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Abstract-The question of integrability of discrete systems is analysed in the light of the recent 
findings of Ablowitz et al., who have conjectured that a fast growth of the solutions of a differ- 
ence equation is an indication of nonintegrability. The study of the behaviour of the solutions of a 
mapping is based on the theory of Nevanlinna. In this paper, we show how this approach can be 
implemented in the csse of second-order mappings which include the discrete Painlevk equations. 
Since the Nevanlinna approach does offer only a necessary condition which is not restrictive enough, 
we complement it by the singularity confinement requirement, first in an autonomous setting and 
then for deautonomisation. We believe that this three-tiered approach is the closest one can get to a 
discrete analogue of the Painlevb property. @ 2003 Elsevier Science Ltd. All rights reserved. 
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1. THE FALL AND RISE OF SINGULARITY CONFINEMENT 

What is this special property of integrable systems that sets them apart from their nonintegrable 
brethren? Integ-rability is associated to a host of special properties [l]. Most of them, however, 
are of the constructive type. For example, the existence of a Lax pair is intimately associated with 
integrability. However, the derivation of a Lax pair when we are given some dynamical system 
cannot be seriously undertaken unless we have some substantial indication that the system is 
indeed integrable. Fortunately, among the miraculous properties of integrable systems, some are 
of predictive type. One can easily test a given system for such a property and use the answer of 
the test in order to predict the possible integrability of the system. 

The property of this type, for differential systems, which is best’known (at least to the authors 
of the present paper) is the Painlevk property. When faced with the problem of constructing new 
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functions out of the solutions of nonlinear ordinary differential equations, Painleve [2] decided 
that the way to deal with movable critical singularities (which prevented uniformisation) was to 
require their absence. This property, which was subsequently named after Painleve, turned out 
to be indeed related to integrability. As a matter of fact, one can easily convince oneself that this 
is true in an almost tautological way. The usefulness of the Painleve approach was established in 
an indisputable way when it led to the discovery of new functions, the Painlevk transcendents, 
which can only be defined as the solutions of the respective differential equations. The actual 
integration of these equations had to wait for more than 70 years [3], and it was made possible 
only after the introduction of inverse scattering transform (IST) techniques. 

The discovery of integrable evolution, Ysoliton” [4], equations led to a revival of the Painlevk 
approach. It is worthwhile at this point to recall the ARS [5] conjecture: ‘&a differential equation 
which is integrable through IST methods has the Painleve property”. While the formulation of 
the conjecture is not quite the original one, it follows closely the spirit of its proponents. 

With the discovery of integrable discrete systems, it soon became clear that something like the 
Painleve property was needed in the discrete case. In this domain, the first important step was 
made by the authors of the present paper [6] and independently by Joshi [7]. It was the discovery 
of the property dubbed “singularity confinement” (orbits of pole-like behaviour in the terminology 
of Joshi). The idea is the following: given a mapping (usually rational, but not necessarily so) 
it may happen that, depending on the initial conditions, a singularity appears at some iteration. 
For a generic nonintegrable mapping, the singularity propagates ad infinitum under the iteration 
of the mapping. However, if the mapping is integrable, the singularity disappears after some 
iterations: it is confined. Of course, the precise meaning of “singularity” must be (and has been) 
refined. 

Although no precise conjecture was formulated at the time, here is what the authors had in 
mind: ‘ra difference equation which is integrable through spectral methods has the singularity 
confinement property”. We believe that under this form, the conjecture holds true in the sense 
that no counterexample has been found to date. One would thus be tempted to consider singu- 
larity confinement as the discrete equivalent of the Painleve property. However, soon after the 
initial discovery, it became clear that singularity confinement was not a sufficient integrability 
condition. Given the situation, and despite singularity confinement’s success in the detection of 
the discrete analogues of the Painlevd equations [8], it became clear that singularity confinement 
could not play the role of the Painleve property for discrete systems. Still, its necessary character 
was an indication that it should be part of the discrete Painleve property when the latter is finally 
discovered. 

At this point, it would be useful to examine what the singularity confinement is missing. 
We have formulated the first remark on the insufficient character of singularity confinement 
in [9]. We have shown indeed that any mapping of the form x,+1 = P(z~)/&(z,) where P, Q 
are polynomials and the degree of P is not larger than that of Q does satisfy the singularity 
confinement requirement. On the other hand, the mapping, solved for 2, in terms of x,+1, 
leads (in general) to a number of branches which increase exponentially under the iteration. In 
order to face this difficulty, the singularity confinement was complemented by the requirement of 
preimage nonproliferation. (A further remark can be made,here. Let us, for simplicity, consider 
a three-point mapping where both x,-r and x,+1 enter through powers higher than unity. Its 
evolution leads in general to an exponentially increasing number of images and preimages. Such 
mappings are not integrable. Sometimes one solution can be constructed, and this is considered 
by some authors as an argument in order to claim integrability. The error lies in the fact that 
this solution is the only one that we know how to describe while the description of the whole 
system with its ever increasing number of branches is beyond reach.) 

However, the preimage nonproliferation requirement turned out to be an insufficient fix of sin- 
gularity confinement. This was shown in ample detail by examples of Viallet and Hietarinta [lo) 
who have constructed whole families of mappings which, while confining, exhibit chaotic be- 
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haviour and are thus clearly nonintegrable. These authors went out to propose a new criterion 
for discrete integrability. We are going to return later to this criterion and discuss why it cannot 
be considered as a discrete Painleve property. 

The decisive step in the right direction was accomplished when Ablowitz and collaborators 
(AHH) [ll] decided to interpret discrete equations as delay equations in the complex domain. As 
was shown by Yanagihara [12], such equations possess nontrivial solutions which are meromorphic 
in the complex variable. The authors of [ll] conjectured that the behaviour at infinity would be 
the key for the integrability of discrete systems. They were guided in this by the continuous limit 
of difference equations to differential ones. 

The main tool for the study of the behaviour at infinity of the solutions of a given mapping is 
the theory of Nevanlinna [13] which introduces the notion of order of a meromorphic function. 
We shall present the essentials of this theory in the following section. The conjecture is that the 
equations, the solutions of which are of infinite order, are not integrable. However, the practical 
implementation of the Nevanlinna approach leads only to a necessary condition for a finite order, 
which is often not restrictive enough. To complement this, we need something more. As we shall 
see, singularity confinement is appropriate here. (Ablowitz et al. use a different criterion, namely 
the absence of the Digamma + function, in the series expansion of the solution. We feel that in 
this way they restrict themselves to only one type of “bad” functions, while more may well exist.) 

In what follows, we shall present a brief summary of the Nevanlinna theory and of the basic 
statements we shall use in order to investigate the integrability of a family of second-order map 
pings which include the discrete Painleve equations. We shall proceed in a three-tiered strategy. 
First, apply the finite-order criterion to autonomous mappings in order to eliminate the ones 
that cannot be integrable. Second, use singularity confinement among the remaining mappings 
in order to further eliminate nonintegrable ones. Finally, use again singularity confinement in 
order to obtain the right deautonomisation of the remaining systems. In the conclusion, we shall 
argue why we think that this combined criterion is indeed the discrete analogue of the Painleve 
property. 

2. A ROUGH SKETCH OF THE NEVANLINNA THEORY 

As we stated in the introduction, we expect the integrability of a mapping to be conditioned by 
the behaviour of its solutions when the (complex) independent variable goes to infinity. The main 
tool for the study of the value distribution of entire and meromorphic functions is the Nevanlinna 
characteristic (and various quantities related to the latter). The Nevanlinna characteristic of 
a function f, denoted by T(r; f), measures the ‘afhnity’ of f for the value’ 03. It is usually 
represented as the sum of two terms: the frequency of poles and the contribution from the arcs 

I4 = r where ] f (z)] is large. From the characteristic, one can define the order of a meromorphic 
function: (T = limsup,,, logT(r; f)/logr. When f is rational, T(r; f) cx logr and cr = 0. 
However, a zero-order function is not necessarily rational. Indeed, any T of the form T(r; f) o( 
4(r) logr, where 4(r) is a slowly enough growing function of r, will lead to CJ = 0. On the other 
hand, if T(r; f)/l o r remains finite, then f must be rational. When f is of the type epn(+) g 
where P,, is a polynomial of degree n, one finds T 0; rn and CT = n. A fast growing function 
like ee’ leads to T cx er, and thus, u = co. 

An explicit expression of the Nevanlinna characteristic can be given in terms of the counting 
and proximity functions related to the two contributionswe mentioned above. We have 

T(r; f) = N(r; f) + m(r; f), (2.1) 

where 
T n(t; f) - n(“; f) & + n(C). f) logr 

, (2.2) 
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is the pole-counting contribution where n(r; f) is the number of poles off, including multiplicities, 
for ]z] 5 F. The proximity function m(r; f) is given by 

m(r; f) = $ 
s 

27T 
log+ If (reie) 1 de, (2.3) 

0 

where log+g = msx(O,logg). We must point out that the affinity off for 00, as measured by T, 
is the same as its afhnity for 0 or any finite value a, up to terms which may be of 0 (logr) 
when r is small, but which, when r is sufficiently large (depending on the function f and the 
value a) remain bounded. In what follows, we shall introduce the symbols X, 5, and -x, which 
denote equality, inequality, and strict inequality, respectively, up to a function of r which remain 
bounded when r --+ 00. The two basic relations which reproduce the statement on the afhnity 
off for 00, 0, or a are 

T r;; 
( ) 

=: T(r; f), (2.4) 

T(r; f - u) x T(r; f). (2.5) 

Using those two identities, we can easily prove that the characteristic function of a homographic 
transformation of f (with constant coefficients) is equal to T(r; f) up to a bounded quantity. It 
is straightforward to prove that 

T(r;f”) = bIT(~;f), (2.6) 

and from a theorem due to Valiron [14], we have 

=: supb, dT(r; f ), (2.7) 

where P and Q are polynomials in f with constant coefficients, of degrees p and q, respectively, 
provided the rational expression P/Q is irreducible. 

Let us give also some useful classical inequalities 

T(r; fg) 3 T(r; f) + T(r; g), 

T(T f + g) 5 T(r; f) + T(r; g). 

Another inequality, which will be used in Section 3, is 

(2.8) 

(2.9) 

T(r; fg + gh + hf) 5 T(r; f) + T(r;g) f T(r; h). (2.10) 

The proof of this inequality is easy, using the fact that T(r; f) is the sum of the pole counting and 
the proximity contributions. For the former, we remark that the density of poles of fg + gh + hf 
cannot be higher than the sum of those of f, g, and h. As a consequence, for the part under the 
integral in (2.2) we have the desired inequality. The n(0, f) logr term, for r < 1, may introduce a 
contribution going against the inequality we wish to prove, but whenever r > 1, the contribution 
is in the right direction and we thus have indeed N(r; fg+gh+hf) 5 N(r; f)+N(r;g)+N(r; h). 
For the proximity function, we start by remarking that lfg + gh + hf 1 < 3sup(lfgl, lghl, Ihf I). 
Taking the log+ of both members, we can strengthen the inequality by adding to the r.h.s. the 
log+ of the one of the (f 1, ]g], Ihl that does not enter in each term of the sup. We have thus: 
log+]fg+gh+ hfl < log3+log+]f] +log+]g] +log+(h] which leads to m(r; fg+gh+ hf) 5 
m(r; f) + m(r; g) + m(r; h). Adding the two inequalities for N and m, we find (2.10). 

The latter inequality can easily be generalised to 

(2.11) 

for constant o J. 



Discrete Analogue of the Painled Property 1005 

One last property of the Nevanlinna characteristic was obtained by Ablowitz et al. [ll]. In our 
notation it reads 

T(r; f(% f 1)) 5 (1 + e)T(r + 1; f(z)). (2.12) 

This relation (which is valid for T large enough for any given E) makes it possible to have access 
to the characteristic, and thus, the order of the solution of some difference equations. Let us 
sketch here the general procedure, which will be applied to specific cases in the following section. 

The discrete equations we shall examine here are three-point mappings of the general form 

4xnr G-I, x,+1) = B(G) (2.13) 

where, in general, A is polynomial and B is rational, with coefficients which do not depend on 
the independent variable n (something we shall come back to later). Moreover, in the cases we 
shall consider, A is linear separately in x,&i. Following the approach of AHH we consider equa- 
tion (2.13) as a delay equation in the complex domain and evaluate the Nevanlinna characteristic 
of both members of the equality, using (2.12) and (2.7). We find 

U(1 + E)T(T + 1; z) + wT(?-; z) k wT(?-; z) (2.14) 

(with u = 2 if A is linear in x,&i), for appropriate values of v and w. From (2.14) we have 

T(’ + l;x) 5 ZT(r; x). 
21(1 + E) 

(2.15) 

Now, if w > u+v, for r large enough one can always choose E small enough that X = (w--‘u)/~(l+e) 
becomes strictly greater than unity. The precise meaning of (2.15) is that for r large enough, we 
have 

T(r + 1; X) > XT(r; X) - C (2.16) 

for some C independent of r. The case C negative is trivial: T(r + k;s) 2 XkT(r;x). For 
positive C we have 

T(r+l;z)- 
( 

C 
&>A T(r;x)-- 

X-l > 
. (2.17) 

Thus, whenever T(r; z) is an unbounded growing function of r (i.e., T + 0), then for some r large 
enough, the right-hand side of this inequality becomes strictly positive, and iterating (2.17) we 
see that T(r + k; z) diverges at least as fast as X”, and thus, logT(r; z) > r log X and the order o 
of x is infinite. Thus, according to the AHH hypothesis, the mapping cannot be integrable. 
The only way out is if T( r’x is a constant which means that x is itself a constant, since the , ) 
slowest possible growth of the Nevanlinna characteristic for a nonconstant meromorphic function 
is T(r; f) =: logr, for f a homographic function of z. Given that the mapping is rational, there 
can only be a finite number of constant solutions. We could in principle have had an infinite 
number of constant solutions if the identity A(rc,, z,, x,) E B(x,) were true. However this would 
imply w < u + V. Thus, when w > ‘1~ + w in (2.14), the only possible finite-order solutions are (a 
finite number of) constant solutions, all the remaining ones having o = co. 

The advantage of working with autonomous mappings lies in the fact that we can control 
precisely the corrective terms in the inequalities for T. Had we worked with nonautonomous 
systems, we would have had unbounded corrective terms. For instance, if the coefficients depend 
rationally on z, there would be corrective terms of order c?(logr) and we would have been unable 
to exclude (finite-order) rational solutions. Though one could suspect that the generic solution 
is not rational, one could not easily prove this fact in the nonautonomous case. However in 
our approach we consider nonautonomous equations as obtained from autonomous ones through 
a deautonomisation procedure. This procedure will never transform a o = 00 solution into a 
finite c one. So the generic solution will have g = co whenever 20 > u + u in (2.14) even in the 
nonautonomous case. The rational solutions that we cannot exclude can only come, through the 
deautonomisation procedure, from the finite- (in effect, zero-)order constant solutions, of which 
there is a finite number. 
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3. THE THREE-TIERED APPROACH 
TO DISCRETE INTEGRABILITY 

In this section, we shall show how the criterion of noninfinite order of the solution of a given 
difference equation can be complemented so as to become a discrete integrabihty predictor. By 
the latter we mean that the conditions we will obtain will be necessary (for integrability through 
spectral methods) and, although they cannot be shown to be sufficient in general, they will 
be constraining enough for the approach to have an undeniable heuristic value in integrability 
prediction. 

The first step, given a mapping, is to use the Nevanlinna characteristic techniques, which 
we sketched in Section 2, in order to estimate the rate of growth of the solutions. Since for 
nonautonomous equations this rate depends on the rate of growth of the coefficients of the 
equation, we opt for a simple approach: at this first step we consider only autonomous mappings, 
i.e., mappings whose coefficients are constants. As we shall see in the examples that follow, 
this first step puts severe constraints on the discrete equations at hand. However, usually, these 
constraints are not restrictive enough so as to fix completely the form of the mapping, hence the 
necessity of the second step. (At this point our approach diverges from that of AHH.) Once the 
constraints of the first step are implemented, we pursue, using singularity confinement, in order 
to constrain further our discrete equation. Thus, all autonomous equations that do not satisfy 
confinement are rejected at this second step. 

The third step consists of the deautonomisation of the system using once again the confinement 
criterion. We thus obtain a mapping which (hopefully) satisfies the Nevanlinna criterion for low- 
growth of the solutions and the singularity confinement as well. The major difficulty lies in the 
fact that the practical evaluation of the Nevanlinna characteristic gives a clear-cut answer as to 
mappings the solutions of which must be (generically) of infinite order, but this does not mean 
that all the remaining ones have their generic solution of finite order. Particular care is needed 
in the application of this criterion, lest one proclaim of finite order systems which have in fact 
infinite order solutions. 

In what follows, we are going to examine our pet systems, namely discrete Painleve equations 
(d-P) [15]. Our starting point will be functional forms related to the various members of the 
family of “standard” d-B. Before proceeding, we must point out that for a large number of 
d-P, integrability is well established through the existence of a Lax pair. For the remaining 
equations, although this is certainly not a proof, there exists an independent strong indication 
of integrability obtained through algebraic entropy-low growth techniques [16]. For most of the 
discrete Painleve equations, we have presented a geometrical description [17] (baaed on aiIine 
Weyl groups) which makes possible the construction of their solutions starting from those of the 
nonautonomous Hirota-Miwa equations, which constitutes (at least in the eyes of the present 
authors) a further indication of integrability. 

Following the three-tiered approach we sketched above, we start with autonomous systems. 
Since in every case examined, the application of the Nevanlinna criterion combined to that of 
singularity confinement leads to precisely the QRT [18] forms, we shall not proceed to the third 
step, namely deautonomisation. As a matter of fact, the deautonomisation of the QRT mappings, 
associated with the standard family of d-P was given in full detail in [19]. 

We start with the equations of the d-PI/n family. They have been examined in detail by AHH, 
but we present here the results for the sake of completeness. They offer us also the occasion to 
present the differences between our arguments and the ones of AHH. The starting point is the 
autonomous equation 

%+1 + %-1 - ;p,‘. -- (3.1) 

Whenever the condition w > u + u, obtained in Section 2, is satisfied, we know that the generic 
solution will have infinite order, since only a finite number of constant solutions can have finite 
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(in fact, zero) order. For equation (3.1), u = 2, v = 0, and w is the maximum of the degrees of P 
and Q. Thus, w can be at most two for the order of the generic solution not to be infinite. There 
is a subtle difference in our reasoning compared to that of AHH. The latter authors conclude 
that if P and Q depend rationally on n, if w > 2, and if the solution is not rational, then the 
order is infinite, but they cannot exclude the possibility that for some choice of P, Q with w 2 3 
all solutions may be rational. For us, using constants P and Q we can conclude that if w > 3, 
the generic solution has u = 00, without any other assumption on its rationality. The only 
solutions with finite order are constants, and there exists a finite number of them. Then upon 
deautonomisation, the generic u = co solution cannot recover a finite order, while some very 
special finite-order rational solutions may arise from the constant solutions of the autonomous 
case. 

Let us examine all mappings with w 5 2. We start by rewriting (3.1) in the case of quadratic 
numerator and denominator as 

. 

x,+1 +x,-1 = - 
r/x; + EX, + c 
az:+px,+r- 

The singularity confinement analysis of (3.2) (in the case where a, ,C3 are not both zero) is 
straightforward. The resulting constraint is that the mapping must belong to the QRT family, 
i.e., 77 = ,f? or o = TJ = 0. The final step is the deautonomisation of (3.2), which leads to the well- 
known forms of d-Prr and three alternate forms of d-PI. One notable exception to integrability 
for (3.2) is the polynomial mapping 

x72+1 + G-1 = P(z,) (3.3) 

where P is a quadratic polynomial, i.e., (Y = /? = 0. By a slightly different approach, we can 
indeed show that this mapping cannot be integrable. For the sake of simplicity, let us consider the 
mapping x,+1 +x,-i = xi. The affinity of x to 00 as measured by the Nevanlinna characteristic 
T(r; xn) is due to an arc of length 1 on the 1.~1 = r circle where xn has a very large value a and/or 
to the presence of N poles within the circle of radius r. (In this particular case, one knows from 
Yanagihara [12] that there are entire solutions, but we give the argument in a general setting. 
The fact that the second contribution, coming from poles, can be absent, does not affect our 
reasoning.) From the r.h.s. of the mapping, it is clear that xi will have a value a2 on the arc of 
length 1 and/or N double poles within the circle of radius r. This means that the contributions 
to the affinity of either x,+1 or x,-r will necessarily come from a value R2 (on a segment smaller 
than 1) and/or (a number less than N of) of double poles. Iterating further, we find that the 
affinity to 00 of ~,+k will be associated to a large value R2k (on a segment of decreasing length) 
and/or (a decreasing number of) poles of order 2 Ic. This growth (even in the presence of a slowly 
growing T) is equally unacceptable as a characteristic function T N Xk and following the AHH 
conjecture, this polynomial mapping cannot be integrable. (The same argument would preclude 
integrability of any nonlinear polynomial mapping of the type (3.1), but the standard proof 
suffices if the degree is higher than two.) 

The next mapping we shall examine is that related to the q-Prrr family 

This indeed was one examined by Ablowitz et al., but the fact that they considered coefficients 
linear in z does not allow to apply directly their conclusions to q-Prrr, where the coefficients are 
exponential in z. Still their main result stands: all the solutions of (3.4) are of infinite order 
(except a finite number of constant solutions) if the maximum of the degrees of P, Q exceeds 
two. The main ingredient in the proof of this result is the inequality (2.8) T(r;z,+lx,-I) 3 
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T(r; $,+I) -t ?‘(r; x,-r), and thus, we have again (2.14) with u = 2 and v = 0. The general form 
of (3.4) with quadratic P, Q is 

Again, the application of singularity confinement to (3.5) results in the QRT constraint 7 = y or 
77 = Q = 0. The deautonomisation of this form, presented in [19], leads to the q-PI11 equation as 
well as mappings which are q-discrete forms of Prr and PI. 

Next we turn to the family of d-Prv (which was not among the one examined by Ablowitz et 
al., despite their statement to the contrary), 

%J (x,+1 + 2,)(xn + xnml) = -. Qh) 
First, we apply naively (2.8) and (2.9), which gives us, with the notations of (2.14), 21 = 2, v = 2, 
and thus, for w > 4 we have x, of infinite order. Thus, the only acceptable P, Q can be quartic 
at maximum. However we can produce a more refined estimate using the inequality (2.10). To 
do this we rewrite (3.6) as 

X,+1%-1 + %%+1 +x,x,-1 = 
P(xn> - xtQ(xn) 

QC4 ’ 

(Note that since P/Q is irreducible, the r.h.s. of (3.7) is equally irreducible.) Using (2.10) we 
find u = 2, v = 1, and so we have w 5 3. Thus, for integrability candidates we can have for the 
degree of Q at maximum q 5 3 and for the degree of P - x2& equally at maximum three. From 
what we saw above, the degree of P is p 5 4 and if q = 3, then the degree of the numerator 
would be five, which is forbidden. Thus, we can have at most q = 2 and P = x2& + R where R 
is a polynomial at most cubic in x. The well-known discrete Prv falls precisely in this class. As 
a matter of fact, the precise application of singularity confinement to the mapping 

(x,+1 + Gz>(xn + G-1) = 
ax~+qx~+ICx;+exn+p 

ax;+px,+r 
(3.8) 

results in the QRT form: v= 0 = 0. Further, the deautonomisation of the mapping yields d-Prv. 
On the other hand, if q = 1, we have p 5 3. The mapping then has the form 

(x7+1 +x,)(x, + X,-l) = 
qx:+Kx~+Bx,+p 

bGa+r . 
(3.9) 

Singularity confinement leads to two distinct subcases. One corresponds Q = 0 and q = 8 = 0 
in (3.8) while the other leads to the constraints 7 = p and ,Bp = ~0 and corresponds to the case 
where the r.h.s. of (3.8) is not irreducible. In the case q = 0 we have three possibilities. TWO 
come from 71 = p = 0 in (3.9), which entails either K = 0 or 8 = 0, the latter case being equivalent 
to (Y = p = 0 in (3.8). A third case is formally obtained by 71 = /3 = 0 and K = y in (3.9) and 
corresponds to the case where the r.h.s. of (3.9) is not irreducible. So to summarize, the r.h.s., 
if polynomial, must be either azz + b, xi + a2, + b, or ax, + b. Note that in all three cases, 
p 5 2 rather than p = 3. This limit on p when q = 0 can in fact be proven by Nevanlinna-type 
methods, using some specific argument along lines similar to the one used for equation (3.3). The 
deautonomisations of these mappings were presented in detail in [19]. 

The next mapping we are going to examine is the family of q-Pv, 

pw (x,+12, - l)(xnx,-1 - 1) = -. 
Q&J 

(3.10) 
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The straightforward application of (2.8) and (2.9) gives u = 2, 21 = 2. Thus, just as in the case 
of d-PI”, for w > 4 we have a generic x,, of infinite order, and the only acceptable P, Q are 
quartic. However, we can rewrite (3.10) as 

%+1 X,-I 
x,+1x,-1 - - - - = 

PM - Q(G) 
2, X?l x;Q(xn) ’ 

Using (2.10) we find u = 2, u = 1, and thus, we must have w 5 3. However, this does not 
mean that the degree of P - Q and x2& must be less or equal to three because although P/Q is 
irreducible, P - Q may have one or more x factors. We are thus led to the examination of each 
particular case. If q 5 1, then no x factorisation is necessary and in this case, we have p 5 3. If 
q < 2 and one x factorises, we have P = Q + xR where R is cubic at maximum and p 5 4. (Note 
that even if q 5 1, p = 4 is allowed because R may still be cubic.) Finally if q 5 3, a factor x2 
is necessary and P = Q + x2S, with S at most quadratic so that p 5 4. For q 5 2, this case is 
a subcase of the previous one with R = xS. But for q = 3, this case can be shown to have its 
generic solution of infinite order. Indeed one can show that, though the usual method gives (2.14) 
with 2~ = 2, w = 1, a more refined calculation leads in this particular case to a situation where 
‘1~ = 2, but the “effective” v is zero, which combined with w = 3 leads to a growth of T(r) faster 
than A’ with X = 3/(2 + 2~) for E arbitrarily small when T is large enough. First, let us remark 
that x does not divide Q (otherwise x would also divide P = Q+x2S, but P/Q has been assumed 
irreducible). Thus Q has three roots, none of which is zero. Since the degree of S is less than 
that of Q, the affinity of the r.h.s. of (3.11), S/Q, f or infinity is entirely due to the affinity of x for 
each of the three roots of Q, i.e., 3T(r; x) (up to a bounded correction). In the 1.h.s. xn+i, x,-r 
do contribute to the affinity for infinity as usually 2(1+ E)T(T + 1; x), i.e., u = 2. However, since 
none of the roots of Q is zero, the l/x, terms do not contribute to the affinity for infinity when 
the r.h.s. is near infinity. Thus, it is as if v were zero and only the contribution from x,+1, x,-i 
balances the contribution 327~; x) of the r.h.s. 

The case of quadratic Q is the one corresponding to q-Pv. The general form of the mapping is 

(%+1GI - 1)(X,X,-l - 1) = 
712: + ex: + px; + Icx, + y 

cux~fpxn+r . 

The application of singularity confinement leads to the constraints 77 = y, 0 = K, which reduce 
the mapping to its QRT form. The deautonomisation of the latter was presented in detail in [19]. 
In the case of linear Q we have a priori 

(x,+1x, - 1)(X,X,-l - 1) = 
772: + ex; + pxi + Icx, + x 

h+r . 
(3.13) 

The constraints resulting from singularity confinement lead to three cases. Either 77 = X = y and 
6 = IC, which comes from taking (Y = 0 in (3.12), or 11 = 0, X = y, and 0(0 - K) - y(y - ,u) = 0, 
which comes from a situation where (3.12) is not irreducible and a nontrivial factor drops out, 
and finally 77 = 0 = 0, X = CL. The latter comes from a trivial simplification by x in (3.12) where 
(q =)y = 0, so X = p is a consequence of f3 = K in (3.12) and we do not require X = y in that 
case. 

Finally, we will just list the possible forms of the r.h.s., when q = 0, once singularity confinement 
is implemented. Each form comes from (3.12) either by some special values (o = ,8 = 0, for 
instance), or by trivial (by 2) or nontrivial simplifications. The possible forms are x4 + ax3 + 
bx2 + ax + 1, ax3 + bx2 + cx + 1 with a2 - UC + b - 1 = 0, ax2 + bx + a, ax2 + bx + 1, ax + b 
where any number of the coefficients a, b, c may vanish. 

For the remaining discrete Painlevk equations, a direct application of the Nevanlinna method 
is not convenient. Thus, we shall follow a slightly different approach. Instead of a single discrete 
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equation, we consider the system 
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P(Yn) 
%+I *x72 = Q(yn), 

44 
Yn * Yn-1 = S(xn> 7 

(3.14a) 

(3.14b) 

where * and * stand for either of the operators + or x (and the use of two different symbols 
stresses the fact that they can be chosen independently). In order to estimate the order of the 
solutions of (3.14), we calculate the characteristic of both members of (3.14a),(3.14b). We have 

T(c x,+1) + T(r; xn) t urT(r; yn), (3.15a) 

T(r; Yn) + T(r; yn-1) h wT(r; xn), (3.15b) 

where w, w are the maximum of the degrees of P, Q and R, S, respectively. Next, we com- 
pute (3.15a) once downshifted, i.e., at the point (n - l), and eliminating T(r; y), we find 

T(?"n+l) +2T(r;x,)+T(r;x,-1) 2 wwT(r;x,). (3.16) 

Using (2.12), we have 
2(1 + c)T(r + 1; 2,) ?z (ww - 2)T(r; x,), (3.17) 

which means that (apart from a finite number of constant solutions) the generic x is of infinite 
order if ww > 4. Given this constraint, integrability candidates may only have ww 5 4. We must 
thus examine the cases: w = w = 2 and w = 1, w 5 4 (or the equivalent one w = 1, w 2 4). 

The csse w = w = 2 leads (after the singularity confinement constraints have been imple- 
mented) to well-known integrable equations. In all cases, we present only the generic equation 
in which we assume that both w and w are exactly two. The cases where one (or both) r.h.s. are 
homographic are treated later. Still, various subcases do exist, coming from special values .of the 
parameters. The purely multiplicative case is 

“Y:+fXYn+p 
xn+1xn = ay; + pyn + y’ YnYn-1 = 

r4 + C% + /J 
az;+6x,+n’ 

(3.18) 

When deautonomised using singularity confinement, this becomes the Lasymmetric’ q-PIII, 
discrete Pvr, obtained by Jimbo and Sakai [20], or some degenerate form thereof (for (Y = 0, for 
instance). 

The purely additive one is the ‘asymmetric d-Prr, discrete Prrr, we have studied in [21], 

Finally, the mixed case is a discrete Pv [22], 

x,+1 + xn = 
6Y: + fYn + c 

YnYn-1 = 
Yx~+~xn+p 

aY;+PYn+Y’ ax;+Sx,+n’ 

(3.19) 

(3.20) 

Let us now turn to the case w 5 4, w = 1. The latter means that the r.h.s. of (3.14a) is just 
homographic in y. Solving for y, we obtain ‘y, = H(z,+i * 2,) where H is homographic in its 
argument. Thus, we obtain the following mapping: 

R(xn) H(z,+l *z,)* H(zn*xn-I) = -1 
SC4 

(3.21) 
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where the degrees of R and S are not larger than four. Four cases must be distinguished depending 
on the choices of * and *. When * stands for +, the resulting equation is the autonomous form of 
a discrete Pv (once the singularity confinement constraints have been implemented in the most 
generic case, where R/S is irreducible with both R and S quartic). When * stands for X, the final 
equation is the autonomous form of a q-Pvr. If * is taken as X, the two forms are the standard 
ones, obtained in [23], 

(z,+1+ 2, - 2C) @n-l + 2, - 20 = Q(% - cj4 + P(% - rj2 + Y 

(%+1-t 4 &L-l + 4 ax; + sxcg + e ’ 
(3.22) 

&+1x, - r”) (xn-1x72 - c”) = ax; + /3x; + +yxi + p& + a[4 
(X,+1% - 1) (2,-1x, - 1) ax~+6x;+ex~+Sx,+o! * 

(3.23) 

If * is the operator +, the resulting forms are just limiting cases of (3.22),(3.23). At this stage, 
< is a constant, like all the other parameters. The deautonomisation was presented in 1231. We 
will not comment on the hosts of special forms R and S can assume through special values of the 
coefficients and various factorisations. 

4. TOWARDS THE DISCRETE ANALOGUE 
OF THE PAINLEVl? PROPERTY 

After having shown the applicability of our three-tiered approach, based on the combination of 
the Nevanlinna notion of growth and the singularity confinement, we can now tackle the question 
we set out to answer at the beginning of the paper. Namely, what would be the discrete analogue 
of the Painleve property, characterising integrable systems. 

Let us first start with a most successful discrete integrability detector which has been proposed 
by Viallet et al. [24]. This method links integrability to the low-growth of the degrees of the 
iterates of some given initial condition. The problem with this approach is that it applies equally 
well to mappings which are linearisable [25] while having unconfined singularities. But as we 
have shown in [26], integrability through linearisation is not necessarily related to the Painleve 
property. In a sense, this integrability criterion is much too efficient since it is also a linearisability 
detector. Thus, we feel that it cannot be the discrete analogue of the Painleve property, but it 
would be very interesting to derive its continuous analogue. 

The discrete Painlevk property of Conte et al. [27] is in fact an application to the discrete 
domain of the perturbative Painleve method (and thus, the name is rather misleading). Its 
applicability is limited by the fact that it relies crucially on the continuous limit of the given 
discrete system and, as is well known, not all discrete systems do possess nohtrivial continuous 
limits. 

The method of Ablowitz et al. introduces the most interesting notion of growth of solutions 
(of some discrete system). The Nevanlinna method for the evaluation of the order of the solution 
is certainly an essential one. However, we feel that the fact that AHH search for solutions, the 
asymptotic expansions of which are free of Digamma 11, functions, introduces some limitations 
(beyond the computational complications). Other singularities, Digamma derivatives, Gamma 
functions of fractional arguments, etc., may well spoil integrability (although the $J are the 
primary suspects). 

What we believe (and this is certainly a subjective statement) is that the property of integrable 
discrete systems which comes closest to being the discrete analogue for the Painleve property is 
the one described in this paper. Namely, integrable discrete systems must be of finite order, in 
the Nevanlinna sense, and also possess confined singularities. (Moreover, the fact that a large 
class of linearisable systems have unconfined singularities stresses the parallel to the Painlevk 
method.) Our three-tiered approach provides an efficient algorithm for the investigation of this 
property. Thus, it may constitute a most useful heuristic detector of integrability, as the examples 
presented here have amply demonstrated. 
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