DISCRETE MATHEMATICS 7 (1974) 377-392. © North-Holland Publishing Company

ON CRITICAL SUBCRAPHS OF COLOUR-CRITICAL GRAPHS

Bjarne TOFT *

Matematisk Institut, Aarhus Universitet, Ny Munkegade, DK-8000 Aarhus-C, Denmark

Received 18 May 1973 **

Abstract. Some results on the distribution of critical subgraphs in colour-critical graphs are obtained. Characterizations of k-critical graphs in terms of their (k - 1)-critical subgraphs are given. The special case k = 4 is considered, and it is proved that if a 4-critical graph Γ has a vertex x of large valency (compared to the number of vertices of Γ not adjacent to x), then Γ contains vertices of valency 3. Finally, a list of all 4-critical graphs with \leq 9 vertices is exhibited.

1. Terminology and introduction

We consider finite graphs without loops and multiple edges. The set of vertices and the set of edges of a graph Γ are denoted $V(\Gamma)$ and $E(\Gamma)$, respectively. The complete k-graph is denoted $\langle k \rangle$. The terms path and circuit are used in the sense in which the corresponding terms Weg and Kreis are used in [6]. The length of a path or circuit is the number of edges contained in it. We allow a path to have length 0, but a circuit has length \geq 3. A path or a circuit is odd or even according to whether its length is odd or even.

If Δ and Γ are graphs satisfying $V(\Delta) \subseteq V(\Gamma)$ and $E(\Delta) \subseteq E(\Gamma)$, then Δ is a subgraph of Γ , denoted $\Delta \subseteq \Gamma$. If $T \subseteq V(\Gamma)$, then $\Gamma(T)$ denotes the subgraph of Γ spanned by T, i.e., $V(\Gamma(T)) = T$ and $E(\Gamma(T))$ consists of all edges of $E(\Gamma)$ having both endvertices in T. If $E(\Gamma(T)) = \emptyset$, then Tis an *independent* set of vertices of Γ , and T is maximal independent if it is not a proper subset of any other independent set of vertices of Γ . The valency of a vertex x of Γ , denoted val (x, Γ) , is the number of edges of Γ incident with x. If $V' \subseteq V(\Gamma)$ and $E' \subseteq E(\Gamma)$, then $\Gamma - V' - E'$ denotes the subgraph of Γ obtained by deleting from Γ all vertices of V'

^{*} Present address: Matematisk Institut, Odense Universitet, Niels Bohrs Alle, DK-5000 Odense, Denmark.

^{**} Original version received 13 July 1972.

and all edges of Γ incident with vertices of V', and then deleting all edges of E' that remain, without deleting any more vertices. If Γ is connected and $\Gamma - E'$ is disconnected, then E' is a *separating* set of edges of Γ .

A graph Γ is *k*-colourable if $V(\Gamma)$ can be partitioned into at most kmutually disjoint (colour) classes in such a way that each class is an independent set of vertices. If k is the least integer for which Γ is *k*-colourable, then k is the *chromatic number* of Γ and Γ is *k*-chromatic. An element $t \in V(\Gamma) \cup E(\Gamma)$ of a *k*-chromatic graph Γ is *critical* if $\Gamma - t$ is (k - 1)-colourable. A connected graph Γ is *critical k*-chromatic (or simply *k*-critical) if it has chromatic number k and all edges – and consequently all vertices – of Γ are critical. Each vertex of a *k*-critical graph has valency $\geq k - 1$.

The 1- and 2-critical graphs are the $\langle 1 \rangle$ and the $\langle 2 \rangle$, respectively. The 3-critical graphs are the odd circuits ([6, p. 151, Satz 12]). Hence each vertex of a k-critical graph with $k \leq 3$ has valency k - 1. It seems hopeless to determine the structure of all 4-critical graphs. T. Gallai constructed an infinite class of regular 4-critical graphs of valency 4, thus proving that a 4-critical graph need not contain a vertex of valency 3 (see [4, p. 172, (2.3)] and [5]). M. Simonovits and the present author even proved that for any natural number h, there exist 4-critical graphs in which all vertices have valency $\geq h$ (see [8, Chapter 6] and [9]). However, it is still unknown whether any planar 4-critical graph necessarily contains a vertex of valency 3 (see [5]).

In Section 4 of this paper, we shall prove that if Γ is a 4-critical graph having a vertex adjacent to all except α vertices of Γ , then there is an upper bound $m(\alpha)$ depending only on α for the number of vertices of Γ of valency ≥ 4 , i.e., if $|V(\Gamma)| > m(\alpha)$, then Γ contains at least $|V(\Gamma)| - m(\alpha)$ vertices of valency 3. The possible structures of Γ in the cases $\alpha = 2$ and $\alpha = 3$ are determined. This enables us to est blish a catalogue of all 4-critical graphs with at most 8 vertices. Also the case of 9 vertices is mentioned. The proofs in Section 4 are based on a characterization in Section 3 of k-critical graphs in terms of their (k - 1)-critical subgraphs. In Section 2, a more elementary result is obtained and also a new, simple proof of the result, that any separating set of edges in a k-critical graph contains $\geq k - 1$ edges, is presented.

2. Critical subgraphs

By deleting any vertex or any edge from a k-critical graph, the remaining graph has chromatic number k - 1 and therefore contains at least one (k - 1)-critical subgraph. Theorem 2.1 gives extensions of this statement.

Theorem 2.1. Let Γ be a k-critical graph ($k \ge 3$), and let α be an integer satisfying $1 \le \alpha \le k - 2$.

(a) By deleting at most α vertices from Γ , there exists for each vertex **x** of the remaining graph Δ , $a(k - \alpha)$ -critical subgraph of Δ containing x.

(b) By deleting at most α edges from Γ , there exists for each edge e of the remaining graph Δ , a $(k - \alpha)$ -critical subgraph of Δ containing e, but not containing both endvertices of any of the deleted edges.

Theorem 2.1(a) follows easily by induction from the case $\alpha = 1$, and the case $\alpha = 1$ is an immediate corollary of a characterization of k-critical graphs given in Section 3. Theorem 2.1(a) was obtained earlier by Dirac [3, p. 45, (4)], and the following proof of Theorem 2.1(b) is similar to the proof in [3] of Theorem 2.1(a).

Proof of Theorem 2.1(b). Let $e_1, ..., e_p$ be a set of v edges of Γ , where $v \leq \alpha$, and let e be an edge of $\Gamma - e_1 - ... - e_p (= \Delta)$. $\Gamma - e$ has a (k-1)colouring K with colours 1, 2, ..., k - 1 such that the two endvertices
of e both have the colour k - 1 and such that for i = 1, ..., v, at least
one endvertex of e_i has a colour among 1, ..., v. Delete from Γ all vertices having colours 1, ..., α in K and call the remaining graph Δ' . $e_i \notin E(\Delta')$ for i = 1, ..., v, but since $\alpha \leq k - 2$, $e \in E(\Delta')$. Δ' has chromatic number $\geq k - \alpha$, because if Δ' were $(k - \alpha - 1)$ -colourable, then Γ would be (k - 1)-colourable. However, K's restriction to $\Delta' - e$ shows that $\Delta' - e$ is $(k - \alpha - 1)$ -colourable, hence e is contained in any $(k - \alpha)$ -critical subgraph of Δ' .

For $\alpha = k - 2$, The rem 2.1(a) is equivalent to the statement that each vertex of a k-critical graph has valency $\geq k - 1$, and (b) is trivial. The case $\alpha = k - 3$ of (b) gives a simple proof of the following wellknown result [2, p. 45, Theorem 1]: (1) A separating set of edges of a k-critical graph ($k \ge 3$) contains at least k - 1 edges.

Proof. For k = 3, the statement is true. Suppose that $k \ge 4$ and let E be a separating set of edges of the k-critical graph Γ . If we delete from Γ all edges of E except one, then the remaining edge of E is not contained in any circuit of the remaining graph. Then by Theorem 2.1(b) with $\alpha = k - 3$, at least k - 2 edges have been deleted, i.e., $|E| \ge k - 1$, and (1) has been proved. Another version of this proof based on the case $\alpha = 1$ of Theorem 2.1(b) and by induction over k can be given.

The negation of the following statement (2) would – if true – have generalized both parts of Theorem 2.1 in the case $\alpha = 1$.

(2) An edge of a graph $\Gamma - x$, where Γ is k-critical $(k \ge 4)$ and $\chi \in V(\Gamma)$, is not necessarily contained in a (k - 1)-critical subgraph of $\Gamma - x$.

Proof. Let Γ be a graph obtained from two disjoint, k-critical graphs Δ_1 and Δ_2 ($k \ge 4$) by Hajós' construction, i.e., delete an edge (x_1, y_1) from Δ_1 and an edge (x_2, y_2) from Δ_2 , identify x_1 and x_2 to a new vertex x and join y_1 and y_2 by a new edge e. Γ is k-critical and the edge e is not contained in any (k - 1)-critical subgraph of $\Gamma - x$. This proves (2).

The above considerations give rise to an unsolved problem: For Γk critical $(k \ge 4)$ and $x \in V(\Gamma)$, characterize the set E_x of those edges of $\Gamma - x$ that are not contained in any (k - 1)-critical subgraph of $\Gamma - x$. By (1), any edge contained in a separating set of $\le k - 3$ edges of $\Gamma - x$ belongs to E_x . A result of Dirac [3, p. 48, Corollary to Theorem 3] implies that for k = 4, also the converse of this statement is true, i.e., for k = 4, E_x consists of precisely the separating edges (also called the bridges) of $\Gamma - x$. This implies that the above examples showing (2) are the only such examples for k = 4. However, the situation changes for $k \ge 5$. Fig. 1 shows a 5-critical graph Γ (we leave it to the reader to check this) in which the edge e_1 belongs to E_x , but where it is not cortained in any separating set of ≤ 2 edges of $\Gamma - x$. To see that $e_1 \in E_x$ assume on the contrary that there exists a 4-critical subgraph Δ of $\Gamma - x$

containing e_1 . Then by (1), also e_2 and e_3 are contained in Δ . However, $\{e_3, e_4\}$ is a separating set of two edges of $\Gamma - x$, and e_3 is therefore not contained in Δ . This is a contradiction. The example of Fig. 1 may be generalized to larger values of k by replacing each of the vertices z_1, z_2, z_3 and z_4 by a $\langle k - 4 \rangle$, showing the existence of a k-critical graph ($k \ge 5$) with an edge $e \in E_x$, where e is not contained in any separating set of $\le k - 3$ edges of $\Gamma - x$.

3. Characterizations of critical graphs

Let for a graph Γ and any vertex x of Γ , A_x denote the set of vertices of I not adjacent to x and let B_x denote the set of vertices of Γ adjacent to x. $V(\Gamma)$ is thus the disjoint union of $\{x\}$, A_x and B_x . Let Δ_x denote the subgraph $\Gamma - x - E(\Gamma(A_x))$.

Theorem 3.1. Let Γ be a non-empty graph and let $k \ge 3$. The following four statements are equivalent.

(a) Γ is k-critical.

(b) For all $x \in V(\Gamma)$, the following statement holds:

(*) Let the maximal independent sets of vertices of $\Gamma(A_x)$ be $I_1^x, ..., I_{\mu}^x$. Then for $j = 1, ..., \mu, \Gamma - x - I_j^x$ contains a (k-1)critical subgraph. Let for $j = 1, ..., \mu, \theta_j$ denote any such (k-1)-critical subgraph of $\Gamma - x - I_j^x$. Then $\Delta_x \subseteq U_{j=1}^{\mu} \theta_j$.

(c) Let $I_1, ..., I_{\nu}$ be all maximal independent sets of vertices of Γ . Then (**) holds.

(**) For
$$j = 1, ..., \nu, \Gamma - I_j$$
 contains a $(k - 1)$ -critical subgraph. Let
 θ_j be any such $(k-1)$ -critical subgraph of $\Gamma - I_j$. Then $\Gamma = \bigcup_{j=1}^{\nu} \theta_j$.

(d) There exist independent sets $I_1, ..., I_v$ of vertices of Γ such that (**) holds and such that for at least one vertex x of Γ all maximal independent sets of vertices of Γ containing x are among $I_1, ..., I_v$.

Remark 3.2. In Section 4, only the statement (a) \Rightarrow (b) will be used.

Remark 3.3. The θ_j 's in (*) and (**) are not necessarily different and not necessarily uniquely determined.

Remark 3.4. The assertion of Theorem 2.1(a) in the case $\alpha = 1$ is an immediate consequence of (b).

Proof of Theorem 3.1. (a) \Rightarrow (b). Let Γ be k-critical and let $x \in V(\Gamma)$. We shall prove that (*) holds. For each $j_n \ 1 \le j \le \mu$, $\{x\} \cup I_j^x$ is an independent set of vertices of Γ , hence $\Gamma - x - I_j^x$ is (k - 1)-chromatic and therefore contains a (k - 1)-critical subgraph θ_j . Let $t \in V(\Delta_x) \cup E(\Delta_x)$. In order to finish the proof of (*) we shall prove that $t \in \theta_1 \cup ... \cup \theta_{\mu}$. Γ is k-critical, hence $\Gamma - t$ has a (k - 1)-colouring K. Let I denote the set of vertices of A_x having the same colour as x in K. $\{x\} \cup I$ is one of the k - 1 colour-classes of K, hence $\Gamma - x - I - t$ is (k - 2)-colourable and since $t \in \Delta_x$, $\{x\} \cup I$ is an independent set of vertices c Γ . It follows that $\Gamma - x - I$ is (k - 1)-chromatic and that t is contained in any (k - 1)-critical subgraph of $\Gamma - x - I$. There exists a j such that $I \subseteq I_j^x$, hence either $t \in I_j^x$ or $t \in \theta_j$. If $t \in I_j^x$, then a (k - 1)-colouring of Γ may be obtained from K by giving to t the colour of x in K. But Γ is k-chromatic, hence $t \in \theta_j$. This proves (a) \Rightarrow (b).

(b) \Rightarrow (c). Let Γ satisfy (b). For each integer j, $1 \le j \le \nu$, and $x \in I_j$, there exists an integer h such that $I_j = \{x\} \cup I_h^x$, hence by (*), $\Gamma - I_j = \Gamma - x - I_h^x \supseteq \theta_j$, where θ_j is (k - 1)-critical. This proves the first part of (**) and implies $|V(\Gamma)| \ge k$. By Remark 3.4, we have that for any vertex x of Γ , each vertex of $\Gamma - x$ is contained in a (k - 1)-critical subgraph of $\Gamma - x$, hence no connected component of Γ is a (1) or a (2), which implies that $U_{x \in V(\Gamma)} \Delta_x = \Gamma$. For each $x \in V(\Gamma)$ and each I_h^x , there exists a j such that $\{x\} \cup I_h^x = I_j$, hence by (*),

$$\Gamma = \bigcup_{x \in V(\Gamma)} \Delta_x \subseteq \bigcup_{j=1}^{\nu} \theta_j \subseteq \Gamma$$

which proves (b) \Rightarrow (c).

(c) \Rightarrow (d). Trivial.

(d) \Rightarrow (a). Let Γ satisfy (d). Suppose that Γ has a (k - 1)-colouring Kand let C be the colour-class of K containing x. Then $\Gamma - C$ is (k - 2)colourable and since $x \in C$, there exists a j such that $C \subseteq I_j$, hence also $\Gamma - I_j$ is (k - 2)-colourable. This contradicts (**). Hence Γ has chromatic number $\geq k$. In order to prove that Γ is k-critical it is therefore suffacient to prove that for any element $t \in V(\Gamma) \cup E(\Gamma)$, $\Gamma - t$ is (k - 1)colourable. Let $t \in V(\Gamma) \cup E(\Gamma)$. By (**), there exists a j such that t is necessarily contained in any (k - 1)-critical subgraph of $\Gamma - I_j$, because otherwise each θ_j could be chosen such that $\theta_j \subseteq \Gamma - t$, contradicting $\Gamma = \mathbf{U}_{j=1}^p \theta_j$. It follows that there exists a j such that $\Gamma - I_j - t$ is (k - 2)colourable, but then $\Gamma - t$ is (k - 1)-colourable, because I_j is an independent set of vertices. This proves (d) \Rightarrow (a).

Theorem 3.1 has then been proved.

Let us remark that the proof of (a) \Rightarrow (b) may be applied also in the case where $t \in E(\Gamma(A_x))$ if $\Gamma - t$ has a (k - 1)-colouring in which the two endvertices of t and x have not all three the same colour. This implies that if $t \in E_{\lambda}$ (defined in Section 2), then in any (k - 1)-colouring of $\Gamma - t$ the two endvertices of t and x have necessarily all three the same colour.

The condition of (d), that there exists a vertex x such that all maximal independent sets containing x are among $I_1, ..., I_v$, cannot be omitted, for $k \ge 4$ not even if $I_1, ..., I_v$, are required all to be maximal independent. This is shown, for $k \ge 4$, by the graph Γ of Fig. 2. For this graph Γ , the maximal independent sets $I_1 = \{x_2, v_2\}, I_2 = \{x_3, y_2\}, I_3 = \{x_4, y_1\}$ and $I_4 = \{x_5, y_1\}$ satisfy (**), but Γ is (k - 1)-colourable. It can, however, be proved that a non-empty graph Γ is 3-critical, i.e., an odd circuit, if and only if there exist maximal independent sets $I_1, ..., I_p$ of vertices of Γ such that (**) with k = 3 is satisfied.

The following well-known results on k-critical graphs are easy consequences of Theorem 3.1(b).

(3) If
$$A_x \neq \emptyset$$
, then each vertex of $\Gamma(A_x)$ has valency ≥ 1 in $\Gamma(A_x)$, especially $|A_x| \geq 2$.

Proof. If $y \in A_x$, then $y \in V(\Delta_x)$, hence by (*), y is not contained in all maximal independent sets of vertices of $\Gamma(A_x)$. This proves (3).

(4) If $A_x \neq \emptyset$, then $\Gamma(B_x)$ does not contain a (k-1)-critical subgraph.

Proof. If θ is a (k - 1)-critical subgraph of $\Gamma(B_x)$, then we may choose $\theta_i = \theta$ for all *j*, contradicting $\Delta_x \subseteq \bigcup_{i=1}^{\mu} \theta_i = \theta$.

4. 4-critical graphs

Let now I' be a 4-critical graph. By Theorem 3.1, Γ satisfies Theorem 3.1(b) in the case k = 4 in which the graphs θ_j are odd circuits. M. Simonovits made me aware of this extension (for k = 4) of (4):

(5) If $A_x \neq \emptyset$, then $\Gamma(B_x)$ does not contain any circuits.

Proof. Suppose that θ is a circuit of $\Gamma(B_x)$. By (4), ℓ is even and therefore the two endvertices of an edge $e \in E(C)$ have different colours in a 3-colouring of $\Gamma - e$. But then Γ is 3-colourable, which is a contradiction. This proves (5).

By (5), $\Gamma(B_x) \cap \theta_j$ is either empty or it consists of a set of mutually disjoint paths. If $\Gamma(B_x) \cap \theta_j \neq \emptyset$, then let these paths be $P_1^j, P_2^j, ..., P_{f(j)}^j$, where $f(j) \ge 1$, otherwise let f(j) = 0.

(6) Let
$$1 \le j < m \le \mu$$
 and let $1 \le i \le f(j)$ and $1 \le h \le f(m)$.
Then $P_i^j \cap P_h^m$ is either empty or a path.

Proof. if not, then $\Gamma(B_x)$ would contain a circuit, contradicting (5). This proves (6).

On the basis of Theorem 3.1(b) and (5) we get:

Theorem 4.1. Let α be an integer ≥ 2 . There exist integers $n(\alpha)$ and $m(\alpha)$ depending only on α such that if Γ is a 4-critical graph containing a vertex x of valency $|V(\Gamma)| - \alpha - 1$, then:

(a) $|E(\Gamma)| \leq 2 \cdot |V(\Gamma)| + n(\alpha);$

(b) Γ contains at most $m(\alpha)$ vertices of valency ≥ 4 , i.e., if $|V(\Gamma)| > m(\alpha)$, then Γ contains at least $|V(\Gamma)| - m(\alpha)$ vertices of valency 3.

Remark 4.2. The statement for 5-critical graphs corresponding to (b) of Theorem 4.1 (i.e., the statement obtained from (b) by replacing 3 and 4 by 4, 5, respectively) is not true for any value of α . Counterexamples of infinitely many 5-critical graphs Γ containing vertices x of valencies $|V(\Gamma)| - \alpha - 1$ in which all vertices have valencies $\geq h$, where h is a given integer ≥ 5 , may be constructed from the 4-critical graphs having large minimal valency (they may be constructed such that the resulting graphs have separating sets of two vertices of which x is one).

Proof of Theorem 4.1. Let Γ be 4-critical and let $x \in V(\Gamma)$ have valency $|V(\Gamma)| - \alpha - 1$ in Γ , i.e., $|A_x| = \alpha$. The number of edges of $\Gamma(B_x)$ is at most $|B_x| - 1$ by (5). The number of edges of $\Gamma(A_x)$ is at most $\frac{1}{2}\alpha(\alpha - 1)$. The number of edges having one endvertex in A_x and the other in B_x is $\leq 2 \cdot \sum_{j=1}^{\mu} f(j)$ by Theorem 3.1(b). μ is bounded by the number of different non-empty subsets of A_x , i.e., $\mu \leq 2^{\alpha} - 1$, in fact, $\mu \leq 2^{\alpha} - 2$ since the vert ces of A_x are not independent by (3). $f(j) \leq \alpha - 1$ since the circuit θ_j s "passing through" $\Gamma(A_x)$ at most $\alpha - 1$ times. It follows that

$$|E(\Gamma)| \le |V(\Gamma)| - \alpha - 1 + |B_x| - 1 + \frac{1}{2}\alpha(\alpha - 1) + 2(2^{\alpha} - 2)(\alpha - 1)$$

= 2 \cdot |V(\Gamma)| - 2\epsilon - 3 + \frac{1}{2}\alpha(\alpha - 1) + 2(2^{\alpha} - 2)(\alpha - 1)
= 2 \cdot |V(\Gamma)| + n(\alpha).

This proves (a).

By the formula $\Sigma_{v \in V(\Gamma)} \operatorname{val}(v, \Gamma) = 2|E(\Gamma)|$, we get

$$|V(\Gamma)| - \alpha - 1 + 4(|V(\Gamma)| - 1 - r) + 3r \leq 2|\mathcal{L}(\Gamma)|,$$

where r denotes the number of vertices of $A_x \cup B_x$ having valency 3 in Γ . By (a), this implies

$$r \geq |V(\Gamma)| - 2n(\alpha) - \alpha - 5$$
,

hence I' contains at most $2n(\alpha) + \alpha + 5$ vertices of valency ≥ 4 . This proves (b), hence Theorem 4.1 has been proved.

Unfortunately, I know next to nothing on exact values and orders of magnitudes of the best possible $n(\alpha)$ and $m(\alpha)$ that may be used in Theorem 4.1. The estimation in the proof is not best possible. Thus the number of edges of $\Gamma(A_x)$ is $\leq \frac{1}{3}\alpha^2$ by Turán's theorem [11], and $\mu \leq 3^{\alpha/3}$ by a theorem of Moon and Moser [7]. However, even this gives an estimation which is probably far from the correct order of magnitude. The estimation of the proof gives for $\alpha = 2$, n(2) = -2 and m(2) = 3, which is best possible as we shall see in the following, where the special cases $\alpha = 2$ and $\alpha = 3$ are treated. Dirac and Gallai conjectured [5, p. 44, Conjecture] that if Γ is assumed also to be planar, then $n(\alpha) = -2$ may be used for all values of α .

4.1. $\alpha = 2$

Let $A_x = \{y, z\}$. By (3), $\Gamma(A_x) = \langle 2 \rangle$ and $\mu = 2$. We may assume that $I_1^x = \{y\}$ and $I_2^x = \{z\}$. By (5), the odd circuit θ_1 contains z, but not y, and the odd circuit θ_2 contains y, but not z. By Theorem 3.1(b),

$$\Delta_x = \Gamma - x - (y, z) = \theta_1 \cup \theta_2 ,$$

and by $(c \ \theta_1 \cap \theta_2)$ is either empty or a path. If $\theta_1 \cap \theta_2$ is a path with ≥ 2 vertices, then none of the endvertices of that path are adjacent to both vertices of A_x since otherwise the edge from x to such an endvertex would not be critical. (The case $\alpha = 2$ was also considered in [10, §6].)

4.2. α = 3

Let $A_x = \{p, y, z\}$. By (3), $\Gamma(A_x)$ is either

```
(i) a path, or
```

(ii) complete.

Let us consider the two cases in turn.

(i)
$$E(\Gamma(A_x)) = \{(p, y), (y, z)\}$$

 $\mu = 2$ and we may assume that $I_1^x = \{p, z\}$ and $I_2^x = \{y\}$. By (5), the odd circuit θ_1 contains y, but not p nor z. By Theorem 3.1(b), the odd circuit θ_2 contains p and z, but not y, and it consists therefore of an even path P_1 of length ≥ 2 and an odd path P_2 of length ≥ 3 both joining p and z and with no interior vertices in common. By Theorem 3.1(b),

$$\Delta_{x} = \Gamma - x - (p, y) - (y, z) = \theta_{1} \cup P_{1} \cup P_{2} .$$

If $P_i \cap \theta_1 \neq \emptyset$, then $P_i \cap \theta_1$ is a path by (6) and $P_j \cap \theta_1 = \emptyset$ (j = 1 if i = 2 and conversely) since otherwise the edges (p, y) and (y, z) would not both be critical. If P_1 has length 2 and if the interior vertex v of P_1 is on θ_1 , then v is not adjacent to y since otherwise (x, v) would not be critical.

(ii)
$$\Gamma(A_{\mathbf{r}}) = \langle 3 \rangle$$

 $\mu = 3$ and we may assume that $I_1 = \{p\}, I_2 = \{y\}$ and $I_3 = \{z\}$. By (5), each of θ_1, θ_2 and θ_3 contains at least one vertex of A_x . We shall consider two cases.

(ii.1) Suppose that one of θ_1 , θ_2 and θ_3 may be chosen such that it contains only one vertex of A_x , say θ_1 contains y, but not p nor z. Then we may choose $\theta_3 = \theta_1$. By Theorem 3.1(b), θ_2 contains necessarily both p and z, but not y, hence there is in Δ_x an even path P of length ≥ 2 joining p and z and not containing y. θ_2 may therefore be chosen as P together with the edge (p, z). By Theorem 3.1(b),

$$\Delta_x = \theta_1 \cup P ,$$

where $\theta_1 \cap P = \emptyset$ since otherwise one of the two edges of θ_1 incident with y would not be critical.

(ii.2) The alternative to consider is the case where each of θ_1 , θ_2 and θ_3 necessarily contains precisely two vertices of A_x . In this case, θ_1 , θ_2 and θ_3 may be chosen as even paths P_1 , P_2 and P_3 of length ≥ 2 joining the vertices y and z, p and z, p and y respectively, together with the edges (y, z), (p, z) and (p, y), respectively. By Theorem 3.1(b),

$$\Delta_x = P_1 \cup P_2 \cup P_3$$

One possibility is that P_1 , P_2 and P_3 are mutually disjoint outside A_x . The alternative is that, say, $V(P_1) \cap V(P_2) \cap B_x \neq \emptyset$. Let q be the first vertex of P_1 (going from y towards z) belonging also to P_2 . Let R_1 , R_2 and R_3 be three paths joining q with p, y and z respectively, where R_1 and R_3 are parts of P_2 and R_2 is a part of P_1 , R_1 , R_2 and R_3 are mutually disjoint except for the vertex q, and since P_2 is even, R_1 and R_3 have the same parity. By (6), $P_1 \cap P_2$ is a path and since (ii.1) is not the case, also R_2 and R_3 have the same parity, i.e., R_1 , R_2 and R_3 have all the same parity. Then θ_1 , θ_2 and θ_3 may be chosen as $R_2 \cup R_3 \cup (y, z)$, $R_1 \cup R_3 \cup (p, z)$ and $R_1 \cup R_2 \cup (p, y)$, respectively. Hence by Theorem 3.1(b),

$$\Delta_x = R_1 \cup R_2 \cup R_3.$$

Since $\Gamma - x$ is 3-colourable, the lengths of R_1 , R_2 and R_3 are not all 1.

This completes the treatment of the cases $\alpha = 2$ and $\alpha = 3$. Fig. 3 shows the various possibilities for $\Gamma - x$. It can be proved that the conditions on the structure of Γ that we have established are not only necessary, but also sufficient conditions for Γ to be 4-critical. The analysis gives as a corollary:

Theorem 4.3. Let Γ be a 4-critical graph with a vertex x of valency $|V(\Gamma)| - \alpha - 1$.

(a) If $\alpha = 2$, then all vertices of $\Gamma - x$ have valency 3 in Γ except possibly either one vertex of valency 5 or two vertices each of valency 4. All three cases occur.

(b) If $\alpha = 3$, then all vertices of $\Gamma - x$ have valency 3 in Γ except either one vertex of valency 4 or two vertices of valencies 4 and 5 respectively, or three vertices each of valency 4. All three cases occur.

It follows from Theorem 4.3 that the best possible values of $n(\alpha)$ and $m(\alpha)$ in the cases $\alpha = 2$ and $\alpha = 3$ are n(2) = n(3) = -2, m(2) = 3and m(3) = 4.

The case $\alpha = 4$ has also been considered, and by the above method it is in this case possible to prove:

(7) There exists precisely one 4-critical graph with 9 vertices in
(7) which each vertex has valency 3 or 4, namely the last graph of Fig. 4.

I shall leave out my rather cumbersome proof of (7).

If Γ is a 4-critical graph with at most 8 vertices, then by the theorem of Brooks [1] it contains a vertex x of valency $|V(\Gamma)| - \alpha - 1$ for either $\alpha = 0$, $\alpha = 2$ or $\alpha = 3$. By (7), this holds also if $|V(\Gamma)| = 9$ and $\Gamma = 0$, the graph of (7). If $\alpha = 0$, then it is well known that Δ_x is an odd circuit, hence the above analysis provides us with a complete list of all 4-critical graphs with ≤ 9 vertices. There are 30 such graphs and they are exhibited in Fig. 4. One of the graphs has 4 vertices, one has 6 vertices, 2 have 7 vertices, 5 have 8 vertices and 21 have 9 vertices.

 $|V(\Gamma)| = 9$ and $\max(x, \Gamma) = 6$:

Fig. 4.

:

.

۰,

. -

٠

References

- R.L. Brooks. On colouring the nodes of a network, Proc. Cambridge Philos. Soc. 37 (1941) 194-197.
- [2] G.A. Dirac, The structure of k-chromatic graphs, Fund. Math. 40 (1953) 42-55.
- [3] G.A. Dirac, On the structure of 5- and 6-chromatic abstract graphs, J. Reine Angew. Math. 214/215 (1964) 43-52.
- [4] T. Gallai, Kritische Graphen I, Publ. Math. Inst. Hungar. Acad. Sci. 8 (1963) 165-192.
- [5] T. Gallai, Critical graphs, in: Theory of Graphs and its Applications, Proc. of the Symposium held in Smolenice in June 1963 (Czechoslovak Akad, Sciences, Prague, 1964) 43-45.
- [6] D. König, Theorie der endlichen und unendlichen Graphen (Leipzig, 1936; Chelsca, New York, 1950).
- [7] J.W. Moon and L. Moser, On cliques in graphs, Israel J. Math. 3 (1965) 23-28.
- [8] B. Toft, Some contributions to the theory of colour-critical graphs, Ph.D. Thesis, University of London, 1970, published as No. 14 in Various Publications Series, Matematisk Institut, Aarhus Universitet.
- [9] B. Toft, Two theorems on critical 4-chromatic graphs, Studi : Sci. Math. Hungar. 7 (1972) 83-89.
- [10] B. Toft. Colour-critical graphs with complements of low connectivity, submitted to Math. Scard.
- [11] P. Turán, On the theory of graphs, Colloq. Math. 3 (1954) 19-30.