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Abstract. Some results o th: dis ribuion of critical subgraphs in colour-critical graphs are ob-
tained. Charzcterizations of £-cri ical graphs in terms of their (k - 1)-critical subgrap.s are gi-
ven. The speciul case & = 4 is con: idered, and it is proved that if a 4-critical graph I' hus a vertex
x of large valency (compared to t*.c number of vertices of I' not adjacent to x), then I contains
vertices of valercy 3. Finally. a list of all 4-critical graphs with < 9 vertices is exhibited.

1. Terminology and intreductior.

We consider finite graphs without loops and multiple ¢dges. The set
of vertices and the set of edges of a graph I' are denoted V(I') and E{I"),
respectively. The complete k-graph is denoted (k). The terms path and
circuit are used in the sense in which the corresponding terms Weg and
Kreis are vsed in [6]. The lengtr of a path or circuit is the number of
edges contained in it. We ailow a path to have length 0, but a circuit
has length 2 3. A path or a circuit is odd or even according to whether
its length is odd or even.

If A and T are graphs satisfying V(A) € V(I') and E(A) € E(I), then
A is a subgraph of I', deroted A C I". If T & V(I'), then I'(T) denotes
the subgraph of I’ spanncd by T,ie., V(1’(T)) =T and £(I'(T')) consists
of all edges of E(I'; having both endvertices in 7. If E(I'(T)) = @, then T
is an independent sct of vertices of ', and T is imaximal independent it
it is not a proper subset ot any cther independent set of vertices of I'.
The valency of a vertex x of T, denoted val(x, {"), is the number of edges
of [ incident with x. If V' € V(") end E' € E(T"), then I" - V' — E' de-
notes the subgraph of I obtained by deleting from I all vertices of V’
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and all edges of I incident v'ith vertices of V', and then delcting all ed-
ges of E' that remain, without deleting any more vertices. If I' is con-
nected and I" — E' is disconnected, then E' is a separating set of edges
of I'. |

A graph T is k-colouratle if ¥(I') can be partitioned into at most &
mutually disjoint (colour) classes in such a way that each class is an in-
dependent set of vertices. If k is the least integer for which I is k-colour-
able, then k is the chromatic number of I' and I' is k-chromatic. An ele-
ment t € V(') U E(I") of a k-chromatic graph I' is critical if I' — t is
(k — 1)-colourable. A connected graph I' is critical k-chromatic (or sim-
ply k-critical) if it has chromatic number X and all edges — and conse-
quently all vertices -- of I" are “ritical. Each vertex of a k-critical graph
has valency = k — 1.

The 1- and 2-critical graphs are the (1) and the (2), respectively. The
3-critical graphs are the odd circuits ([6, p. 151, Satz 12]). Hence each
vertex of a k-critical graph with & < 3 has valency & — 1. It seems hope-
less to determine the structure of all 4-critical graphs. T. Gellai con-
structed an infinite class of regular 4-critical graphs of valer.cy 4, thus
proving that a 4-critical graph need not contain a vertex of valency 3
(see [4, p. 172, (2.3)] and [5]). M. Simonovits and the present author
even proved that for any natural number h, there exist 4-critical graphs
in which all vertices have valency 2= # (see [8, Chapter 6] and [9]).
However, it is still unknown whether any planar 4-crit:cal graph neres-
sarily contains a vertex of valency 3 (see [5]).

In Section 4 of this paper, we shail prove that if " is a 4-critical graph
having a vertex adjacent to all except « vertices of I, then there is ar:
upper bound m(a) depending only on a for the number of vertices of I'
of valency 2 4, i.e., if IV(I')|> m(a), then I’ contains at least | V()| —
m(a) vertices of valency 3. The possible structures of I in the cases
o = 2 and a = 3 are determined. This enables us to est blish a catalogue
of all 4-critical graphs with at most 8 vertices. Also the case of 9 vertices
is mentioned. The proofs in Section 4 are based on a characterization in
Scction 3 of k-critical graphs in terms of their (k — 1)-critical subgraphs.
In Section 2, a more elementary result is obtained and also a new, sim-
ple proof of the result, that any separating set of edges in a k-critical
graph contains 2 k — 1 edges, is presented.
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2. Critical subgraphs

By deleting any vertex or any edge from a &-critical graph, the re-
maining graph has chromatic number & — i and therefc re contains at
ieast one (k — 1)-critical subgraph. Theorem 2.1 gives extensions of this
statement.

Theorem 2.1. Let T be a k-critical graph (k 2 3)., and ict o be an integer
satisfying 1 <a< k - 2.
(a) By deleting ar most a vertices from T, there exists foi euch vertex
x of the remaining graph A, a (k — o)-critical subgraph of A coutaining x.
(b) By deleting at most a edges from I, there exists jor cach ¢dge e of
the remaining graph A, a (k — a)-critical subgraph of A containiing e, but
nect containing both endvertices of any o' the deleted edges.

Theorem 2.1(a) follows easily by induction from the case « = 1, and
the case « = 1 is an immediate corollary of a characterization of A-criti-
cal graphs given in Section 3. Theorem 2.1(a) was obtained eariier by
Dirac {3, p. 45, (4)], «nd the fcllowing proof of Theoram 2.1(b) is si-
milar to the proof in [3] of Theorem 2.1(a).

Proof of Theorem 2.1:b). Lete , ..., ¢, be a set of v edges of I', where
r<a,andletebeanedgeof '—e;, —... —2,(=4).T —ehasa (k1)
colouring K with colours 1, 2, . ., & — 1 such that the two endvertices
of e both have the colour ¥ — 1 and such that fori=1, .., v, at least
one endvertex of e¢; has a colour among 1, ..., v. Deiete from I' all ver-
tices having colours 1, ..., « in K and call the remaining graph A’.

e; ¢ E(A')fori=1, .. v butsincea <k —2,e€ E(A":. A" has chro-
matic number 2 k£ — a, because if A" were (kK — a — 1)-colourable, then
I would be (k ~ 1)-colourable. However, K’s restrictior to A" — ¢
shows that A’ — e is (k — a — 1)-colourable, hence e is contained in any
(k — a)-critical subgraph of A’. This proves Theorem 2.1(b).

Fora = k& -- 2, The »em 2.1(a) is equivalent to the statement that
each vartex of a k-criical graph has valency = k — 1. and (b) is trivial.
The case « = k — 2 of (b) gives a simple proof of the following well-
knowr result [2, p. 45, Theorem 1}:
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(1) A separating set of edges of a k-critical graph (k 2 3) contains
at least k — 1 edges.

Proof. For k = 3, the statement is true. Suppose that & 2 4 and let £ be
a separating set of edges of the k-critical graph I'. If we delete from I’
all edges of E except one, then the remaining edge of E is not contained
in any circuit of th.e remaining graph. Then by Theorem 2.1(b) with

a =k — 3, at least k — 2 edges have been deleted, i.e., IEI2 k ~ 1, and
(1) has been proved. Another version of this proof based on the case

o = | of Theorem 2.1(b) and by induction over & can be given.

The negation of the following statement (2) would — if true — have
generalized both parts of Theorem 2.1 in the case « = 1.

An edge of a graph T' — x, where T is k-critical (k 2 4) and
(2) ~ € V(IN), is not necessarily coatained in a (k — 1)-critical
subgraph of T' - x.

Proof. Let I' be a graph obtained from two disjoint, k-critical graphs 4,
and A, (k 2 4) by Hajos’ construction, i.e., delete an edge (x,, ¥,)
from A, and an edge (x,, ¥,) from 4,, identify x, and x, to a new
vertex x and join y; and ¥, by a new edge e. I is k-critical and the edge
¢ is not contained in any (k — 1)-critical sutgraph of I' — x. This proves

(2).

The above consideratiorns give rise to an unsolved problem: For I' &-
critical (k 2 4) and x € V(I"), characterize the set E, of those edges of
I' — x that are not contaired in any (k -- 1)-critical subgraph of I - x.
By (1), any edge contained in a separating set of < k — 3 eduss of
I’ — x belongs to E,. A result of Dirac [3, p. 48, Corollary to Theorem
3] implies that for & = 4, also the converse of this statement is true, i.e ,
for k£ = 4, E, consists of piecisely the separating sdges (also called the
bridges) of I — x. This implies that the above examples showing (2) arc
‘the only such exampies for & = 4, However, the situation changes for
k 2 5. Fig. 1 shows a S-critical graph I" (we leave it to the reader to
check this) in which the edge ¢, belongs to E,., but where it is not cor-
tained in any separating set of < 2 edges of I' — x. To see that e, €k,
assume on the contrary that there cxists a 4-critical subgraph A of I' — x
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Fig. 1.

containing ¢, . Then by (1), also e, and e, are contained in A. However,
{ey, €4} is a separating set of two edges of I' — ¢, and ¢; is therefore
not contained in A. This is a contradiction. The exampie of Fig. I may
be generalize# to larger values of k by replacing each of the vertices

Zy, 23,23 and z4 by a{k — 4), showing the existence of a k-critical
graph (k 2 5) with an edge e € E,, where e is not contzined in any se-
parating set of < & — 3 edges of " — x.

3. Characterizations of critical graphs

Let for a graph I" and any vertex x of I', A, denote the set of vertices
of I not adjacent to x and let B, derote the set of vertices of I adjacent
to x. V(T') is thus the disjoint union of {x}, .1, and B, . Let A, denote
the subgraph I' - - x — E(T'(4,. ).

Theorem 3.1. Let T' be a non-empty graph and let k 2 3. The following
four statements cre equ:ivalent.

(a) I is k-critical

(b) For all x € V(I'). the following statement holds:

Let the maximal independent sets of vertices of I'(A,. ) be

g, ... P‘“ Then forj=1, .., u, T —x — [ contains a (k— 1)
critical subgraph. Let forj=1, ..., u, 6]- denote any such

(k - V»critical subgraph of T - x — IF. Then A, & UL, 0,

(*)

(c) Let 1y, ..., 1, be al! maximai independcni sets of vertices of T.
Then (%) holds.
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Forj=1,..,», '~ {; contains a (k — 1)-critical subgraph. Let
(%%) 9; be any such (k—V)-critical subgraph of F—Ii' Thenl =
U” 10,

(d) There exist ind:pendent sets I, ..., I, of vertices of T" such that
() holds and such that for at least one vertex x of " all maximai inde-
pendent sets of vertices of I' containing x are among I, ..., 1,,.

Remark 3.2. In Section 4, only the statement (a) = (b) will be used.

Remark 3.3. The 6;’s in (*) and (*#) are not necessarily different and
not necessarily uniquely determined.

Remark 3.4. The assertion of Theo: 1n 2.1(a) in the case « = 1 is an im-
mediate consequence of (b).

Proof of Theorem 3.1. (a) = (b). Let I' be k-critical and let x € V(I").
We shall prove that () holds. For each jn 1 i, (x}u I]" is an inde-
pendent set of verfices of I'. hence I" — x — Ij‘ is (£ -- 1)-chromatic and
therefore contains a (k — 1)-critical subgraph 0;. Let t € V(A,) U E(A, ).
In order to finish the prooi of (*) we shall prove *hat ;i € 6, V..V Hy.
I"is k-critical, hence I' — ¢ has a (k — 1)-colourirg K. Let / denote the
set of vertices of A, having the same colour as x ia K. {x} U 7 is one of
the k£ — 1 colour-classes of K, hence I' — x — I — 7 is (£ — 2)-colourable
and since t € A, {x] U ['is an irdependent set of vertices ¢~ I. It fol-
lows that I' — x — [ is (k — 1)-chromatic and that ¢ is containad in any
(k - 1)-critical subgraph of I' -- x — I, There exists aj such that / € I,
hence either t€ X or 1 € 0;. 11z = I, then a (k - 1)-colouring of T
imay be obtained fron“ K b} giving to t the colour of x in K. But I' is -
chromatic, hence ¢t € 0 This proves (a) = (b).
tb) = (¢). Let I satlsfy (b). For each integerj, 1 S j<p,and x € I

there exists an integer 2 such that {; = {x} U I}, hence by (%), I" - 1 =
F-x-1If2 0;, where 6, is (k - l)-crmcal This proves the first part

of {*x) and 1mphes IV(I‘)l k. By Remark 3.4, we have that for any
vertex x of I, each vertex of I' -- x is contained .1» a (¥ — 1)-critical sub-
graph of I — ¢, hence no connected component of I'is a (1) or a (2),
which impiies that U..c 4, = T'. For each x € ¥(I') and each Iy,
there exists a / such that {x} U = I;, hence by (»),
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xe Vi j=1

which proves (b) = (¢).

(c) = (d). Trivial.

(d) = (4). Let I satisfy (d). Suppose that I has a (k — 1)-colouring K
aid let C ve the colour-class of X containing x. Then I" — Cis (k — 2)-
colourable and since x € C, there exists a j such that CC I;, hence also
| I is (f — 2)-colcurabie. This contradicts (*#). Hence I" has chroma-
t.c number 2 k. In order to prove that I' is k-critical it is therefore suf-
ficient to prove that for aay element t € V(T')U E(I), I - tis (k — 1)-
colourable. Let ¢ € V(I') U E(T'}. By (*#), there exists aj such that ¢ is
necessarily containec in any (k — 1)-critical subgraph of I" — 1]-, because
otherwise each 0,- could be chosen such that 9]- C I’ — ¢, contradicting
'=U;.,0;. 1t follows that there exists aj such that I' — I; — tis (k- 2)-
colourable, but then I' —- 7 is (k — 1)-colourable, becaus: 1] is an inde-
vendent sct of vertices. This proves (d) = (a).

Theorem 3.1 his then been proved.

Let us remark taa- the proof of (a) = (b) may be applied also in the
case where 1 € E(1(A,)) if T — ¢ hasa (k — 1)-colouring in which the
two endvertices 0.t and x have not all three the same colour. This ira-
plies that if t € E, (defined in Szction 2), then in any (k — 1)-colouring
of I' — ¢ the two endvertices of ¢ and x have necessarily all three the
same colcur.

* The condition of {d), that there exists a vertex x such that all maxi-
mal independent sets containing x are among /,, ..., /,, cannot be omit-
ted, for k > 4 not evenif 7, ..., /,, are required all to be maximal inde-
pendent. Tkis is shown, for kK = 4, by the graph I' of Fig. Z. For this



384 B. Toft, Critical subgraphs of colour-critical graphs

graph I', the maximal independent sets [; = {x,, V51, 72 = {X3, ¥},
I3 = {x4,y;} and Iy = {x5, )} satisfy (*#), but [" is (k — 1)-colour-
able. It can, however, be proved that a non-empty graph I is 3-critical,
i.e., an odd circuit, if and only if there exist maximal incependent sets
Iy, ..., I, of vertices of I' such that () with £ = 3 is satisfied.

The following well-known res*-ius on k-critical graphs are easy conse-
quences of Theorem 3.1(b).

If A, # @, then each vertex of I'(A, ) has valency = 1 in

(3) ['(A,), especially 14,12 2.

Proof. If y € 4, , then y € V(A,), hence by (), y is not contained in all

maximal independent sets of vertices of I'(4,, ). This proves (35.

4) If A, # O, then I'(B,)) does not contain a (k — 1)-critica:
subgraph.

Proof. If 0 is a (k — 1)-critical subgraph of I'{B, ), then we may choose
; = @ for all j, contradicting A, Cc Ui 6,=6.

4. 4-critical graphs

Let now I' be a 4-critical graph. By Theorem 3.1, I' satisfies Theorem
3.1{b) in the case k£ = 4 in which the graphs 8; are odd circuits. M. Simo-
novits made me aware of this extension (for £ = 4) o! (4):

(5) if A, # O, ihen I'(B, ) does not contain ary circuits.

Proof. Suppose that 9 is a circuit of I'(B, ). By (4), € is even and there-
fore the tvro endvertices of an edge e € E(C) have difierent colours in a
3-colouring of I' - e. Bui then I' is 3-colourable, which is a contredic-
tion. This proves (5).

By (5). I'(B, ) N §; is either empty or it consists »f a set of mutually
disjoint paths. If I'(B, ) N 6, # @, then let these paths be P{ & T P}(,),
where f(j) 2 !, otherwise let () = 0.

6) Letl_<,.j<m5uandletISiSj’U)anllehﬁf(m).
Then P 0 P is either empty or a path.
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Proof. 1f not, then I'(B,. ) would contain a circuit, contradicting (5).
This prcves (6).

On the basis of Theorem 3.1{b) and (5) we get:

Theoren 4.1, Let « be an integor 2 2. There exist integers n(e) and
m(a) dencnding only on « such that if T is a 4-critical graph containing
a vertex x of valency \WW() —a — 1, then:

(@) [EN <21V Fn(a);

(V) I conrains at most m(a) vertices of valenev 2 4, ie., it 1V(I)1:>
m(a), theiu I' contains at .east \V(I')| — ma) vertices of valency 3.

Remark 4.2. The sttzmeat for 5-critical graphs corresponding to (b) of
Theorem 4.1 (i.e., the statement obtained from (b) by replacing 3 ani 4
by 4, 5, ruspectively) is nat irue fo- any value of a. Counterexamples.
of infinitcly many S-critical graphs I' containing vertices x of valencies
IV(I")) — « - 1 in which 1l vertices have valencies = 1, where A is a gi-
ven integer = S, may be constructed from the 4-critical graphs having
large minimal valency (th2y mzy be constructed such that the resulting
graphs have separating seis of two vertices of which x is one).

Proof of Theorem 4.1. L¢t I' be 4-critical and let x € V(I') have valency
IV(C)l - a — 1inT,ie., I4, | =a. The number of edges of I'(B, ) is at
most |1B, | — 1 by (5). Th2 number of edges of I'(4,,) is at most

Ya(a — 1). The number of edges having one endvertex in A, and the
otherin B, is < 2+ Z& /j) by Theorem 3.1(b). u is bounded by the
number of differsnt non-:mpty subscts of 4,, i.e., u < 2% ~ 1, in fact,
p< 2% — 2 since the vert ces of .1, are not independent by (3). f{/) <
a - 1 since the circuit 0; s “passing through™ I'(A, ) at most & -- |
times. It tollows that

E < VAYl —a — 1+ B ) T +ia(e - DD +2(2% - 2)0a - D)
=21 = 2¢ - 3 +fale — D)+ 2(2% ~ e — 1)

=21V +n(y).

This proves (a).
By the rormuia ZS}.E V(F)vai(_v,, M= 21E(D)I, we get
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V(M) —a - 1+4(1V([) -1 —r)+ 3r < 2L,

where r denotes the number of vertices of A, U B, having valency 3 in
I'. By (a), this implies

r2 WV - 2n(@) ~a -5,

hence I' contains at most 2n(a) + « + 5 vertices of valency = 4. This
proves (b), hence Theorem 4.1 has been proved.

Unfortunately, I know next to nothing on exact values and orders of
magnitudes of the best possible #(a) and m(a) that may be used ir.
Theorem 4.1. The estimation in the proof is not best possible. Thus the
number of edges of I'(4, ) it < 4a? by Turin’s theorem [111], and
1 < 3%3 by a theorem of Moon and Moser [7]. However, even this gives
an estimation which is probably far from the correct order of magnitude.
The estimation of the proof gives fora = 2, n(2) = -2 and m(2) = 3,
which is best pcssible as we shall see in the following, where the special
cases « = 2 and a = 3 are treated. Dirac and Gallai conjectured (5, p. 44,
Conjecture] that if I' is assumed also to be planar, then n(a) = —2 may
be used for zi! values of a.

41.a =2

LetA, = {y,2}. By (3),1'4,) =(2) and p = 2. We may assume that
I{ = {y} end IF = {z}. By (5), the odd circuit 8, contains z, but not y,
and the od«! circuit 8, contains y, but not z. By Theorem 3.1(b),

by =-x-(y,2)=0,080,,
and by (¢’ 6, N 0, is ither empty or a path. If &, N 6, is a path with
2 2 vertices, then none of the endvertices of that path are adjacent 1o

both vertices of 4, since otherwise the edge from x to such an endver-
tex would not be critical. (The case @ = 2 was also considered in[10, §6].)

42.a0=3

Let A, = {p, y, z}. By (3), I'(4,) is either
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«i) a path, or
tii) complete.
Let us consider the two cases in turn.

(i) ETAN={p.y).(». 2)}.

K =2 and we may assume that IT = {¢, z} and /5 = {y}. By (5), the
odd circuit 8, contains y, bui nnt p nor z. By Theorem 3.1(b), the odd
circuit &, contains p and z, but not y, ard it consists therefore of an
even path P| ollength 2 2 and an odd path P, of length 2 3 both
joining » and z and with no interior vertices in common. By Theorem
3.1(b),

Ax=r-x"(P-y’)—()',3)=91 UPIUPZ.

itF;Nndy # @, thenP;Nn 0, isapathby (6)and P, N 6; =@ (j=1if

i = 2 an.] conversely) since otherwice the edges (p, y) and (v, z) would

not bot1 be critical. If P, has length 2 and if the interior vertex v of P,
is cn 8, , then v is not adjacent to y since otherwise (x, v) would not be
critical.

(i) r(4,)=(3).

¢ = 3 and we may assume that I, = {p}, /1, = {y} and I3 = {z}. By
(5). each of 8, 8, and 85 contains at least one vertex of A,.. We shall
consider two cases.

(ii.1) Suppose that one of 0, 8, and 65 may be chosen such that it
contain:. only one vertex of 4,, say 8, contains y, but not p nor z.
Then we may choose 65 = &, . By Theorem 3.1(b), 8, contains neces-
sarily both p and z, but not v, hence there is in A, an even path P of
length 2 2 joining p and z and not containing y. 8, may therefore be
chosen as P together with the edge (p, z). By Theorem 3.1(b),

A, =6, UP,

where 8, N P = { since otherwise one of the two edges of ¢, incident
with y would not be critical.
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Fig. 3.

(ii.2) The alternative to consider is the case where each of 8,, 6, and
65 necessarily contains precisely two vertices of 4. In this case, 8, 0,
and 65 may be chosen as even paths P, P, and 3 of length 2 2 joining
the vertices ¥ and z, p and z, p and y respectively, together with the ed-
ges (¥, z), (p. z) and (p, y), respectively. By Theorem 3.1¢b),

A =P UP,UP; .

One possibility is that P,, P, and Py are mutually disjoint outside 4, .
The alternative is that, =y, V(P) N V(P,) N B, # §. Let g be the first
~ortex of Py (going frora y towards =) belonging also to P,. Let Ry, R,
¢nd Ry be three paths joining ¢ with p, » and z respectively, where R
and K are parts of P, und R, isa purt of P;. R, R, and R3 are mu-
tually disjoint except fcr the vertex ¢, and since P, is even, R and R,
have the same parity. By {6), P; N P, is a path and since (ii.]) is not
the case, also R, and R, have ths same parity, i.2., R, R, and R; have
all the same parity. Then 6, 8, and 65 may be chosen as R~ U R
Viy.z),Ri UR; U, z)and R} U R, U (p, »), respectively. Hence
by Theorem 3.1(b),
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A, =R, UR, UR;.
Since I' — x is 3-colourable. the lengths of R |, R, and R are not all 1.

This completes the treatment of the cases @ = 2 and o = 3. Fig. 3
shows the various possibilities for I" — x. It can be proved that the con-
ditions on the structure of I' that we have established are not only neces-
sary, but also sufficient conditions for I' to be 4-critical. The analysis gi-
ves as ¢ corollary:

Theorem 4.3. Let T be a 4-critical graph with a vertex x of valency
V) - a - 1.

@) If « =2, then all vertices of T" -- x have valency 3 in T" except pos-
sibly either one vertex of valency 5 or two vertices each of valency 4.
All three cases occur.

(b) If & = 3, then all vertices of T" — x have valency 3 in I except
gither one vertex of valency 4 or two vertices of valencies 4 ar:d 5 res-
nectively, or three vertices each of valency 4. All three cases occur,

It follows from Theorem 4.3 that the best pessible values of #(a)
ind m(a) in thc casesa =2anda=3are n(2)=n(3)= -2, m{2:=3
ind m(3) = 3

The case a = 4 has also been considered, and by the above n 1ethod it
is in this case possible to prove:

There exists precisely one 4-critical graph with 9 vertices in
N which each vertex has valency 3 or 4, namely the last graph
of Fig. 4.

1 shall leave out ray rather cumbersome proof of (7).

if I is a 4-critical graph with at most 8 vertices, then by the theorem
of Brooks [1]it contains a vertex x of valency | V(I"}| - « -~ 1 for
eithera = 0, @ = 2 or & = 3. By (7), this holds also if IV{I")I=9 and
I" 5: the graph of (7). If a = 0, then it is well known that A, is an odd
circuit, hence the above analysis provides us with a complete list of all
4-critical graphs with < 9 vertices. There are 30 such graphs and they
are exhibited in Fig. 4. One of the graphs has 4 vertices, one has 6 ver-
tices, 2 have 7 vertices, 5 have 8 vertices and 21 have 9 vertices.
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