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Throughout this paper a study on the Krein–Milmam Property and

the Bade Property is entailed reaching the following conclusions:

If a real topological vector space satisfies the Krein–Milmam

Property, then it is Hausdorff; if a real topological vector space sat-

isfies the Krein–Milmam Property and is locally convex and metriz-

able, then all of its closed infinite dimensional vector subspaces have

uncountable dimension; if a real pseudo-normed space has the Bade

Property, then it is Hausdorff as well but could allow closed infi-

nite dimensional vector subspaces with countable dimension. On

other hand, we show the existence of infinite dimensional closed

subspacesof�∞ with theBadeProperty that arenot the spaceof con-

vergence associated to any series in a real topological vector space.

Finally, we characterize unconditionally convergent series in real

Banach spaces by means of a new concept called uniform conver-

gence of series.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

This paper is a step forward on the ongoing search for the solutions to several open problems on

the Krein–Milman Property and the Bade Property. Themost interesting problem related to the Krein–

MilmamProperty is on determiningwhether a Banach space enjoying the Krein–Milman Property also

has the Radon–Nikodym Property. The origin of this well-known and long-standing open problem

goes back to the Summer of 1973 where Lindenstrauss (see, for instance, [7]) showed that every

Banach space having the Radon–Nikodym Property also enjoys the Krein–Milman Property. In [10] the

authors approach the above problem in the positive by proving that if a dual Banach space has the

Krein–Milman Property, then it also verifies the Radon–Nikodym Property. We refer the reader to [15,
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Chapter 5, Section 5.4] for a proper discussion of the problem about the Radon–Nikodym Property

being equivalent to the Krein–Milman Property. Another of the open problems mentioned at the very

beginning has been recently treated in the early nineties and the early 2000’s (see [1,2,14]) and deals

with the relation between the Bade Property, theλ-Property, and the spaces of convergence associated

to a series in a real Banach space. Other problems related to this topic in real topological vector spaces

have been recently considered in [8] and in [9] andmostly deal with the structure of convex sets in real

topological vector spaces as well as with the topological and algebraical impact of the Krein–Milman

Property on real topological vector spaces. At this point, we remind the reader about themain concepts

managed in this paper.

Definition 1.1 (Krein and Milman [13]). Let X be a real topological vector space:

1. A closed bounded convex subsetM of X is said to have the Krein–Milman Property exactly when

ext (M) �= ∅.

2. X is said to have the Krein–Milmam Property exactly when every closed bounded and convex

subset of X enjoys the Krein–Milman Property.

This definition finds its birth in the very well known Krein–Milmam Theorem (see [13]).

Theorem 1.1 (Krein and Milman [13]). Let X be a Hausdorff locally convex real topological vector space.

Let M be a compact convex subset of X. Then M has the Krein–Milman Property.

The Krein–Milmam Property was originally defined for Hausdorff locally convex real topological

vector spaces in the followingway:Aclosedboundedconvex subsetM of aHausdorff locally convex real

topological vector space X is said to have the Krein–Milman Property exactly whenM = co (ext (M)).
Essentially, it can be shown that in a Hausdorff locally convex real topological vector space the fact that

every closed bounded convex subset is the closed convex hull of its extreme points is equivalent to the

fact that every closed bounded convex subset has an extreme point. However, this equivalence does

not hold in general for real topological vector spaces. This is the reason for Definition 1.1. Examples

of real topological vector spaces verifying the Krein–Milman Property include all Banach spaces with

the Radon–Nikodym Property (in particular, all reflexive Banach spaces). In close connection with the

Krein–Milman Property we find the Bade Property.

Definition 1.2 (Bade [3]). A real pseudo-normed space X is said to have the Bade Property exactly

when BX satisfies the Krein–Milman Property in the original sense, that is, BX = co (ext (BX)).

The origins of this definition are to be found in Bade’s Dissertation. Among a bunch of results, one

can find its well known Bade’s Theorem (see [3]):

Theorem 1.2 (Bade [3]). Let K be a Hausdorff compact topological space. Then C (K, R) has the Bade

Property if and only if K is 0-dimensional.

The next two sections of this paper are devoted to show that the Krein–Milman Property has a

considerable exclusivity in the class of all real topological vector spaces. In concrete terms:

1. If a real topological vector space has the Krein–Milman Property, then it has to be Hausdorff.

2. If, in addition, the real topological vector space is locally convex and metrizable, then every

closed infinite dimensional subspace must have uncountable dimension. Our technique also

allowed us to find a nearly elementary proof of the fact that an infinite dimensional real Banach

space must have uncountable dimension without involving the Baire Category Theorem.

3. The Bade Property implies the Hausdorff-ness of the space as well, but could allow some closed

infinite dimensional subspaces to have countable dimension.
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On the other hand, asmentioned at the beginning of the introduction, anotherwell knownproblem

(see [14]) is to determine when the convergence space associated to a given series satisfies the Bade

Property.

Definition 1.3 (Pérez-Fernández et al. [14]). Let X be a real topological vector space. Let
∑∞

n=1 xn be a

series in X . The convergence space associated to
∑∞

n=1 xn is defined as

S
( ∞∑
n=1

xn

)
:=

{
(an)n∈N ∈ �∞ :

∞∑
n=1

anxn converges in X

}
.

In [14] it is proved that a series
∑∞

n=1 xn in a real Banach space is weakly unconditionally Cauchy if

andonly ifS (∑∞
n=1 xn

)
is complete.On theotherhand (see [2]) a series

∑∞
n=1 xn in a realBanachspace is

conditionally convergent andweakly unconditionally Cauchy if and only if c ⊆ S (∑∞
n=1 xn

)
� �∞. An

interestingquestion is to determine forwhich series
∑∞

n=1 xn doesS
(∑∞

n=1 xn
)
have theBadeProperty.

It is well known [4,5] that a series
∑∞

n=1 xn in a real Banach space is unconditionally convergent if

and only if S (∑∞
n=1 xn

) = �∞. Therefore, the space of convergence associated to unconditionally

convergent series (in real Banach spaces) has the Bade Property. As far as we know, these are the only

knownexamplesof serieswhoseassociated convergence spacehas theBadeProperty.Our contribution

on this topic is in the last three sections of this paper, where we provide the following results among

others:

1. c is not the space of convergence of any series in any real Banach space.

2. There are closed subspaces of �∞ with the Bade Property that are not the space of convergence

associated to any series in any real topological vector space.

3. There exists a conditionally convergent series in a real Banach space whose associated conver-

gence space does have the Bade Property.

4. Unconditionally convergent series in real Banach spaces can be characterized through their

uniform convergence on the extreme points of B�∞ .

2. The topological impact of the Krein–Milman Property

This section is aimed at showing that real topological vector spaces enjoying the Krein–Milman

Property must be Hausdorff.

Theorem 2.1. Let X be a real topological vector space. The set

{x ∈ X : x belongs to any neighborhood of 0}
is a closed bounded vector subspace of X whose induced topology is the trivial topology. Furthermore, it is

always topologically complemented with every subspace with which is algebraically complemented.

Proof. Let us denote the above set by N. Then:

1. N is a vector subspace of X: Indeed, let U be any neighborhood of 0 and let n,m ∈ N and

α, β ∈ R. There exists a neighborhood V of 0 such that V + V ⊆ U. Now, there areW1 andW2

neighborhoods of 0 such that αW1, βW2 ⊆ V . Observe that n ∈ W1 and m ∈ W2. Therefore

αn + βm ∈ αW1 + βW2 ⊆ V + V ⊆ U.

2. N is closed: Indeed, let x ∈ X \ N. There exists a neighborhood U of 0 such that x /∈ U. There

exists another neighborhood V of 0 such that V + V ⊆ U. Finally, x + V is a neighborhood of x

such that (x + V) ∩ N = ∅.
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3. N is bounded: Obvious since

N = ⋂ {U ⊆ X : U is a neighborhood of 0} .

4. The relative topology of N is the trivial topology: Obvious from the above equality.

5. N is complemented in X: Indeed, letM be another vector subspace of X such that N ∩ M = {0}
and X = M + N. Observe that the linear projection

X → N

m + n �→ n

is continuous since the induced topology on N is the trivial topology. Another way to show

that the topology on X coincides with the product topology on M ⊕ N is by means of nets. If

(mi + ni)i∈I is a net ofM ⊕ N converging tom+ n ∈ M ⊕ N, then (ni)i∈I converges to n (again,

because the topology on N is trivial). Therefore, (mi)i∈I converges to m. On the other hand,

observe that M is not closed (unless N = {0}). Indeed, 0 ∈ M ⊆ cl (M), therefore N ⊆ cl (M)
and hence M is dense in X . �

Corollary 2.1. Let X be a real topological vector space. If X has the Krein–Milmam Property, then X is

Hausdorff.

The same situation occurs with the Bade Property.

Lemma 2.1. Let X be a real pseudo-normed space. If n ∈ X is so that ‖n‖ = 0, then ‖m + n‖ = ‖m‖ for

all m ∈ X.

Proof. Observe that

‖m‖ = |‖m‖ − ‖−n‖| � ‖m + n‖ � ‖m‖ + ‖n‖ = ‖m‖ . �

Theorem 2.2. Let X be a real pseudo-normed space. If X is not Hausdorff, thenBX is free of extreme points.

Proof. Define N := {x ∈ X : ‖x‖ = 0}. In accordance with Theorem 2.1, N is a bounded closed vector

subspace of X whose induced topology is trivial and is topologically complementedwith any subspace

with which is algebraically complemented. Let M be an algebraical complement for N in X . We will

show now that BX is free of extreme points. Let x ∈ BX . There are m ∈ M and n ∈ N such that

x = m + n. By Lemma 2.1, ‖x‖ = ‖m‖ = ‖m + 2n‖, som,m + 2n ∈ BX . Finally,

x = 1

2
m + 1

2
(m + 2n) ,

so x /∈ ext (BX). �

Corollary 2.2. Let X be a real pseudo-normed space. If X has the Bade Property, then X is Hausdorff.

3. The algebraical impact of the Krein–Milman Property

This section is aimed at showing that the infinite dimensional closed vector subspaces of those

metrizable locally convex real topological vector spaces enjoying the Krein–Milman Property must

have uncountable dimension. In the meantime, we found an easier proof of the fact the infinite

dimensional Banach spaces must have uncountable dimension without involving the Baire Category

Theorem.
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Theorem 3.1. Let X be a Hausdorff locally convex real topological vector space. Assume that the dimension

of X is countably infinite. There exists a biorthogonal system
(
en, e

∗
n

)
n∈N ⊆ X × X∗ such that X =

span {en : n ∈ N} and X∗ = span ω∗ {
e∗n : n ∈ N

}
.

Proof. Let (un)n∈N ⊂ X be aHamel basis forX .Wewill construct the biorthogonal system inductively:

Step 1. Choice of e1:

Step 1.1. Take e1 := u1. Obviously, span {e1} = span {u1}.
Step 1.2. The Hahn–Banach Theorem allows us to find e∗1 ∈ X∗ such that e∗1 (e1) = 1.

Step 2. Choice of e2:

Step 2.1. Take e2 := u2 − e∗1 (u2) u1. Note that span {e1, e2} = span {u1, u2}.
Step 2.2. The Hahn–Banach Theorem allows us to find e∗2 ∈ X∗ such that 1 = e∗2 (e2) >

sup e∗2 (Re1) . Therefore e∗2 (e1) = 0.

Step 3. Choice of e3:

Step 3.1. Take e3 := u3−e∗1 (u3) e1−e∗2 (u3) e2.Observe that span {e1, e2, e3}=span {u1, u2, u3}.
Step 3.2. The Hahn–Banach Theorem allows us to find e∗3 ∈ X∗ such that 1 = e∗3 (e3) > sup e∗3

(Re1 ⊕ Re2) . Therefore e∗3 (e1) = e∗3 (e2) = 0.

We omit the rest of the steps. To see that X∗ = span ω∗ {
e∗n : n ∈ N

}
it suffices to realize that

span
{
e∗n : n ∈ N

}
separates points of X . �

The first corollary we derive from the previous result is an easier proof of the fact that infinite

dimensional Banach spaces must have uncountable dimension. Notice that we do not make use of the

Baire Category Theorem.

Corollary 3.1. Let X be a real normed space. Assume that the dimension of X is countably infinite. Then

there exists an absolutely convergent series in X which is non-convergent, in other words, X is not complete.

Proof. By Theorem 3.1, there exists a biorthogonal system
(
en, e

∗
n

)
n∈N ⊆ X × X∗ such that X =

span {en : n ∈ N} and X∗ = span ω∗ {
e∗n : n ∈ N

}
. We may assume that (en)n∈N ⊂ SX . Note that

the series
∑∞

n=1
1
2n
en is absolutely convergent. Assume that

∑∞
n=1

1
2n
en is convergent in X . There are

λ1, . . . , λp ∈ R such that
∑∞

n=1
1
2n
en = ∑p

n=1 λnen. Finally,

1

2p+1
= e∗p+1

( ∞∑
n=1

1

2n
en

)
= e∗p+1

( p∑
n=1

λnen

)
= 0,

which is impossible. �

It is time now to show that closed infinite dimensional subspaces of a metrizable locally convex

real topological vector spacewith the Krein–Milmam Propertymust have uncountable dimension.We

will rely again on Theorem 3.1.

Remark 3.1. In [9] it is shown that if X is a real topological vector space and (en)n∈N ⊂ X is a linearly

independent sequence, then the set

M :=
{ ∞∑
n=1

λnen : (λn)n∈N ∈ c00 and |λn| � 1

2n
for all n ∈ N

}

satisfies the following:

1. M is absolutely convex but free of extreme points.

2. If (en)n∈N is bounded, then M is bounded.
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3. If there exists a biorthogonal system
(
ei, e

∗
i

)
i∈I ⊂ X × X∗ such that (en)n∈N ⊂ (ei)i∈I , thenM is

closed in span {ei : i ∈ I}.
Corollary 3.2. Let X be a metrizable locally convex real topological vector space. Assume that X has the

Krein–Milmam Property. If Y is a closed infinite dimensional subspace of X, then the cardinality of a Hamel

basis of Y is uncountable.

Proof. Let Y be a closed infinite dimensional subspace of X . Assume that the dimension of Y is count-

able. In accordance with Theorem 3.1, there exists a biorthogonal system
(
en, e

∗
n

)
n∈N ⊆ Y × Y∗ such

that Y = span {en : n ∈ N}. Since Y is first countable, we may assume that (en)n∈N is bounded.

Finally, by applying Remark 3.1 we deduce the contradiction that Y does not have the Krein–Milmam

Property. �

Remark 3.2. Let X be a real topological vector space and assume that
(
en, e

∗
n

)
n∈N ⊆ X × X∗ is a

biorthogonal system such that X = span {en : n ∈ N}. The set M considered in Remark 3.1 is also a

generator system of X , therefore it is absorbing (see [8, Lemma 2.4]) and hence a barrel.

The previous remark motivates the following question:

Question 3.1. Let X be a Hausdorff locally convex real topological vector space. Assume that
(
ei, e

∗
i

)
i∈I⊆ X × X∗ is a biorthogonal system in such a way that X = span {ei : i ∈ I}. Does there exists an extreme

point-free closed absolutely convex subset M of span {ei : i ∈ I} containing {ei : i ∈ I}?
Another interesting question would be determining whether a real Hausdorff locally convex topo-

logical vector space with a boundedly complete basis has the Krein–Milman Property. We remind the

reader that a basic sequence
(
bj

)
j∈N in a real Banach space is boundedly complete provided whenever

scalars
(
cj

)
j∈N satisfy

sup
n∈N

∥∥∥∥∥∥
n∑

j=1

cjbj

∥∥∥∥∥∥ < ∞,

then
∑n

j=1 cjbj converges. The notion of boundedly complete basis in the setting of real Hausdorff

locally convex topological vector spaces has been defined and studied in [11,12]. To finish this section

we will show that the Bade Property does not have such a strong impact on the dimension of the

infinite dimensional closed vector subspaces.

Example 3.1. Let X be any countably infinite dimensional real normed space. Since X is separable, it is

well known that X admits an equivalent rotund renorming (see for instance [6]). As a consequence, X

enjoys the Bade Property endowedwith this equivalent norm. However, no infinite dimensional closed

vector subspace of X has uncountable dimension.

4. A simplified reformulation of the Krein–Milman Property

Our reformulation of the Krein–Milmam Property relies on the fact that checking whether or not

a certain real topological vector space has the Krein–Milmam Property depends only on the bounded

closed absolutely convex subsets.

Theorem 4.1. Let X be a real topological vector space. The following conditions are equivalent:

1. X has the Krein–Milmam Property.

2. If M ⊆ X is closed, bounded and absolutely convex, then ext (M) �= ∅.
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Proof. Assume that X does not have the Krein–Milmam Property. Then there exists a closed, bounded

and convex subset N of X free of extreme points. Take M to be the closed absolutely convex hull of

N. It is easy to see that M is bounded and that M = {λn : n ∈ N, |λ| � 1}. Let m ∈ M \ {0}. There
are 0 < |λ| � 1 and n ∈ N such that m = λn. Since ext (N) = ∅, there must exist t ∈ (0, 1) and

n1 �= n2 ∈ N such that n = tn1 + (1 − t) n2. Note then that m = t (λn1) + (1 − t) (λn2). As a

consequence, ext (M) = ∅. �

The previous result simplifies the rule to follow in order to check whether a certain real topological

vector space enjoys or not the Krein–Milmam Property. The previous result also serves as motivation

for the following question:

Question 4.1. Let X be a real topological vector space such that every barrel of every closed subspace of

X has extreme points. Does then X have the Krein–Milman Property?

The reader may notice that a positive answer to the previous question would provide an even

simpler procedure to check whether or not a certain real topological vector space has the Krein–

Milman Property. The previous question also motivates the following one, with which we finalize this

section:

Question 4.2. Let X be a real Banach space such that every closed subspace of X enjoys the Bade Property

under any equivalent norm. Does then X have the Krein–Milman Property?

5. Some preliminary results on series in real topological vector spaces

At this point, we would like to recall the reader about several fundamental facts that we will rely

on throughout the next sections. In the first place,

ext
(
B�∞

) =
{
(εn)n∈N ∈ RN : |εn| = 1 for all n ∈ N

}
.

On the other hand, ext (Bc) = ext
(
B�∞

) ∩ c, and ext
(
Bc0

) = ext
(
Bc00

) = ∅. Next, we will point out

a series of results which will be of helpful use for our purposes. The first lemma is crucial to achieve

our goals since it completely describes the extreme points of the convergence space of associated to a

given series.

Lemma 5.1. Let X be a real topological vector space. Let
∑∞

n=1 xn be a series in X and denote

S := S (∑∞
n=1

)
. Then ext (BS) = BS ∩ ext

(
B�∞

)
.

Proof. Obviously, ext (BS) ⊇ BS ∩ ext
(
B�∞

)
. Let (εn)n∈N ∈ ext (BS) and assume that there exists

n0 ∈ N such that
∣∣εn0 ∣∣ < 1. Take δ := 1−εn0

2
> 0 and consider the sequences (an)n∈N y (bn)n∈N

defined by:

an :=
⎧⎨
⎩ εn if n �= n0,

εn0 + δ if n = n0,

and

bn :=
⎧⎨
⎩ εn if n �= n0,

εn0 − δ if n = n0.
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Finally, observe that (an)n∈N , (bn)n∈N ∈ BS and

(εn)n∈N = 1

2
(an)n∈N + 1

2
(bn)n∈N . �

The next theorem is a characterization of convergent series. The reader may observe that the Bade

Property (for c) already comes into play.

Theorem 5.1. Let X be a real topological vector space. Let
∑∞

n=1 xn be a series in X and denote

S := S (∑∞
n=1

)
. The following conditions are equivalent:

1.
∑∞

n=1 xn is convergent.

2. ext (Bc) ⊆ ext (BS).
3. ext (Bc) ∩ ext (BS) �= ∅.

Observe that in this situationwehave that c ⊆ cl (S). Furthermore, if, in addition,
∑∞

n=1 xn has anon-trivial

convergent subseries, then ext (Bc) � ext (BS).

Proof. We will divide the proof in three parts:

1. In the first place, we will show the equivalence of the three assertions above. Assume first that∑∞
n=1 xn is convergent. Observe that

∑∞
n=1 −xn is also convergent. If (εn)n∈N ∈ ext (Bc), then

one of the two sets {n ∈ N : εn = 1} and {n ∈ N : εn = −1} must be finite. In either case we

have that (εn)n∈N ∈ ext (BS). Assume next that ext (Bc) ∩ ext (BS) �= ∅. Let (εn)n∈N ∈
ext (Bc) ∩ ext (BS). Again one the two sets {n ∈ N : εn = 1} and {n ∈ N : εn = −1} must be

finite. So we deduce that either
∑∞

n=1 xn or
∑∞

n=1 −xn is convergent.

2. In the second place, observe that if ext (Bc) ⊆ ext (BS), then we have that

Bc = co (ext (Bc)) ⊆ co (ext (BS)) ⊆ cl (S) ,

in virtue of the fact that c has the Bade Property (cf. [3]).

3. Finally, suppose in addition that
∑∞

n=1 xn has a non-trivial convergent subseries. There exists

N ⊂ N infinite such that M := N \ N is also infinite and
∑

n∈N xn is convergent. Observe

that in this situation
∑

n∈M xn is also convergent. Consider the sequences (χN (n))n∈N and

(χM (n))n∈N where χN and χM denote the characteristic functions of N and M, respectively.

Note that (χN (n) − χM (n))n∈N ∈ ext (BS) \ ext (Bc). �

Corollary 5.1. Let X be a real Banach space. Let
∑∞

n=1 xn be a series in X and denote S := S (∑∞
n=1

)
. Then

c �= S .

Proof. Assume c = S . In lieu of the previous theorem,
∑∞

n=1 xn is convergent and thus (xn)n∈N must

tend to 0, therefore a non-trivial subsequence
(
xnk

)
k∈N can be found in such a way that

∑∞
k=1 xnk is

absolutely convergent, and therefore unconditionally convergent. We apply now the last part of the

previous theorem to reach a contradiction. �

Observe that the previous corollary shows the existence of infinite dimensional closed subspaces

of �∞ with the Bade Property that are not the convergence space associated to any series in any real

Banach space. In the next section we will show the existence of infinite dimensional closed subspaces

of �∞ with the Bade Property that are not the convergence space associated to any series in any real

topological vector space. Next, it is time for a characterization of subseries convergent series.

Theorem 5.2. Let X be a real topological vector space. Let
∑∞

n=1 xn be a series in X and denote

S := S (∑∞
n=1

)
. The following conditions are equivalent:
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1.
∑∞

n=1 xn is subseries convergent.

2. ext
(
B�∞

) ⊆ ext (BS).
3. 1

2
(εn)n∈N + 1

2
(δn)n∈N ∈ S for every (εn)n∈N , (δn)n∈N ∈ ext

(
B�∞

)
.

In this situation, �∞ ⊆ cl (S).

Proof. We will divide the proof in two parts:

1. We will first show the equivalence of the three assertions above. Assume that
∑∞

n=1 xn is

subseries convergent. Let (εn)n∈N ∈ ext
(
B�∞

)
. Denote M+ := {n ∈ N : εn = 1} and M− :=

{n ∈ N : εn = −1}. Observe that

∞∑
n=1

εnxn = ∑
n∈M+

xn − ∑
n∈M−

xn.

Conversely, assume that 1
2
(εn)n∈N + 1

2
(δn)n∈N ∈ S for every (εn)n∈N , (δn)n∈N ∈ ext

(
B�∞

)
.

LetM be a subset of N. It suffices to consider (εn)n∈N and (δn)n∈N given by

εn :=
⎧⎨
⎩ 1 if n ∈ M

−1 if n ∈ N \ M

and δn := 1 for all n ∈ N. Observe that

∑
n∈M

xn =
∞∑
n=1

(
1

2
εn + 1

2
δn

)
xn.

2. Finally, observe that if ext
(
B�∞

) ⊆ ext (BS), then we have that

B�∞ = co
(
ext

(
B�∞

)) ⊆ co (ext (BS)) ⊆ cl (S) ,

in virtue of the fact that �∞ has the Bade Property (cf. [3]). �

The next theorem is important in order to find out what series are to be dismissed.

Theorem 5.3. Let X be a real topological vector space. Let
∑∞

n=1 xn be a series in X and denote

S := S (∑∞
n=1

)
. Then:

1. If ext (BS) �= ∅, then (xn)n∈N converges to 0.

2. If (xn)n∈N has no subsequences converging to 0, then S ⊆ c0.

3. If
∑∞

n=1 xn has a subseries
∑∞

k=1 xnk which is subseries convergent, then S is not separable.

Proof

1. Let (εn)n∈N ∈ ext (BS). Then
∑∞

n=1 εnxn is convergent, so limn→∞ εnxn = 0. Since there exists

a local basis of balanced and absorbing neighborhoods of 0, we deduce that limn→∞ xn = 0.

2. Consider (an)n∈N ∈ S\c0. Thereexists a subsequence (
ank

)
k∈N such thata := inf

{∣∣ank ∣∣ : k ∈ N
}

> 0. Since
∑∞

n=1 anxn is convergent, we deduce that (anxn)n∈N converges to 0 and so does(
ankxnk

)
k∈N. Let U be a balanced and absorbing neighborhood of 0. There exists k0 ∈ N such

that if k � k0, then ankxnk ∈ aU. SinceU is balanced, we conclude that xnk ∈ U for every k � k0.

This is a contradiction.
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3. It suffices to notice that

{
(χN (n))n∈N : N ⊆ {nk : k ∈ N}}

is an uncountable family of elements of S the distance between every two elements of which

is 1. �

As an immediate corollary we obtain the following:

Corollary 5.2. Let X be a real Banach space. Let
∑∞

n=1 xn be a series in X and denote S := S (∑∞
n=1

)
.

Then:

1. If (xn)n∈N ha a subsequence converging to 0, then S has a complemented subspace linearly isometric

to �∞.

2. (xn)n∈N has no subsequences convergent to 0 if and only if S is separable.

Proof

1. We may assume without any loss that (xn)n∈N has a subsequence
(
xnk

)
k∈N whose associated

series is absolutely convergent and thus unconditionally convergent. Then

{
(αn)n∈N ∈ �∞ : αn = 0 for all n ∈ N \ {nk : k ∈ N}}

is a complemented subspace of S linearly isometric to �∞.

2. It is a direct consequence of 1. and the previous theorem. �

6. Closed subspaces of �∞ with the Bade Property not associated to series

In the previous section we have seen that no series
∑∞

n=1 xn in a real Banach space X satisfies

that S (∑∞
n=1 xn

) = c. In this section we will construct another closed subspace of �∞ with the Bade

Property which is not the space of convergence associated to any series in any real topological vector

space.

Remark 6.1

1. A subset C of �∞ is said to satisfy the First Terms Property exactly when

{
(βn)n∈N ∈ �∞ : exist n0 ∈ N and (αn)n∈N ∈ C such that βn = αn for n � n0

} ⊆ C.

2. Any vector subspace of �∞ verifying the First Terms Property must contain c00.

3. Let X be a real topological vector space. Let
∑∞

n=1 xn be a series in X and denote S := S (∑∞
n=1

)
.

It is obvious that S verifies the First Terms Property.

Theorem 6.1. Let

A := {
(εn)n∈N ∈ ext

(
B�∞

) : ε2n = 1 for all n ∈ N
}
.

Then span (A) verifies the following:

1. It is a closed subspace of �∞ enjoying the Bade Property. Even more, span (A) is linearly isometric

to R ⊕∞ �∞.

2. It does not satisfy the First Terms Property and thus it is not the space of convergence associated to

any series whatsoever.
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Proof. In the first place, notice that the convex hull of A and the absolutely convex hull of A are

co (A) = {
(εn)n∈N ∈ B�∞ : ε2n = 1 for all n ∈ N

}
and

aco (A) = {
(εn)n∈N ∈ B�∞ : exists λ ∈ [−1, 1] such that ε2n = λ for all n ∈ N

}
,

respectively. Therefore, aco (A) = co (A ∪ −A) and both co (A) and aco (A) are closed. On the other

hand,

span (A) = {
(εn)n∈N ∈ �∞ : (ε2n)n∈N is constant

}
is also closed and its unit ball is aco (A). Furthermore,

ext (aco (A)) = A ∪ −A,

therefore span (A) has the Bade Property. Finally, in order to see that span (A) is not the space of

convergence of any series we refer the reader to Remark 6.1. �

Observe that another way to see that the space constructed in the previous theorem is not the

space of convergence associated to any series is by noting that such space does not contain c00. A slight

modification of the previous space will give us the following:

Theorem 6.2. Let

B := {
(εn)n∈N ∈ ext

(
B�∞

) : exists n0 ∈ N such that ε2n = 1 for all n � n0
}
.

Then span (B) verifies the following:

1. It contains c, satisfies the First Terms Property, and enjoys the Bade Property. Even more, span (B) is
linearly isometric to c ⊕∞ �∞.

2. It is not the space of convergence associated to any series in a real Banach space.

Proof. In the first place, observe that

co (B) = {
(εn)n∈N ∈ B�∞ : exists n0 ∈ N such that ε2n = 1 for all n � n0

}
,

aco (B) = {
(εn)n∈N ∈ B�∞ : exist n0 ∈ N and λ ∈ [−1, 1] such that ε2n = λ

for all n � n0} ,

span (B) =
{
(εn)n∈N ∈ �∞ : exists n0 ∈ N such that (ε2n)n�n0

is constant
}
.

Now take into account that

co (B) = {
(εn)n∈N ∈ B�∞ : (ε2n)n∈N converges to 1

}
,

aco (B) = {
(εn)n∈N ∈ B�∞ : (ε2n)n∈N is convergent

}
,

span (B) = {
(εn)n∈N ∈ �∞ : (ε2n)n∈N is convergent

}
.

Finally, assume that
∑∞

n=1 xn is a series in a real Banach space X verifying that S (∑∞
n=1 xn

) = span (B).
Let M := {2n : n ∈ N}. Note that (χM (n))n∈N ∈ span (B) = S (∑∞

n=1 xn
)
. Therefore

∑∞
n=1 x2n is
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convergent and there exists a subsequence
(
x2nk

)
k∈N such that

∑∞
k=1 x2nk is absolutely convergent and

hence unconditionally convergent. As a consequence,

{
(αn)n∈N ∈ �∞ : αn = 0 for all n ∈ N \ {2nk : k ∈ N}}

is a closed subspace of S (∑∞
n=1 xn

) = span (B) linearly isometric to �∞. This is a contradiction with

the construction of span (B). �

The end of this section is devoted to state a conjecture in whose truthfulness we tend to believe.

Conjecture 6.1. Let X be a real Banach space. Let
∑∞

n=1 xn be a series in X. Then S := S (∑∞
n=1 xn

)
has

the Bade Property if and only if
∑∞

n=1 xn is unconditionally convergent.

7. A characterization of unconditionally convergent series in real Banach spaces

The final part of this manuscript is devoted to characterize unconditionally convergent series in

real Banach spaces.

Definition 7.1. Let X be a real Banach space.Wewill say that a series
∑∞

n=1 xn is uniformly convergent

inM ⊆ S := S (∑∞
n=1 xn

)
if for every ε > 0 there exists k0 ∈ N such that for every k � k0 and every

(an)n∈N ∈ M we have that
∥∥∑∞

n=k anxn
∥∥ < ε.

It is immediate to see that every absolutely convergent series in a real Banach space is uniformly

convergent in ext
(
B�∞

)
.

Proposition 7.1. Let X be a real Banach space. If
∑∞

n=1 xn is an unconditionally convergent series in X,

then it is uniformly convergent in ext
(
B�∞

)
.

Proof. Suppose to the contrary that the series
∑∞

n=1 xn is not uniformly convergent in ext
(
B�∞

)
.

There exists δ > 0 such that for every i � 1 there are j > i and
(
ε
(j)
n

)
n∈N

∈ ext
(
B�∞

)
verifying that∥∥∥∑∞

n=j ε
(j)
n xn

∥∥∥ � δ. We can consider a strictly increasing sequence of indices

i1 < k1 < i2 < k2 < · · · < ij < kj < ij+1 < · · ·
satisfying that

∥∥∥∥∥∥
∞∑
n=ij

ε(j)
n xn

∥∥∥∥∥∥ > δ

and ∥∥∥∥∥∥
kj∑

n=ij

ε(j)
n xn

∥∥∥∥∥∥ >
δ

2
, (1)

for every j ∈ N. Next, we will construct a sequence (εn)n∈N ∈ ext
(
B�∞

)
as follows:

• If i ∈ [
ij, kj

]
for some j ∈ N, then εi = ε

(j)
i .

• The rest of the εi’s can be either 1 or −1.

Clearly
∑∞

n=1 εnxn is not a Cauchy series, so
∑∞

n=1 xn is not unconditionally convergent. �
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Corollary 7.1. Let X be a real Banach space. Let
∑∞

n=1 xn be a series in X. The following conditions are

equivalent:

1.
∑∞

n=1 xn is unconditionally convergent.

2.
∑∞

n=1 xn is a convergent series and is uniformly convergent on ext (BS).

Proof. Assume that
∑∞

n=1 xn is convergent and uniformly convergent on ext (BS) but not uncondi-

tionally convergent. There exists (εn)n∈N ∈ ext (BS) such that
∑∞

n=1 εnxn does not converge. Then

there exists δ > 0 such that for every q ∈ N we can find p > q verifying that
∥∥∥∑p

i=q εixi

∥∥∥ > δ.

Following an inductive process we can construct a strictly increasing sequence of naturals

p1 < p2 < · · · < pn < · · ·
such that for every n ∈ N we have that

∥∥∥∑pn+1

i=pn+1 εixi

∥∥∥ > δ. Since
∑∞

n=1 xn is convergent, there exists

n0 ∈ N such that for every n � n0 we have that
∥∥∑∞

i=n xi
∥∥ < δ

2
. Next, for every k ∈ N we choose

pnk > max {n0, k} and define a sequence
(
α

(k)
n

)
n∈N

as follows:

α(k)
n =

⎧⎨
⎩ εn, if n ∈ {

pnk + 1, . . . , pnk+1

}
1, if n ∈ N \ {

pnk + 1, . . . , pnk+1

}
.

Observe that
(
α

(k)
n

)
n∈N

∈ ext (BS) for every k ∈ N. Now, if j = pnk + 1, then j > k and

∥∥∥∥∥∥
∞∑
i=j

α
(k)
i xi

∥∥∥∥∥∥ =
∥∥∥∥∥∥∥

pnk+1∑
i=pnk+1

εixi +
∞∑

i=pnk+1

xi

∥∥∥∥∥∥∥
�

∥∥∥∥∥∥∥
pnk+1∑

i=pnk+1

εixi

∥∥∥∥∥∥∥ −
∥∥∥∥∥∥∥

∞∑
i=pnk+1

xi

∥∥∥∥∥∥∥
> δ − δ

2

= δ

2
.

This is a contradiction. �
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