Implementing a registration and analysis of events relating to actual or potential unintended exposure
- To prepare and deliver guidelines and education programmes to enable compliance with national legislation in the area
- To monitor European and international activities on an ongoing basis and update the ESTRO as appropriate
- To prepare and disseminate information to the public on how safety is already a key focus in radiotherapy generally and the ongoing efforts to ensure safety issues remain central to radiotherapy practice.

Conclusion: The aim of the task force is to position ESTRO at the forefront of Safety and Risk Management in radiation therapy by
- Collaboration with professional societies within first of all in EU/Europe but also with other organisation within RO
- Preparation of guidelines and educational material
 - Information and dissemination of present and future EURATOM directives.

SP-0294
AAPM safety profile assessment results from the first year of use
E. Ford1

1University of Washington Medical Center, Department of Radiation Oncology, Seattle, USA

Purpose: Quality and safety improvement is a multidimensional problem. Many recommendations for best practices have been put forth in the last five years. A recent review of seven authoritative documents revealed no fewer than 117 separate recommendations. These recommendations span the spectrum from quality control to prospective risk assessment to incident learning and safety culture. With such a wealth of information, it is challenging to absorb and implement quality improvement recommendations in a busy clinical environment. To address this issue, the American Association of Physicists in Medicine (AAPM) has developed the Safety Profile Assessment (SPA), a freely-available online tool designed to probe key aspects of quality and safety. This report describes the development of the SPA and its first year of use.

Methods: The SPA was developed over a two year period by a multi-disciplinary panel of experts using a consensus process. The resulting tool consists of 92 indicator questions designed to gauge the most important dimensions of quality and safety. The SPA was pilot tested in 21 volunteer clinics and released for general use in July 2013. Anonymous survey data were collected to gauge users’ experience. The SPA was also analyzed with respect to the widely-accepted dimensions of quality from Donabedian.

Results: In the first year of use, 107 users completed the SPA. The online tool provides a (graphical) benchmarking of answers against all other respondents in the database and the ability to track responses over time. An annotated bibliography is available for each indicator question, and the user can download a safety and quality tracking spreadsheet to guide in the implementation of improvements. Classifying the indicator questions according to Donabedian’s quality categories yielded the following results: process issues (62%), structural issues (27%) and outcomes (8%). In pilot testing the SPA required an average of 1.3 hours to complete. The majority of respondents (99%) had assembled a multidisciplinary group to complete the SPA of 3.9 members on average. With a 69% response rate to the survey, respondents indicated that SPA was easy or very easy to use (70%) and that they would definitely or very probably complete the SPA again (63%).

Conclusions: The Safety Profile Assessment is a freely available online tool intended to provide a practical means for assessing the quality and safety environment in a radiation oncology clinic. The tool has been reviewed favorably by the first cohort of users.

SP-0295
MARR project for risk assessment results of the pilot test
C. Prieto Martin1
1Fundación Investigación Sanitaria Hospital Clínico San Carlos, Servicio de Física Médica, Madrid, Spain

Purpose: The goal of the MARR project is to find a means to implement a risk analysis methodology among radiotherapy professionals.

This project is coordinated by the Spanish Professional Societies of Radiotherapy Oncology (SEOR), Medical Physics (SEFM), Radiation Protection (SEPR) and Radiotherapy Technologists (AEOR).

Materials and Methods: The risk methodology chosen was the simplified dedicated Radiotherapy Risk Matrix and its associated software tool SEVRRA, developed by Foro Iberoamericano de Organismos Reguladores (FORO). This method has been proved in 44 radiotherapy services of 7 different countries.

The risk matrix is an easy to use semi quantitative method that consists in analyzing all initiating events that can lead to an error in the treatment if the measures put in place to avoid it (barriers) fail. As a first stage in the MARR project, the initiating events and barriers were adapted to the current radiotherapy practice in Spain.

The risk is defined as a combination of three parameters: the frequency of occurrence of the event, the severity of the potential consequences and the probability of failure of the set of existent barriers. The risk matrix provides the resulting risk level from this combination.

The methodology allows a second deeper analysis on those errors resulting in a higher associated risk

The MARR project was carried out in 10 Spanish Hospitals during the period 2013 -2014 and involved:
- The training of the participating professionals (a working team composed by a radiotherapy oncologist -RO-, medical physicist -MP- and radiation therapy technologist -RTT- from each hospital) in the use of the risk matrix methodology and SEVRRA
- The completion of the risk analysis in every hospital
- The development of a risk analysis guide based on the results and the feedback provided, to facilitate the implementation of this method in other hospitals.

Results: The project is finished. In the following table a list of the initiating events, barriers and reducers where some modifications were introduced as a consequence of the feedback from participating hospitals is shown:

<table>
<thead>
<tr>
<th>Initiating events</th>
<th>Initial</th>
<th>Modified</th>
<th>Added</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barriers</td>
<td>104</td>
<td>30</td>
<td>29</td>
</tr>
<tr>
<td>Frequency reducers</td>
<td>47</td>
<td>10</td>
<td>19</td>
</tr>
<tr>
<td>Consequence reducers</td>
<td>32</td>
<td>10</td>
<td>9</td>
</tr>
</tbody>
</table>

The main advantages of the methodology declared by the participants are: