ON CRITICAL SUBCRAPHS OF COLOUR-CRITICAL GRAPHS

Bjanu TOFT *
Matematisk I'stitut, Aarhus Liniversitet, Ny Munkegade, DK-8000 Aurhus-C, Denmark

Received 18 May 1973**

Abstract

Some results on the dis ribu :ion of critical subgraphs in colour-critical graphs are obtained. Characterizations of $i:$-cri ical graphs in terms of their $(k-1)$-critical subgrap is are given. The speciel case $k=4$ is con: idered, and it is proved that if a 4 -critical graph Γ has a vortex x of large valency (compared to tie number of vertices of I not adjacent to x), then Γ contains vertices of valercy 3. Finally, a list of all 4 -sitical graphs with ≤ 9 vertices is exhiuited.

1. Terminology and introductior.

We consider finite graphs without loops and multiplo edges. The set of vertices and the set of edges of a graph Γ are denoted $V(\Gamma)$ and $E(\Gamma)$, respectively. The complete k-graph is denoted $\{k\rangle$. The terms path and circuit are used in the sense in which the corresponding terms Weg and Kreis are used in [6]. The lengtit of a path or circuit is the number of edges contained in it. We ailow a path to have length 0 , but a circuit has leng:h ≥ 3. A path or a circuit is odd or even according to whether its length is odd or even.

If Δ and Γ are graphs satisfying $V(\Delta) \subseteq V(\Gamma)$ and $E(\Delta) \subseteq E(\Gamma)$, then Δ is a subgraph of Γ, deroted $\Delta \subseteq \Gamma$. If $T \subseteq V(\Gamma)$, then $\Gamma(T)$ denotes the subgraph of Γ spann'd by T, i.e., $V(1(T))=T$ and $E(\Gamma(T))$ consists of all edges of $E(\Gamma)$ having both endvertices in T. If $E(\Gamma(T))=\emptyset$, then T is an independent set of vertices of Γ, and T is maximal independent if it is not a proper suiset of any other independent set of vertices of Γ. The valency of a vertex x of Γ, denoted val(x, Γ), is the number of edges of Γ incident with x. If $V^{\prime} \subseteq V(\Gamma)$ and $E^{\prime} \subseteq E(\Gamma)$, then $\Gamma-V^{\prime}-E^{\prime}$ denotes the subgraph of Γ obtained by deleting from Γ all vertices of V^{\prime}

[^0]and all edges of Γ incident rith vertices of V^{\prime}, and then deleting all edges of E^{\prime} that remain, without deleting any more vertices. If Γ ' is connected and $\Gamma-E^{\prime}$ is disconnected, then E^{\prime} is a separating set of edges of Γ.

A graph Γ is k-colouratle if $V(\Gamma)$ can be partitioned into at most k mutually disjoint (colour) classes in such a way that each class is an independent set of vertices. If k is the least integer for which Γ is k-colourable, then k is the chromatic number of Γ and Γ is k-chromatic. An element $t \in V(\Gamma) \cup E(\Gamma)$ of a k-chromatic graph Γ ' is critical if Γ - t is ($k-1$)-colourable. A connected graph Γ is critical k-chromatic (or simply k-critical) if it has chro natic number k and all edges - and consequently all vertices -- of Γ are ritical. Each vertex of a k-critical graph has valency $\geq k-1$.

The 1 - and 2 -critical graphs are the $\langle 1\rangle$ and the $\langle 2\rangle$, respectively. The 3 -critical graphs are the odd circuits ([6, p. 151, Satz 12]). Hence each vertex of a k-critical graph with $k \leq 3$ has valency $k-i$. It seems hopeless to determine the structure of all 4 -critical graphs. T. Gellai constructed an infinite class of regular 4-critical graphs of valercy 4 , thus proving that a 4 -critical graph need not contain a vertex of valency 3 (see [4, p. 172, (2.3)] and [5]). M. Simonovits and the present author even proved that for any natural number h, there exist 4 -critical graphs in which all vertices have valency $\geq h$ (see [8, Chapter 6] and [9]). However, it is still unknown whether any planar 4-critical graph neressarily contains a vertex of valency 3 (see [5]).

In Section 4 of this paper, we shall prove that if Γ is a 4 -critical graph having a vertex adjacent to all except α vertices of Γ, then there is an upper bound $m(\alpha)$ depending only on α for the number of vertices of Γ of valency ≥ 4, i.e., if $|V(\Gamma)|>m(\alpha)$, then Γ contains at least $|V(\Gamma)|-$ $m(\alpha)$ vertices of valency 3 . The possible structures of r in the cases $\alpha=2$ and $\alpha=3$ are determined. This enables us to est blish a catalogue of all 4 -critical graphs with at most 8 vertices. Also the case of 9 vertices is mentioned. The proofs in Section 4 are based on a characterization in Section 3 of k-critical graphs in terins of their ($k-1$)-critical subgraphs. In Section 2, a more elementary result is obtained and also a new, simple proof of the result, that any separating set of edges in a k-critical graph contains $\geq k-1$ edges, is presented.

2. Critical subgraphs

By deleting any vertex or any edge from a k-critical $\xi_{\text {, raph }}$, the remaining graph has chromatic number $k-1$ and therefc re contains at least one ($k-1$)-critical sabgraph. Theorem 2.1 gives extensions of this statement.

Theorem 2.1. Let Γ be a k-critical graph ($k \geq 3$), and ict x be an integer satisfying $1 \leq \alpha \leq k-2$.
(a) By deleting ai most α vertices from Γ, there exists for each vertex x of the remaining graph $\Delta, a(k-\alpha)$-critical subgraph of Δ coataining x.
(b) By deleting at most a edges from Γ, there exists for each edge eof the remaining graph $\Delta, a(k-\alpha)$-critical subgraph of Δ containing e, but not containing both endvertices of any of the deletea edges.

Theorem 2.1(a) follows easily by induction from the case $\alpha=1$, and the case $\alpha=1$ is an immediate corollary of a characterization of k-critical graphs given in Section 3. Theorem 2.1(a) was obtained eariier by Dirac [3, p. 45, (4)], and the fcllowing proof of Theorem 2.!(b) is similar to the proof in [3] of Theorem 2.1(a).

Proof of Theorem 2.1(b). Let e, \ldots, e_{ν} be a set of ν edges of Γ, where $\nu \leq \alpha$, and let e be an edge of $\Gamma-e_{1}-\ldots-e_{\nu}(=4)$. $\Gamma-e$ has a $(k-1)$ colouring K with colours $1,2, \ldots, k-1$ such that the two endvertices of e both have the colour $k-1$ and such that for $i=1, \ldots, \nu$, at least one endvertex of e_{i} has a colour among $1, \ldots, \nu$. Deiete from Γ all vertices having colours $1, \ldots, \alpha$ in K and call the remaining graph Δ^{\prime}. $e_{i} \notin E\left(\Delta^{\prime}\right)$ for $i=1, \ldots, \nu$, but since $\alpha \leq k-2, e \in E\left(\Delta^{\prime} . \Delta^{\prime}\right.$ has chromatic number $\geq k-\alpha$, because if Δ^{\prime} were ($k-\alpha-1$)-colourable, then Γ would be $(k-1)$-colourable. However, K 's restriction to $\Delta^{\prime}-e$ shows that $\Delta^{\prime}-e$ is $(k-\alpha-1)$-colourable, hence e is ontained in any ($k-\alpha$)-critical subgraph of Δ^{\prime}. This proves Theorem 2.1(b).

For $\alpha=k--2$, The $)$ em 2.1(a) is equivalent to the statement that each vertex of a k-criacal graph has valency $\geq k-1$, and (b) is trivial. The case $\alpha=k-3$ of (b) gives a simple proof of the following wellknowr result [2, p. 45, Theorem 1]:

$$
\begin{equation*}
\text { A separating set of edges of a } k \text {-critical graph }(k \geq 3) \text { contains } \tag{1}
\end{equation*}
$$ at least $k-1$ ealges.

Proof. For $k=3$, the statement is true. Suppose that $k \geq 4$ and let E be a separating set of edges of the k-critical graph Γ. If we delete from Γ all edges of E except one, then the remaining edge of E is not contained in any circuit of thee remaining graph. Then by Theorem $2.1(b)$ with $\alpha=k-3$, at least $k-2$ edges have been deleted, i.e., $|E| \geq k-1$, and (1) has been proved. Another version of this proof based on the case $\alpha=1$ of Theorem 2.1(b) and by induction over k can be given.

The negation of the following statement (2) would - if true - have generalized both parts of Theorem 2.1 in the case $\alpha=1$. An eage of a graiph $\Gamma-x$, where Γ is k-critical $(k \geq 4)$ and $\therefore \in V(\Gamma)$, is not necessarily contained in a $(k-1)$-critical subzraph of $\Gamma \cdots x$.

Proof. Let Γ be a graph obtained from two disjoint, k-critical graphs Δ_{1} and $\Delta_{2}(k \geq 4)$ by Hajós' construction, i.e., delete an edge $\left(x_{1}, y_{1}\right)$ from Δ_{1} and an edge $\left(x_{2}, y_{2}\right)$ from Δ_{2}, identify x_{1} and x_{2} to a new vertex x and join y_{1} and y_{2} by a new edge $e . \Gamma$ is k-critical and the edge e is not contained in any ($k-1$)-critical sabgraph of $\Gamma-x$. This proves (2).

The above considerations give rise to an unsolved problem: For Γk critical $(k \geq 4)$ and $x \in V(\Gamma)$, characterize the set E_{x} of those edges of $\Gamma-x$ that are not contaired in any ($k-1$)-critical subgraph of $\Gamma-x$. By (1), any edge contained in a separating set of $\leq k-3$ edges of $\Gamma-x$ belongs to E_{x}. A rev, ult of Dirac $[3$, p. 48 , Corollary to Theorem 3] implies that for $k=4$, also the converse of this statement is true, i.e, for $k=4, E_{x}$ consists of pıecisely the separating edges (also called the bridges) of $\Gamma-x$. This implies that the above examples showing (2) are the only such examples for $k=4$. However, the situation changes for $k \geq 5$. Fig. 1 shows a 5 -critical graph Γ (we leave it to the reader to check this) in which the edge e_{1} belongs to E_{x}, but where it is not cortained in any separating set of ≤ 2 edges of $\Gamma-\therefore$. To see that $e_{1} \in E_{x}$ assume on the contrary that there exists a 4 -critical subgraph Δ of $\Gamma-x$

Fig. 1
containing e_{1}. Then by (1), also e_{2} and e_{3} are contained in Δ. However, $\left\{e_{3}, e_{4}\right\}$ is a separating set of two edges of $\Gamma-x$, and e_{3} is therefore not contained in Δ. This is a contradiction. The exampie of Fig. 1 may be generalize to larger values of k by replacing each of the vertices z_{1}, z_{2}, z_{3} and z_{4} by a $\langle k-4\rangle$, showing the existence of a k-critical graph ($k \geq 5$) with an edge $e \in E_{x}$, where e is not contained in any separating set of $\leq k-3$ edges of $\Gamma-x$.

3. Characterizations ofí critical graphs

Let for a graph Γ and any vertex x of Γ, A_{x} denote the set of vertices of I not adjacent to x and let B_{x} derote the set of vertices of Γ adjacent to $x . V(\Gamma)$ is thes the disjoint union of $\{x\}, A_{x}$ and B_{x}. Let Δ_{x} denote the subgraph $\Gamma \cdots x-E\left(\Gamma\left(A_{x}\right)\right)$.

Theorem 3.1. Let Γ^{\prime} be a non-empty graph and let $k \geq 3$. The following four statements cre equivalent.
(a) Γ is k-critical.
(b) For all $x \in V(\Gamma)$, the following statement holds:
(*)
Let the maximal independent sets of vertices of $\Gamma\left(A_{x}\right)$ be $P_{1}^{x}, \ldots, P_{\mu}^{x}$ Then for $j=1, \ldots, \mu, \Gamma-x-I_{j}^{x}$ contains $a(k \cdots 1)$ critical subgraph. Let for $j=1, \ldots, \mu, \theta_{j}$ denote any such ($k-1$-critical subgraph of $\Gamma-x-I_{j}^{x}$. Then $\Delta_{x} \subseteq \cup_{j=1}^{\mu} \theta_{j}$.
(c) Let I_{1}, \ldots, I_{ν} be all maximal independent sets of vertices of Γ. Then (**) holds.

For $j=1, \ldots, \nu, \Gamma \cdots l_{j}$ contains a $(k-1)$-critical sutgraph. Let
(**) $\quad g_{j}$ be any such $(k-1)$-critical subgraph of $\Gamma-I_{i}$. Then $\Gamma=$ $\mathrm{U}_{j=1}^{\nu} \theta_{j}$.
(d) There exist independent sets I_{1}, \ldots, I_{v} of vertices of Γ such that $(* *)$ holds and such that for at least one vertex x of Γ all maximal independent sets of vertices of Γ containing x are among I_{1}, \ldots, I_{ν}.

Remark 3.2. In Section 4, only the statement $(a) \Rightarrow(b)$ will be used.
Remark 3.3. The θ_{j} 's in (*) and (**) are not necessarily different and not necessarily uniquely determined.

Remark 3.4. The assertion of Theor n 2.1(a) in the case $\alpha=1$ is an immediate consequence of (b).

Proof of Theorem 3.1. (a) $\Rightarrow(\mathrm{b})$. Let Γ be k-critical and let $x \in V(\Gamma)$. We shall prove that ($*$) holds. For each $j_{n} 1 \leq j \leq f,\{x\} \cup I_{j}^{x}$ is an independent set of vertices of Γ, hence $\Gamma-x^{\prime \prime}-I_{j}^{x}$ is ($(k-1)$-chromatic and therefore contains a $(k-1)$-critical subgraph θ_{j}. Let $t \in V\left(\Delta_{x}\right) \cup E\left(\Delta_{x}\right)$. In order to finish the prooi of (*) we shall prove that $r \in \theta_{1} \cup \ldots \cup \theta_{\mu}$. Γ is k-critical, hence $\Gamma-t$ has a $(k-1)$-colourirg K. Let I denote the set of vertices of A_{x} having the sane colour as x ia $K .\{x\} \cup I$ is one of the $k-1$ colour-classes of K, hence $\Gamma-x-I-f$ is $(k-2)$-colourable and since $t \in \Delta_{x},\{x\} \cup I$ is an independent set of vectices c. Γ. It follows that $\Gamma-x-I$ is $(k-1)$-chromatic and that t is contained in any $(k-1)$-critical subgraph of $\Gamma-\lambda-l$. There exisıs a j such that $I \subseteq I_{j}^{x}$, hence either $t \in I_{j}^{x}$ or $t \in \theta_{j}$. If $t \equiv I_{j}^{x}$, then a ($k-1$)-colouring of Γ may be obtained from K by giving to t the colour of x in K. But Γ is k ch:omatic, hence $t \in \theta_{j}$. This proves (a) $\Rightarrow(\mathrm{b})$.
(b) \Rightarrow (c). Let Γ satisfy (b). For each integer $j, 1 \leq j \leq \nu$, and $x \in I_{j}$. there exists an integer h such that $I_{j}=\{x\} \cup I_{h}^{x}$, hence by ($*$), $\Gamma-I_{j}=$ $\Gamma-x-I_{h}^{x} \supseteq \theta_{j}$, where θ_{j} is $(k-1)$-critical. This proves the first part of $(* *)$ and implies $|V(\Gamma)| \geq k$. By Remark 3.4, we have that for any vertex x of Γ, each vertex of $\Gamma-x$ is contained r a $(k-1)$-critical subgraph of $\Gamma-x$, hence no connected component of Γ is $\mathbf{a}\langle 1\rangle$ or $a\langle 2\rangle$, which implies that $\mathrm{U}_{x \in V(\Gamma)} \Delta_{x}=\Gamma$. For each $x \in i^{\top}\left(\Gamma^{\prime}\right)$ and each I_{h}^{x}, there exist a ${ }^{j}$ such that $\{x\} \cup i_{h}^{x}=I_{j}$, hence by (*),

Fig. 2.

$$
\Gamma=\underset{x \in V(\Gamma)}{\bigcup} \Delta_{x} \subseteq \bigcup_{j=1}^{\nu} \theta_{j} \subseteq \Gamma,
$$

which preves (b) \Rightarrow (c).
(c) \Rightarrow (d). Trivial.
(d) \Rightarrow (a). Let Γ satisfy (d). Suppose that Γ has a $(k-1)$-colouring K and let C be the colour-class of K containing x. Then $\Gamma-C$ is $(k-2)$ colourable and since $x \in C$, there exists a j such that $C \subseteq I_{j}$, hence also $\Gamma-I_{j}$ is $(k-2)$-colcurable. This contradicts ($* *$). Hence Γ has chromat c number $\geq k$. In order to prove that Γ is k-critical it is therefore sufficient to prove that for a aly element $t \in V(\Gamma) \cup E(\Gamma), \Gamma-t$ is $(k-1)$ colourable. Let $t \in V(\Gamma) \cup E(\Gamma)$. By (**), there exists a j such that t is necessarily containec in any ($k-1$)-critical subgraph of $\Gamma-I_{j}$, because otherwise each θ_{j} could be chosen such that $\theta_{j} \subseteq \Gamma-t$, contradicting $\Gamma=U_{j=1}^{p} \theta_{i}$. It follows that there exists a j such that $\Gamma-I_{j}-t$ is $(k-2)$ colourable, but then $\Gamma-t$ is $(k-1)$-colourable, because I_{j} is an indevendent set of vertices. This proves (d) \Rightarrow (a).

Theorem 3.1 his then been proved.
Let us remark tha the proof of $(\mathrm{a}) \Rightarrow(\mathrm{b})$ may be applied also in the case where $t \in E\left(\Gamma\left(A_{x}\right)\right)$ if $\Gamma-$ has a ($k-1$)-colouring in which the two endvertices $0^{\circ} t$ and x have not all chree the same colour. This inplies that if $t \in E_{\lambda}$ (defined in Section 2), then in any ($k-1$)-colouring of Γ - the two endvertices of t and x have necessarily all three the same coiour.

- The condition of (d), that there exists a vertex x such that all maximal independent sets containing x are among I_{1}, \ldots, I_{p}, cannot be on:itted, for $k \geq 4$ no even if I_{1}, \ldots, I_{ν}, are required all to be maximal independent. 'This is shown, for $k \geq 4$, by the graph Γ of Fig. 2 . For this
graph Γ, the maximal independent sets $I_{1}=\left\{x_{2}, \nu_{2}\right\}, I_{2}=\left\{x_{3}, y_{2}\right\}$, $I_{3}=\left\{x_{4}, y_{1}\right\}$ and $I_{4}=\left\{x_{5}, y_{1}\right\}$ satisfy ($* *$), but Γ is $(k-1)$-colourable. It can, however, be proved that a non-empty graph Γ is 3 -critical, i.e., an odd circuit, if and only if there exist maximal inclependent sets I_{1}, \ldots, I_{ν} of vertices of Γ such that (**) with $k=3$ is satisfied.

The following well-known re ${ }^{-r}$ is on k-critical graphs are easy consequences of Theorem 3.1(b).

If $A_{x} \neq \emptyset$, then each vertex of $\Gamma\left(A_{x}\right)$ his valency ≥ 1 in $\Gamma\left(A_{x}\right)$, especially $\left|A_{x}\right| \geq 2$.

Proof. If $y \in A_{x}$, then $y \in V\left(\Delta_{x}\right)$, hence by ($\left.*\right), y$ is $n: t$ contained in all maximal independent sets of vertices of $\Gamma\left(A_{x}\right)$. This proves (3).

If $A_{x} \neq \emptyset$, then $\Gamma\left(B_{x}\right)$ does not contain a $(k-1)$-critica ${ }_{i}$ subgraph.

Proof. If θ is a $(k-1)$-critical subgraph of $\Gamma\left(B_{x}\right)$, then we may choose $\theta_{j}=\theta$ for all j, contradicting $\Delta_{x} \subseteq U_{j=1}^{\mu} \theta_{j}=\theta$.

4. 4-critical graphs

Let now I' be a 4-critical graph. By Theorem 3.1, Γ satisfies Theorem 3.1 (b) in the case $k=4$ in which the graphs θ_{j} are odd circuits. M. Simonovits made me aware of this extension (for $k=4$) o (4):

$$
\begin{equation*}
\text { If } A_{x} \neq \emptyset, \text { then } \Gamma\left(B_{x}\right) \text { coes not contain ar } y \text { circuits. } \tag{5}
\end{equation*}
$$

Proof. Suppose that 9 is a circuit of $\Gamma\left(B_{x}\right)$. By (4), ϵ is even and therefore the two endvertices of an edge $e \in E(C)$ have different colours in a 3 -colouring of $\Gamma-e$. But then Γ is 3 -colourable, which is a contrediction. This proves (5).
$B y(5), \Gamma\left(B_{x}\right) \cap \theta_{j}$ is either empty or it consists of a set of mutually disioint paths. If $\Gamma\left(B_{x}\right) \cap \theta_{j} \neq \emptyset$, then let these paths be $P_{1}^{j}, i_{2}^{j}, \ldots, F_{f(n)}^{j}$, where $f(j) \geq!$, otherwise let $f(j)=0$.

Let $1 \leq j<m \leq \mu$ and let $1 \leq i \leq f(j)$ an $11 \leq h \leq f(m)$. Then $P_{i}^{i} \cap P_{h}^{m}$ is either empty or a path.

Proof. if not. th $\in \Gamma \Gamma\left(B_{x}\right)$ would contain a circuit, contradicting (5).
This preves (6).

On the basis of Theorem $3.1(b)$ and (5) we get:

Theorem 4.1. Let α be an integ ≥ 2. There exist integers $n(\alpha)$ and $m(\alpha)$ devending on 1 y on α such that if Γ is a 4 -critical graph containing a vertex. r of valency $\left|V\left({ }^{2}\right)\right|-\alpha-1$, then:
(a) $\left|E\left({ }^{5}\right)\right| \leq 2 \cdot|V(\Gamma)|+n(\alpha)$;
(b) Γ contains at most $n(\alpha)$ vertices of valcncy ≥ 4, i.e., $i_{j}^{\prime}|V(\Gamma)| \gg$ $m(\alpha)$, their Γ contains at east $|V(\Gamma)|-m(\alpha)$ vertices of valency 3.

Remark 4.2. The st teme it for 5-critical graphs corresponding to (b) of Theorem 4.1 (i.e., the statement obtained from (b) by replacing 3 and 4 by 4,5 , respectively) is not urue fo: any value of α. Counterexamples of infinitely many 5 -sitic al graphs Γ containing vertices x of valencies $|V(\Gamma)|-\alpha-1$ in which :ll vertices have valencies $\geq h$, where h is a given integer ≥ 5, may be constructed from the 4 -critical graphs having large minimal valency (they mey be constructed such that the resulting graphs have separating sels of two vertices of which x is one).

Proof of Theorem 4.1. Le $t \Gamma$ be 4 -critical and let $x \in V(\Gamma)$ have valency $|V(\Gamma)|-\alpha-1$ in Γ, i.c., $\left|A_{x}\right|=\alpha$. The number of edges of $\Gamma\left(B_{x}\right)$ is at most $\left|B_{x}\right|-1$ by (5). Th \geqslant nurr ber of edges of $\Gamma\left(A_{x}\right)$ is at most $\frac{1}{2} \alpha(\alpha-1)$. The number of edges having one endvertex in A_{x} and the other in B_{x} is $\leq 2 \cdot \sum_{j=1}^{\mu} f^{\prime} j$) by Theorem 3.1 (b). μ is bounded by the number of different non-empty subsets of A_{x}, i.e., $\mu \leq 2^{\alpha} \cdots 1$, in fact, $\mu \leq 2^{\alpha}-2$ since the vert ces of A_{x} are not independent by (3). $f(j) \leq$ $\alpha-1$ since the circuit $\theta_{j} s$ "passing through" $\Gamma\left(A_{x}\right)$ at most $\alpha-1$ times. It follows that

$$
\begin{aligned}
|E(\Gamma)| & \leq|V(\Gamma)|-\alpha-1+B_{x} \left\lvert\,-1+\frac{1}{2} \alpha(\alpha-1)+2\left(2^{\alpha}-2\right)(\alpha-1)\right. \\
& =2 \cdot|V(\Gamma)|-2 c-3+\frac{1}{2} \alpha(\alpha-1)+2\left(2^{\alpha}-2\right)(\alpha-1) \\
& =2 \cdot|V(\Gamma)|+n(x) .
\end{aligned}
$$

This proves (a).
By the formula $\Sigma_{y \in V(\Gamma)} \operatorname{val}(v, \Gamma)=2|E(\Gamma)|$, we get

$$
|V(\Gamma)|-\alpha-1+4(|V(\Gamma)|-1-r)+3 r \leq 2|E(\Gamma)|
$$

where r denotes the number of vertices of $A_{x} \cup B_{x}$ having valency 3 in Γ. By (a), this implies

$$
r \geq|V(\Gamma)|-2 n(\alpha)-\alpha-5,
$$

hence I contains at most $2 n(\alpha)+\alpha+5$ vertices of valency ≥ 4. This proves (b), hence Theorem 4.1 has been proved.

Unfortunately, I know nexit to nothing on exact values and orders of magnitudes of the best possible $n(\alpha)$ and $m(\alpha)$ that may be used in Theorem 4.1. The estimation in the proof is not best possible. Thus the number of edges of $\Gamma\left(A_{x}\right)$ is $\leq \frac{1}{3} \alpha^{2}$ by Turán's theorem [11], and $\mu \leq 3^{\alpha / 3}$ by a theoren of Moon and Moser [7]. However, even this gives an estimation which is probably far from the correct order of magnitude. The estimation of the proof gives for $\alpha=2, n(2)=-2$ and $m(2)=3$, which is best pcossible as we shall see in the following, where the special cases $\alpha=2$ and $\alpha=3$ are treated. Dirac and Gallai conjectured [5, p. 44, Conjecture] that if Γ is assumed also to be planar, then $n(\alpha)=-2$ may be used for all values of α.

4.1. $\alpha=2$

Let $A_{x}=\{y, z\}$. $\operatorname{By}(3), I^{\prime}\left(A_{x}\right)=\langle 2\rangle$ and $\mu=2$. We may assume that $I_{1}^{x}=\{y\}$ and $I_{2}^{x}=\{z\}$. By (5), the odd circuit θ_{1} contains z, but not y, and the odd circuit θ_{2} contains y, but not z. By Theorem 3.1(b),

$$
厶_{x}=\Gamma-x-(y, z)=\theta_{1} \cup \theta_{2},
$$

and by (c) $\theta_{1} \cap \theta_{2}$ is sither empty or a path. If $\theta_{1} \cap \theta_{2}$ is a path with ≥ 2 vertices, then none of the endvertices of that path are adjacent to buth vertices of A_{x} since otherwise the edge from x to such an endvertex would not be critical. (The case $\alpha=2$ was also considered in [10, §6].)
4.2. $\alpha=3$

Let $A_{x}=\{p, y, z\}$. By (3), $\Gamma\left(A_{x}\right)$ is either
(i) a path, or
(ii) c mplete.

Let us consider the two cases in turn.
(i)

$$
E\left(\Gamma\left(A_{x}\right)\right)=\{(p, y),(y, z)\} .
$$

$\mu=2$ and we may assume that $I_{1}^{x}=\{p, z\}$ and $I_{2}^{x}=\{y\}$. By (5), the odd circuit θ_{1} contains y, bue not p nisr z. By Theorem 3.1(b), the odd circuit θ_{2} contains p and z, bat not y, and it consists therefore of an even path P_{1} of length ≥ 2 and an odd path P_{2} of length ≥ 3 both joining ${ }^{\prime}$, and z and with no interior vertices in common. By Theorem 3.1(b),

$$
\Delta_{x}=\Gamma-x-(p, y)-(y, z)=\theta_{1} \cup P_{1} \cup P_{2} .
$$

If $H_{i} \cap \theta_{1} \neq \emptyset$, then $P_{i} \cap \theta_{1}$ is a path by (6) and $P_{j} \cap \theta_{1}=\emptyset(j=1$ if $i=2$ and conversely) since otherwise the edges (p, y) and (y, z) would not bot a be critical. If P_{1} has length 2 and if the interior vertex v of P_{1} is on θ_{1}, then v is not adjaceit to y since otherwise (x, v) would not be critical.

$$
\begin{equation*}
\Gamma\left(A_{x}\right)=\langle 3\rangle . \tag{ii}
\end{equation*}
$$

$\mu=3$ and we may assume that $I_{\mathrm{i}}=\{p\}, I_{2}=\{y\}$ and $I_{3}=\{z\} . B y$ (5). each of θ_{1}, θ_{2} and θ_{3} contains at least one vertex of A_{x}. We shall consider two cases.
(ii.1) Suppose that one of θ_{1}, θ_{2} and θ_{3} may be chosen such that it contains only one vertex of A_{x}, say θ_{1} contains y, but not p nor z. Then we may choose $\theta_{3}=\theta_{1}$. By Theorem 3.1(b), θ_{2} contains necessarily both p and z, but no $t y$, hence there is in Δ_{x} an even path P of length ≥ 2 joining p and z and not containing $y . \theta_{2}$ may therefore be chosen as P together with the edge (p, z). By Theorem 3.1($)$),

$$
\Delta_{x}=\theta_{1} \cup P,
$$

where $\theta_{1} \cap P=\emptyset$ since otherwise one of the two edges of Δ_{1} incident with y would not be critical.
$\alpha=2:$

Fis. 3.
(ii.2) The alternative to consider is the case where each of θ_{1}, θ_{2} and θ_{3} necessarily contains precisely two vertices of A_{x}. In this case, θ_{1}, θ_{2} and θ_{3} may be chosen as even paths P_{1}, P_{2} and ρ_{3} of length ≥ 2 joining the verices y and z, p and z, p and y respectively, together with the edges $(y, z),(p, z)$ and (p, y), respectively. By Theorem 3.1(b),

$$
\Delta_{x}=P_{1} \cup P_{2} \cup P_{3}
$$

One possibility is that P_{1}, P_{2} and P_{3} are mutually disjoint outside A_{x}. The alternative is that, ay, $V\left(P_{1}\right) \cap V\left(P_{2}\right) \cap B_{\mathrm{a}} \neq \emptyset$. Let q be the first \therefore rtex of P_{1} (going fron y towards z) belonging also to P_{2}. Let R_{1}, R_{2} and R_{3} be three paths joining q with p, y and z respectively, where R_{1} and κ_{3} are parts of P_{2} and R_{2} is a part of P_{1}, R_{1}, R_{2} and R_{3} are mutually disjoint except f(r the vertex q, and since P_{2} is even, R_{1} and R_{3} have the same parity. $\mathrm{B} ;(6), P_{1} \cap P_{2}$ is a path and since (ii.1) is not the case, also R_{2} and R_{3} have the same parity, i. $2, R_{1}, R_{2}$ and R_{3} have all the same parity. Then θ_{1}, θ_{2} and θ_{3} may be chosen as $R_{2} \cup R_{3}$ $\cup(y, z), R_{1} \cup R_{3} \cup(f, z)$ and $R_{1} \cup R_{2} \cup(p, y)$, respectively. Hence by Theorem 3.1(b),

$$
\Delta_{x}=R_{1} \cup R_{2} \cup R_{3}
$$

Since $\Gamma-x$ is 3 -colourable, the lengths of R_{1}, R_{2} and R_{3} are not all 1 .

This completes the treatment of the cases $\alpha=2$ and $\alpha=3$. Fig. 3 shows the various possibilities for $\Gamma-x$. It can be proved that the conditions on the structure of Γ that we have established are not only necessary, bat also sufficient conditions for Γ to be 4 -critical. The analysis gives as e corollary:

Theorem 4.3. Let Γ be a 4-critical graph with a vertex x of valency $|V(\Gamma)|-\alpha-1$.
(a) If $\alpha=2$, then all vertices of $\Gamma \cdots x$ have valency 3 in Γ except possibly either one vertex of valency 5 or two vertices each of valency 4. All three cases occur.
(b) If $\alpha=3$, then all vertices of $\Gamma-x$ have valency 3 in Γ except either one vertex of valency 4 or two vertices of valencies 4 and 5 respectively, or three vertices each of valency 4. All three cases occur.

It follows from Theorem 4.3 that the best possible values of $n(\alpha)$ and $m(\alpha)$ in the cases $\alpha=2$ and $\alpha=3$ are $n(2)=n(3)=-2, m(2=3$ ind $m(3)=4$.

The case $\alpha=4$ has also been considered, and by the above method it. is in this case possible to prove:

There exists precisely one 4-critical grapl! witin 9 vertices in which each vertex has valency 3 or 4, namely the last graph of Fig. 4.

1 shall leave out riy rather cumbersome proof of (7).
If Γ is a 4 -critical graph with at most 8 vertices, then by the theorem of Brooks [1] it contains a vertex x of valency $|V(\Gamma)| \cdots \alpha-\cdots 1$ for either $\alpha=0, \alpha=2$ or $\alpha=3$. By (7), this inolds also if $|V(\Gamma)|=9$ and $\Gamma \ni:$ the graph of (7). If $\alpha=0$, then it is well known that Δ_{x} is an odd circuit, hence the above analysis provides us with a complete list of all 4 -critical graphs with ≤ 9 vertices. There are 30 such graphs and they are exhibited in Fig. 4. One of the graphs has 4 vertices, one has 6 vertices, 2 have 7 vertices, 5 have 8 vertices and 21 have 9 vertices.
$|v(\Gamma)| \leqq 8:$

$|v| \Gamma|\mid=9$ and maxval $(x, \Gamma)=6$:

Fig. 4.
$|V| \Gamma|\mid=9$ and maxval $(x, \Gamma \mid=5$:

$|V(\Gamma)|=9$ and maxval $(x, \Gamma)=4$:

Fig. 4 (continuea:

References

[1] R.L. Brooks. On colouring the nodes of a network, Proc. (ambridge Philos. Soc. 37 (1941) 194-197.
[2] G.A. Dirac, The structure of k-cinomatic graphs, l-und. Mati. 40 (1953) $42-55$.
[3] G.A. Dirac, On the structure of 5 - and 6 -chromatic abstract graphs, J. Reine Angew. Math. 214 215 (1964) 43-52.
[4] T. Gallai, Kritische Graphen I, Publ. Math. Inst. Hungar. Acad. Sci. 8 (1963, 165-102.
[5] T. Gallai, Critical graphs, in: Theory of Graphs and its Applications, Proc. of the Symposium held in Smolenice in June 1963 (Czechoslovak Akad. Sciences, Prague, 1964) 4345.
[6] D. König. Theorie der endlichen und unendlichen Graphen (Leipzig, 1936; Chelsea, New York, 1950).
[7] J.W. Moon and L. Moser, On cliques in graphs, Israel J. Matt. 3 (1965) 23 28.
[8] B. Toft, Sume contributions to the theory of colour-critical srophs, Ph.D. Thesis. University of London, 1970, publishec as No. 14 in Various Publications Series, Matemotisk Institut, Aarhus Universitet.
[9] B. Toft, Two theorems on critical 4-chromatic graphs, Studj Sci. Math. Hungar. 7 (1972) 83-89.
[10] B. Toft. Colour-critical graphs with complements of low connectivity, submitted to Math. Scard.
[11] P. Turán, On the theory of graphs, Colloq. Math. 3 (1954) 17-30.

[^0]: * Present address: Matematisk Institat, Odense Universitet, IVicls Bohrs . Alle, DK - 5000 Odense, Dentark.
 ** Original version received 13 :uly 1972 .

