -- I since thz circuit 19,. s “passing through” RA,) at most (x -- 1 

times. It follows that 

IE(r)tC IV(I’~I-~ - 1 + i~t,i- 1 ++@(a - ij+2(2”-2jw 1) 

I:. 2 . 1 r/j r) 1 - 2( -- 3 +&(a -- I)+ 2(2” - ?)(.a - 1) 

=- 2* 1?qr)I 4 Il( Y) . 

This provers (a). 
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lV(ry -a - 1+4(1Jqr)l-- 1 -r)+3rI 31C(Iyl, 

where r denotes the number of vertices of A, w B, having valency 3 in 
I’. By (a), this implies 

V> iV(r)i - ~FZ(~) -- CY - 5, 

hence I’ contains at most 2n(cr) + at + 5 vertices of valency >_ 4. This 
proves (b), hence Theorem 4.1 has been proved. 

Unfortunately, I know next to nothing on exact values and ordlxs of 
magnitudes of the best possible rz(cu) and m(a) that may be used ir?, 
Theorem 4.1. The estimation in the proof is not best possible. Thus the 
number of edges of I-‘@, ) is 5 &a2 by TurAn’s theorem 111 I, and 
p 5 301j3 by a theorem of Moon and Moser [7] . However, even this gives 
an estimation which is probably far from the correct order of magnitucle. 
The estimation of the proof gives for QL = 2, n(2) = -2 and m(2) = 3, 
which is best possible as we shall see in the following, where the special 
cases Q = 2 and cy = 3 are treated. Dirac and Gallai conjectured [ 5, p. 44, 
CJonjecture] that if I’ is assumed also to be planar, then n(a) = -2 may 
be used for sl! values of (11. 

4.1. cy = 2 

Let -4, -z ‘;y, z]. By (31, I’(A,) = (2) and p= 2. We may assume that 
If = {y} zyid 1; = (z). By (S), the odd circuit O1 contains z, but not y, 
and the odrl circuit 8, contains y, but not z. By Theorem 3.1 (b), 

i:hx = r - x - (y, 2) = 8, u 8, , 

and b} “,L‘ 8, r: 0, is :ither empty or a path. If8, n 0, is a path with 
2 2 cP2ttiax, t.hen none of the endvertices of that path are adjacent 10 
bath !;ertices Lof A, since otherwise the edge from x to suc1l an endver- 
tex would not be critic.al. (The case 11y = 2 was also considered in [ IO. 36 ] .) 

4.2. a! = 3 

Let A, z: {,P, y, 2). fjy (3), l?(A,) is either 
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ii) a path, or 
tii) c, )mpletc:. 

Ler us vonsider the two cases in turn. 

nd we may assume that If = (F, z) and 1; = {y}. By (5), the 
odd clirc~it 6, contains y, buj: nr?t p r&r z. By Theorem 3.1(b), the odd 
circuit 0, contains p and z, but not y, and it consists therefore of an 

2 2 and an odd. path P, of length 2 3 both 
joining i’:l and z and with no interior vertices in common. By Theorem 

3.1 W, 

Ax = r - 9 - (p, y\ - (J’, 5) = 8, u P, u P2 . 

iftjn$, #9,thenPjn01 Isapathby(6)andPin8r =@(i=lif 
i = 2 an;i conversely) since otherwise the edges (p, y) and (y, z) would 
not hot? be critical. ICP, has length 2 and if the interior vertex u of P, 
is cn 8,, then u is not adjace;lt toy since otherwise (x. u) would not be 
critical. 

WI T(A,) = (3) . 

kr = 3 and we may assume that I; = ipj, I, = {y} and I, = {z). By 
(5). each of 0 1, 0, and 9, contains at least one vertex of A,. We shall 
consider two cases. 

(ii. 1) Suppose that ~rle of 0 1, 8, and 8, may be chosen such that it 
contain:,. only one vertex of A,, say 8 1 contains y, but not p nor z. 
Then we may choose 8, = 9, . By Theorem 3. I(b), 19~ c;ontains neces- 
sarily both y and z, but not Y, hence there is in AX an even path P of 
length 2 2 joining p and z akl not containing y. 8, may therefore be 
chosen as P together with the edge (y, z). By Theorem 3.1(‘5), 

AX =B’, u P, 

where 8, n P = QI since otherwise one of the two edges alf r~ 1 incident 
withy would not be criticali. 
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(ii.2) The alternative to consider is the case where each of 0 1 ,8, and 
13, necessarily contains precisely two vertices of 4,. In this case, 8,) 8, 

and 8, may be chosen :E ever1 psthsP, , P, 2nd A’~ of length 2 2 joining 
i:he verkes t’ and z, p and z, .p and y respectively, together with the ed- 
ges (y. z), @. z) and (p, JJ), respectively. By Theort:m 3.1 (b), 

A.r =: P, U P, IJ f, . 

One possibility is that Y, , P, anti P, are mutually disjoint outside A,. 
The alternative is that, ::;ly, V(P, ) n V(P, ) n B, #: @. Let (I be the first 
-. :rtcx of P, (going from _V towards :) belonging also to P, . Lt:t R 1, R2 

::nd 1t3 be three paths j >ining q with p, J* and 2’ respectively, where R 1 

and ti 3 are parts of P, :~m-l R2 is a part of P, . R 1 , R2 and R3 are mu- 
tually disjoint except fclr the vertex y, and since P2 is even, R 1 and R, 
have the same parity. B :’ (6), P, !> P, is a path anti since (ii. I) is not 
the case, also R, end R, have the same parity, i.r., _R 1, R, and R, have 
all the same parity. Thc.n 8 I’ , t12 ;Ind 8, may be chosen as R, U R J 
U (_Y% ::), K, U R, U (J:, z) and R, U R, U (p, J’), respectively. Hence * 
by Theorem 3.1 (b), 
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AX=R,uR,dR,. 

Since K’ - x is 3-colourable, the lengths of R 1, R, and R, are not all 1. 

This completes the treatment of the cases (Y = 2 and cy = 3. Fig. 3 
shows the various possibilities for I’ - x. It can be proved that the con- 

e structure of r that wt: have established are not only neces- 
sary, bst also suffic’ient conditions for I’ to be 4-critical. The analysis gi- 
ves as c corollary: 

Theorem 4.3. Let r be a 4-criticalgraph wit/j a vertex x oj’valency 
IV(F)1 -- (31 - 1. 

(a) u‘cu = 2, th en all vertices of r -- x have valency 3 iu I’ except pos- 
sib& either otle vertex of valency 5 or two vertices each of valency 4. 
All three cases occur. 

(b) If ar = 3, then all vertices of r - x have valency 3 ill F except 
either ooze vertex of valency 4 or two vertices of valencies 4 and 5 res- 
gectively. or three vertices each of vdency 4. All three cases OCCLW. 

It follows from Theorem 4.3 that the best possible values of ~(a) 
md m(e) in the cases (Y = 2 and cy = 3 are n(2) = n(3) = -2, m(2, = 3 
md m(3) = 3. $ 

The case Q! = 4 has also been considered, and by the above method it 
is in this case possible to prove: .% 

(7) 

There exists precisely one 4-critical graph wit/q 9 vertkes irl 
which each vertex has valency 3 or 4, nawely the last graph 
of Fig. 4. 

1 &all leave out r~ y rather cumbersome proof of (7). 
if r is a 4-critical graph with at most 8 vertices, thlzn by the theorem 

of Brooks [ 11 it contains a vertex x of valency I k’(r) I --- 1~ --- i for 

either Q! = 0, OL = ‘2 or (Y = 5. By (7), this holds also if I V(r) I = 9 and 
I’ 3’: the graph of (7). If ar = 0, then it is well known that AX is an odd 
circuit, hence the: above analysis provides us with a complete list of all 
4-critical graphs with < 9 vertices. ‘TM-e are 30 such grnphs and they 
are exhibited in Fig. 4. One of the graphs has 4 verticec, one has 6 ver- 
tices, 2 havs 7 vertices, 5 have 8 vertices and 21 have 9 vertices. 
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w) I = 9 and ,maxval(x,r)= 6 : 

Fig. 4. 



Ml? I = 9 a+ld tmxval (x ,r) = 5 : 

I VII-) I = 9 and mxval Ix, t-f) = 4 : 

Fig. 4 (continuea-. 



392 B. Taft, CMical subgraphs of colour-critical graphs 

References 

[ 1 ] R.L. Brooks. On colouring the nodes of a network, Proc. ( ambridge Philos. Sot. 37 
(1941) 194- 197. 

[2] GA. Dirac, The structure of k-c~romaticg~aphs, Fund. Flat 1.40 (1953) 42.~-55. 
[3] G.A. Dirac, On the structure of 5 and &chromatic abstract graphs, J. Rcine Angew, Math. 

214’215 (1964) 43-52. 
[Y] T. Gallai, Kritische Graphen 1, Publ. Math. Inst. Nungar. Acad. Sci. 8 (19631 165 -1!)2. 
15 ] T. G&i, Critical graphs, in: ‘Ihcsry of Graphs and its Applications, Proc. of the Syrnpo- 

sium held in Smolenice in June 1963 (Czechoslovak Akad. Sciences, Prague, 1964) 43- 
45. 

[6) D. Knig. Theorie der endlichcn und unendlichen GraGhen (Leipzig, 1936; Chclsca, h;ew 
York, 1950). 

[7] J.W. Moon and L, Moser, On chques in graphs, Israel J. Ma@. 3 (19651 23- 28. 
181 B. Taft, Some contributions to the theory of colour-critical :r?phs, Ph.D. Thesis. Univcr- 

sity I,f London, 19?0, published as No. 14 in Various Publications Series, Matemirtisk In- 
stirur, Aarhus Univcrsitet. 

[9] B. Toft, Two thcorcms on critical cl-chromatic graphs, Studi 1 Sc:i. Math. Hungar. 7 ( 1972) 
83-239. 

[ 101 IS. T3ft. Colour-critical graphs with complement; of low connectivity, submitted to Math. 
Scar& 

[ 1 11 P. Tl:rrin, On t!x theory of graphs, Colloq. Math. 3 ( 1954) 1% 30. 


