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Abstract

We calculate cross sections and asymmetries for slepton pair production through neutral and charged electroweak currents
in polarized hadron collisions for general slepton masses and including mixing of the left- and right-handed interaction eigen-
states relevant for third generation sleptons. Our analytical results confirm and extend a previous calculation. Numerically, we
show that measurements of the longitudinal single-spin asymmetry at the existing pojasizetlider RHIC and at possi-
ble polarization upgrades of the Tevatron or the LHC would allow for a determination of the tau slepton mixing angle and/or
the associated supersymmetry breaking parametéos gauge mediation andq for minimal supergravity. Furthermore, the
Standard Model background from tau pair production can be clearly distinguished due to the opposite sign of the associated
asymmetry.
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1. Introduction

One of the most promising extensions of the Standard Model (SM) of particle physics is the minimal super-
symmetric Standard Model (MSSNI,2], which postulates a symmetry between fermionic and bosonic degrees
of freedom in nature and predicts the existence of a fermionic (bosonic) supersymmetric (SUSY) partner for each
bosonic (fermionic) SM particle. Since SUSY and SM patrticles contribute to the quadratic divergence of the mass
of the Higgs boson with equal strength, but opposite sign, the MSSM can, inter alia, stabilize the electroweak
energy scale with respect to the Planck scale and thus propose a solution to the hierarchy problem.
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Unfortunately, SUSY particles still remain to be discovered. Their masses must therefore be considerably larger
than those of the corresponding SM particles, and the symmetry is bound to be broken. In order to remain a viable
solution to the hierarchy problem, SUSY can, however, only be broken via soft mass terms in the Lagrangian, with
the consequence that the SUSY particle masses should lie in the TeV range and thus within the discovery reach of
current and future hadron colliders such as the Tevatron and the LHC.

Production cross sections for SUSY patrticles at hadron colliders have been extensively studied in the past at
leading order (LOJ3-5] and also at next-to-leading order (NLO) of perturbative Q@BB12]. In particular, the
QCD [11] and full SUSY-QCDJ[12] corrections for slepton pair production are known to increase the hadronic
cross sections by about 35% at the Tevatron and 25% at the LHC, thus extending their discovery reaches by several
tens of GeV.

Despite the first successful runs of the RHIC collider in the polarjzednode, polarized SUSY production
cross sections have received much less attention. Only the pioneering LO calculations for massless squark and
gluino production[13,14] have recently been confirmed, extended to the massive case, and applied to current
hadron colliderg15].

It is the aim of this work to verify the corresponding pioneering LO calculation for slepton pair prod{t&ipn
and include the mixing effects relevant for third generation sleptons. Our analytical results for neu#r® &nd
charged W*) current slepton and lepton pair production will be presented in Se2tibmSection3, numerical
predictions will be made for unpolarized cross sections and longitudinal spin asymmetries at RHIC and possible
upgrades of the Tevatrgh7] and the LH(18]. Particular emphasis will be put on the sensitivity of the asymmetry
to the tau slepton mixing angle as predicted by various modern SUSY breaking mechdistf} Possibilities
to discriminate between the SUSY signal and the Drell-Yan SM background will also be discussed. We summarize
our results in Sectiod.

2. Analytical results

In order to be able to compare directly with the previously published LO cross sections for slepton pair produc-
tion in unpolarized hadron collisiori8], we define the square of the weak coupling consg%m: €2/ sirt gy in
terms of the electromagnetic fine structure consiaate?/(47) and the squared sine of the electroweak mixing
anglexy = sir? 6y . The coupling strengths of left- and right-handed (s)fermions to the neutral electroweak current
are then given by

Lf= ZT;)’ —2epxy and Ry =—2erxy, (1)

where the weak isospin quantum numbers ﬁe: +1/2 for left-handed an(Tf = 0 for right-handed up- and
down-type (s)fermions, and their fractional electromagnetic charges are denatgd by

In general SUSY breaking models, where the sfermion interaction eigenstates are not identical to the respective
mass eigenstates, the coupling strendhtsand R ; must be multiplied bys;157; andS;2S%,, respectively, where
i, j € {1,2} label the sfermion mass eigenstates (conventionmlfly< mfz) and S represents the unitary matrix
diagonalizing the sfermion mass matrix (9ggpendix A). Including these slepton mixing effects in the polarized
cross sections for the production of slepton pairs in hadron collisions represents our main analytical improvement
over the previously published results in Rd6].

Our results for the electroweak-2 2 scattering process

o (Pa)dn, () = L (DI} (p2) 2
will be expressed in terms of the conventional Mandelstam variables,

s=(pa+pp)®  t=(pa—p1)® and u=(p,— p2)°® 3)
and the masses of the neutral and charged electroweak gauge bgsangmy .
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2.1. deptons

The neutral current cross section for the production of non-mixing slepton pairs in collisions of quarks with
definite helicitiesi, p is given by

~ 2.2
dép, n, _ 47 o I:”t —mpmy;

dt 352 52 ][6’3612 (1= hahp)
+ eqer(Li+ R)[(1—ha)(A+hp)Lg + (1 + ha) (1 — hp)Ry]
Sxw (1 —xw)(1— mzz/s)
n (L12 + Rlz)[(l —ha)(1+ hh)Lg + (14 hy)(1— hb)Rg]]
64)6%/(1_ xW)Z(l— m%/s)z .

(4)

For the production of the slepton mass eigenstatesl j, the couplingd.; and R; must be modified as described
above. In addition, the first two lines in E@), representing the squared photon and phdt8rinterference
contributions, receive additional factors &f /2 ands;;, respectively, while in the third line, representing the
squaredz® contribution, the factoL? + R2 must be replaced b§L; + R;)2.

The pure left-handed, charged current cross section

d6ha»hb _ 47r(x2|:ut—mi2m§:||: (A —hy)(A+ hyp) i| 5)
d 32 52 16x3, (1 —m%,/s)2
is easily derived from Eq4) by setting
mz — my, eq =€1=Rq=R1=0 and Lq=L1=\/§COS9w. (6)
Averaging over initial helicities,
& = dé11+dé1 1 +f671,1 + del,fl, @)
we obtain the unpolarized partonic cross section
&5 _ 4ma’ [ut - m?mﬁ][ 2,2, €qei(Lq + R)(Li+ R) (L7 +RH(LT+RD) ] -
dr 352 52 T By (L—xw)(L—m2/s)  64x2,(1—xw)2(L—m2/s)2 ]

which agrees for non-mixing sleptons with the neutral current result of[Beh the limit of equal masses; =
mg and with the charged current result of Ri]. Note that for invariant final state masses close toZReole,
s ~mZ2, the Z%-propagators must be modified to include the decay width o#zthboson.

From Eq.(4), one can easily calculate the longitudinal double-spin asymnagtfyusing the polarized differ-
ential cross section

d611—d61,_1—do_11+d6_1_1

dAGL . = 9
oLL 7 9
However, the result
dA6
App=—t =1 (10)
do

is totally independent of all SUSY breaking parameters.



342 G. Bozz et al. / Physics Letters B 609 (2005) 339-350

It will thus be far more interesting to calculate the single-spin asymmétre dA6; /do from the polarized
differential cross section

_do11+do1_1—do_11—0do_11

dAGy 2 , (11)
i.e., for the case of only one polarized hadron beam. Not only does the neutral current cross section
ins, 42 [m - m?m§:| [_ eqer(Li+ R)(Lyg —Ry)  (L2+ R (Lg — R (Ly + Rq)] 12)
352 52 8w (L—xw)L—m2/s) 643 (1—xw)2(l—m2/s)?

remain sensitive to the SUSY breaking parameters, but even more the squared photon contribution, which is in-
sensitive to these parameters, is eliminated. Finally, this scenario may also be easier to implement experimentally,
e.g., at the Tevatron, since protons are much more easily polarized than antipt@fons

To conclude our analytical calculation of the polarized partonic slepton cross sections, we note that our neutral
current result in Eq(12) as well as our charged current result

Ao [ut — m?m? -1
dAg, = 2% i) (13)
352 52 16x%, (1 — m%, /s)2

agreé with those in Ref[16] for non-mixing sleptons after integration ovein the interval

s +m?% —m? \/(S—m?—m§)2—4m,-2m§ )
Imin,max = — 5 F > +mj.

(14)
2.2. Leptons

Due to their purely electroweak couplings, sleptons are among the lightest SUSY particles in many SUSY
breaking scenariofl9,20] and often decay directly into the stable lightest SUSY particle (LSP), which may be
the lightest neutralino in minimal supergravity (nSUGRA) models or the gravitino in gauge mediated SUSY
breaking (GMSB) models. The slepton signal at hadron colliders will therefore consist in a lepton pair, which will
be easily detectable, and associated missing (transverse) energy. This forces us to consider also the correspondin
background of SM lepton pair production through Drell-Yan type processes.

With the help of the mass-subtracted Mandelstam variables

2

tij=1t—mj; and uij=1u —mﬁj, (15)

we can write the polarized neutral current cross section as
s(m; —l—mj)z—l—tz—i—uz—m?—m?
2¢2
Lil(1—ho)(A~+hp)Ly(ujuj +mim;s)] + Rt < u]
8xw(1—xw)s(s — mzz)

d6ha»hb N 47'[0[2
dr 352

[egef(l — hahp)

+eqer

1 The different electroweak coupling strengths are related by

Ly+R,
4sindy costy

(L. Ry)

and +thy=—-—"-—.
4=P1= 3 Sinby costyy

(aqa bq) =

Note that in Eqgs. (5) and (7) of RdfL6], parentheses must be put aroundih@z|2 terms, and in Eq. (7) of Ref16] the indexg should be
replaced by in the first occurence azy + €by).



G. Bozz et al. / Physics Letters B 609 (2005) 339-350 343

Lil(L+ho)(A = hp)Ry(titj +mimjs)] + Ry[t <> u]

Bxw (1 — xw)s(s — m%)
| LAA— )@+ hy) Lguiu; + A+ ha) A~ h)Rgtitj] + RFlt < u]
64xZ, (1 — xw)2(s — m2)?

+eqer

N 2L Rymim js[(1— ha)(L+ hp) L2 4+ (1 + ha) (1 — hb)RqZ]] (16)
64x€v(1—xw)2(s —m%)2 ’
From this equation, the charged current cross section
dép, n,  Ama® (1—ha)(d+ hp)uju; a7

dr 32 162, (s — m3)2

can be obtained using again the substitions given in(&qFor polarized quarks and unpolarized, massless lep-
tons our results agree with R¢i4] and, up to an overall sign in the analytical single-spin asymmetry, also with
Ref.[21]. After averaging over initial spins and integration ovgour results also agree with R¢22].

3. Numerical results

For the masses and widths of the electroweak gauge bosons, we use the current values3if 1876 GeV,
mwy = 80.425 GeV,I'; = 2.4952 GeV, andw = 2.124 GeV. The squared sine of the electroweak mixing angle

Sinf 0w =1 —m%,/m2 (18)

and the electromagnetic fine structure constant

a =~/2G pm?, sinf Oy /7 (19)

can then be calculated in the improved Born approximation using the world average valye-ofl. 16637 x
10-5 GeV 2 for Fermi's coupling constarj23].

Since the mixing of left- and right-handed slepton interaction eigenstates is proportional to the mass of the
corresponding SM partner (sé@pendix A), it is numerically only important for third generation sleptons. Conse-
quently, the lightest slepton is the lighter stau mass eigengtatemost SUSY breaking mode]&9,20], and we
focus our numerical studies on its production.

The mass limits imposed by the four LEP experiments on the tau slepton vary between 52 and 95.9 GeV. They
depend strongly on the assumed SUSY breaking meachanism, the mass difference between the stau and the LSF
and the stau mixing angle. The weakest limit of 52 GeV is found for GMSB models and stau decays to gravitinos,
if no constraints on their mass difference are impd&dd. This is the scenario that we will study for the RHIC
collider, which has the most restricted hadronic center-of-mass energy raisge 600 GeV). For the Tevatron
(/S = 1.96 TeV) and at the LHC{/'S = 14 TeV) with their considerably larger center-of-mass energies, we will,
however, impose the stricter mass limit of 81.9 G&¥], which is valid for stau decays to neutralinos with a mass
difference of at least 15 GeV and represents the current standard23d]Ju&€he SM background will be evaluated
using the physical tau massmf = 1.77699 GeV.

Our numerical calculations of cross sections and asymmetries for the current (RHIC, Tevatron) and future (LHC)
hadron colliders with up-to-date parton densities represent the main numerical improvement of this work over the
previously published results in RdfL6], which discussed only the case of the CERMNpS collider at+/S =
540 GeV with nowadays obsolete parton densities.
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3.1. Unpolarized cross sections for non-mixing sleptons

Thanks to the QCD factorization theorem, unpolarized hadronic cross sections

1 1/2Int fmax a6
o= [ar [y [ furnto d2) fnon M) G (20)

m2/§ —-1/2Int min

can be calculated by convoluting the relevant partonic cross segtigith universal parton densitieg,; 4 and

fv/B Of partonsz, b in the hadronsA, B, which depend on the longitudinal momentum fractions of the two partons
xa.b = +/Te™ and on the unphysical factorization scals ;. In order to employ a consistent set of unpolarized
and polarized parton densities (see below), we choose the LO set of GR8]98r our unpolarized predictions at
the factorization scal®d, = M, =m = (m; +m)/2.

In Fig. 1, we show the unpolarized hadronic cross sections for pair production of non-mixing tau sleptons at
the RHIC, Tevatron, and LHC colliders as a function of their physical mass. Unfortunately, the observation of
tau sleptons, as that of any SUSY particles, will be difficult at RHIC, which is the only existing polarized hadron
collider. In contrast, tau sleptons will be detectable at the LHC over a large region of the viable SUSY parameter
space up to stau masses of about 400 GeV. At the Tevatron, the discovery reach extends considerably beyond the
current exclusion limits.

We have checked that the unpolarized cross sections change by at most 10% if calculated with the more recent
parton densities CTEQ6L[P7]. Since the (sizeable) variations of the hadronic cross sections with the unknown
factorization scale at LO are considerably reduced at ll1)12]and cancel to a large extent in the asymmetries,
we refer the reader to these references for detailed estimates of factorization scale uncertainties.

PP, PP = T T p*

----- RHIC, S = 500 GeV
2 Tevatron, VS = 1.96 Tev
107 coc LHC, VS = 14 TeV
GRV98 LO
10 -,. P ——
1_ ““““““““““““
—
B
— DR T PO S B e R o0 EEpA SR el R A
blO
2
10 ¢
5
10 ¢
-4 “:. Sum
10 At L
sy by RS Ly ]

0 50 100 150 200 250 300 350 400
m, [GeV]

Fig. 1. Unpolarized hadronic cross sections for pair production of non-mixing tau sleptons at the RHIC, Tevatron, and LHC colliders as a
function of their physical mass. For consistency with the polarized cross sections (see below), GRV98 LO parton densities have been used. The
vertical lines indicate the two different stau mass limits o{%2] and 81.9 Ge\[25].
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Before application of any experimental cuts, the SUSY signal cross sectidiig.ifh are at least three orders
of magnitude smaller than the corresponding SM background cross sections from tau lepton pair production (1.7,
3.4, and 8.3 nb for the RHIC, Tevatron, and LHC colliders, respectively, using GRV98 LO parton densities at
M, = M, = m;). Imposing an invariant mass cut on the observed lepton pair and a minimal missing transverse
energy will, however, greatly improve the signal-to-background ratio. In addition, as we will see in the next section,
asymmetries may provide an important tool to further distinguish the SUSY signal from the SM background.

3.2. Single-spin asymmetries for mixing sleptons

Using again the QCD factorization theorem, we calculate the hadronic cross section for longitudinally polarized
hadronsA with unpolarized hadronB

1 1/2Int fmax .
dAO’L

Aop = / dr f dY/thfa/A(xa,Mg)fb/B(xbvMi?) O (21)

m2/S —1/2Int min

through a convolution of polarizedA(f;,4) and unpolarized f,,5) parton densities with the singly polarized
partonic cross sectioNsy .

As mentioned above, we employ a consistent set of unpolaf2&jdand polarized28] LO parton densities.

We estimate the theoretical uncertainty due to the less well-known polarized parton densities by showing our
numerical predictions for both the GRSV2000 LO standard (STD) and valence (VAL) parameterizations. Although
these parton densities differ from the older parton densities employed if1&f.we have checked that our
numerical predictions for asymmetries of non-mixing sleptons and leptons are in reasonable agreement with Fig. 1
of Ref.[16].

Since we are primarily interested in the possible impact of slepton pair production with polarized hadron beams
on the determination of the mixing angle for third generation sleptons in realistic SUSY breaking scenarios, we
choose for the three hadron colliders three of the ten benchmark points introduced [h9Rehe GMSB point
SPS 7 with a light tau slepton decaying to a gravitino for RHIC and its very limited mass range, the typical
MSUGRA point SPS 1a’ with an intermediate value ofgaa 10 and a slightly reduced common scalar mass of
mo = 70 GeV[20] for the Tevatron, and the mSUGRA point SPS 4 with a large scalar masg6f400 GeV and
large tarB = 50, which enhances mixing for tau sleptons, for the LHC with its larger mass range.

The physical mass of the pair produced light tau slepton mass eigenstate and the mixing angle are calculated
using the recently updated computer program SUSPEGIT Its version 2.3 includes now a consistent calculation
of the Higgs mass, with all one-loop and the dominant two-loop radiative corrections, in the renormalization group
equations, that link the restricted set of SUSY breaking parameters at the gauge coupling unification scale to the
complete set of observable SUSY masses and mixing angles at the electroweak scale.

The stau mixing angle depends directly on the universal soft SUSY breaking masd sodtee GMSB model
and on the trilinear coupling o in the mMSUGRA models. We test the sensitivity of the single-spin asymmetry on
these parameters by varying them within their allowed rangesHigise 2—4. We note in passing that the reduced
value of Ag = —300 GeV proposed in Ref20] for the mSUGRA point SPS 1a’ leads in SUSPECT to a Higgs
potential that is unbounded from below.

For the only existing polarized hadron collider RHIC, which will be operating at a center-of-mass energy of
VS =500 GeV in the near future, and in the GMSB model with a light tau slepton, we show the single-spin
asymmetry irFig. 2as a function of the cosine of the stau mixing angle. The asymmetry is quite large and depends
strongly on the stau mixing angle. However, very large values obcasd stau masses below 52 GeV may
already be excluded by LER4], while small values of ca& may be unaccessible at RHIC due to its limited
luminosity, which is not expected to exceed 1 ¥bPolarization of the proton beam will also not be perfect, and
the calculated asymmetries should be multiplied by the degree of beam polariPatier0.7. The uncertainty
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pp —7,%,% RHIC, \S=500 GeV

—— GRSV-STD/GRV98
0.6F N\ | GRSV-VAL/GRV98

m, <52 GeV |

0.2l GMSB parameters, based on SPS 7
10 TeV< A< 525 TeV
Mpes = 80 TeV
Npes = 3
tanB =15
p>0

0.0

L I | I I \
0.2 0.3 0.4

cos 0_
T

Fig. 2. Dependence of the longitudinal single-spin asymmatryon the cosine of the stau mixing angle far pair production in a GMSB
model at RHIC. Although the asymmetry is large and depends strongly on the stau mixing angle, its determination will be difficult due to the
limited center-of-mass energy and luminosity at RHIC.

introduced by the polarized parton densities increases considerably to the left of the plot, where the stau mass
41 GeV< m; < 156 GeV and the associated values of the parton momentum fraatjgns 2m;/+/S become
large.

As mentioned above, the SM background cross section can be reduced by imposing an invariant mass cut on
the observed tau lepton pair, e.g., 0k52 GeV. While the cross section of 0.13 pb is then still two orders of
magnitude larger than the SUSY signal cross section of 1 fb, the SM asymmet§.@4 for standard polarized
parton densities o+0.10 for the valence-type polarized parton densities can clearly be distinguished from the
SUSY signal due to its different sign.

While the variation of the parameter in the GMSB model introduced not only a variation of the stau mixing
angle, but also of the stau mass, variation of the paramgtén mSUGRA leaves the stau mass almost invariant.

In the SPS 1a’ model, its value varies only between 114 and 119 GeV, and the corresponding unpolarized cross
section at the Tevatron is nearly constanty8 + 0.5 fb).

This would make an asymmetry measurement at an upgraded Tevatron extremely valuable, as one can see
in Fig. 3. The predicted asymmetry is very sizeable in the entire viable SUSY parameter range, and it depends
strongly on the parametey and the stau mixing angle. Unfortunately, the parton density uncertainty is still large,
but it will be reduced considerably in the future through more precise measurements at the COMPASS, HERMES,
PHENIX, and STAR experiments. As a recent experimental study demonstrates, events with tau lepton pairs or tau
leptons with associated missing energy larger than 20 GeV can be identified with the CDF-II detector in events
with hadronic tau decay80].

The SM background cross section after an invariant mass cukdf® GeV is 0.16 pb and thus only about 25
times larger than the SUSY signal. As in the case of RHIC, the SM asymmetr§.08 (for both polarized parton
densities) would be clearly distinguishable due to its opposite sign.
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pp — 7T, T,% Tevatron, \§=1.96 Tev

—— GRSV-STD/GRV98
0.39 e g | SRS GRSV-VAL/GRV9S ||
0.38
G
< -
036
mSUGRA parameters, based on SPS 1a’
0.35r m, =70 GeV
myp= 250 GeV
-200 GeV< A, < 525 GeV
tanfp =10
= u>0 R eSS |
0.34 1 J 1 1 1 | 1 L 1 | 1 1 1 I 1 | 1 |
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cos 9€

Fig. 3. Dependence of the longitudinal single-spin asymmatryon the cosine of the stau mixing angle far pair production in a typical
mSUGRA model at the Tevatron. While the unpolarized cross section is nearly independeramd the stau mixing angle, these parameters
could well be determined in an asymmetry measurement, provided the polarized parton densities are better constrained.

For the LHC, where first feasibility studies of tau slepton identification with the ATLAS det§idand tau
tagging with the CMS detect$82] have recently been performed and SUSY masses should in general be observ-
able up to the TeV range, we choose an mMSUGRA model with elevated scalammas400 GeV and a large
value of tam8 = 50, which enhances mixing in the stau sector. While the predicted asymmetry for a possible po-
larization upgrade of the LHC ifig. 4 is slightly smaller than in the previous two cases, it is still comfortably
large and has again the opposite sign with respect to the SM asymmetf/@# (for both polarized parton densi-
ties). The dependence of the asymmetry on the stau mixing angle is, however, also reduced, while the uncertainties
from the polarized parton densities, which are not yet well known at the snvalues relevant for the large LHC
center-of-mass energy, are quite enhanced.

4. Conclusion

In this Letter, we have presented a new calculation of cross sections and asymmetries for slepton pair production
through neutral and charged electroweak currents in polarized hadron collisions. Our analytical results are valid
for general slepton masses and include the mixing of the left- and right-handed interaction eigenstates relevant for
third generation sleptons. They confirm and extend in these respects an earlier pioneering cajt6lation

Numerically, we have studied in detail the dependence of the longitudinal single-spin asymmetry on the tau
slepton mixing angle for pair production of the lighter tau slepton mass eigenstate. Its physical mass and the
mixing angle at the electroweak scale have been calculated with the help of renormalization group equations after
imposing restricted sets of SUSY breaking parameters at the unification scale.



348 G. Bozz et al. / Physics Letters B 609 (2005) 339-350

pp— 7T, 1,% LHC,\S=14 TeV

——GRSV-STD/GRVe|
fffff GRSV-VAL/GRVES| .-~
0.14¢ o S
mSUGRA parameters, based on SPS 4
K m, = 400 GeV
0.13f m,=300GeV [
- -200 GeV'< A, < 950 GeV
tanp =50
/ u>0
012
0,11 oo,
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0.30 0.35 0.40

Fig. 4. Dependence of the longitudinal single-spin asymméjryon the cosine of the stau mixing angle fqrpair production in an mSUGRA
model with largeng and targ at the LHC. A determination of the SUSY breaking parameigiand the stau mixing angle would require an
improved knowledge of the polarized parton densities at smalll

The determination of these parameters in measurements of the longitudinal single-spin asymmetry at the only
existing polarizedpp collider RHIC was found to be difficult due to its limited center-of-mass energy and lumi-
nosity, even in a gauge mediated SUSY breaking model with a very light tau slepton.

In contrast, a polarization upgrade for the proton beam of the Tevatron would give direct access to the trilinear
coupling Ag in a typical minimal supergravity model, independently of the tau slepton mass and the unpolarized
Cross section.

At the LHC, where larger masses are easily accessible and where we have studied an alternative minimal su-
pergravity model with enhanced tau slepton masses and mixings, the sensitivity of the longitudinal single-spin
asymmetry to the mixing angle and the trilinear couplitygis found to be reduced and hampered by a large uncer-
tainty from the not well-known polarized parton densities at small values of their longitudinal momentum fractions
in the proton.

For all colliders, an asymmetry measurement would allow for a straightforward discrimination of the SUSY
signal from the associated SM background of tau lepton pair production due to the opposite sign of SUSY and SM
asymmetries.
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Appendix A. Slepton mixing

The (generally complex) soft SUSY-breaking termsof the trilinear Higgs—slepton—slepton interaction and
the (also generally complex) off-diagonal Higgs mass parameiarthe MSSM Lagrangian induce mixings of
the left- and right-handed slepton eigenstdieg of the electroweak interaction into mass eigenstétes The
slepton mass matrif2]

2 2
MZ: <mLL+ml ’:lmzR2> (Al)
mimippr mepp+ mj
with
m2, = (Tl3 — ¢/ Sir? Qw)m% cos B +m?, (A.2)
2 .
m<  for sneutrinos
2 _ s 2 0
=¢;SIN 0 cos A.3
MRR = w7z CoS P + [ml2 for charged sleptons (A-3)
cotg for sneutrinos
=A; —u* A4
LR TR {tanﬂ for charged sleptons (A4)
is diagonalized by a unitary matri SAM2ST = diag(mi, m%), and has the squared mass eigenvalues
> _ 2, 175 2 2 _ 2 \2 . g2 2 A5
mip=my + S\MiL +mpp Fyf (mg, —myg)” +A4mfimLg|? ). (A.5)
For real values ofz g, the slepton mixing angle;, 0 < 6; < /2, in
cost;  sinb; _ I 1}
S=< o l) with (}):s(f) (A.6)
—sing; cosd; Io IR
can be obtained from
2m
tand; = — R (A7)
My, —MRR

If my g is complex, one may first choose a suitable phase rot@;ienef‘/’l} to make the mass matrix real and then

diagonalize it foriy andl}. tang is the (real) ratio of the vacuum expectation values of the two Higgs fields. The
soft SUSY-breaking mass terms for left- and right-handed sleptons aandm;, m;, respectively.
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