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1. INTRODUCTION

Let L be a Moufang loop of even order n=2m. For what n must L be
a group?

Orin Chein has proven in [3] that for n=2* or n=2p (k is a positive
integer less than 4 and p is any prime), L is a group. Mark Purtill has
shown that for n=2p? L is also a group (unpublished result). In this
paper, we extend his result for n=2p7'--.p¥ with «,<2, p;# 1 modp,,
pf;ﬁ I mod p; if a,=2, for all i, j (r>2). We show that our problem is
completely solved in the Conclusion.

Liebeck has proven in [7] that a finite nonassociative simple Moufang
loop is isomorphic to M(p"), a class of Moufang loops constructed by
Paige in [8]. Paige has shown that the order of M(p") is p*>(p*" — 1)/d(p),
where d(2)=1 and d(p)=2 for any odd prime p. It can be demonstrated
that 120 is a divisor of |M(p")|. This is the important tool we use to break
through our problem.

2. DEFINITIONS

1. Aloop (L,-)is a set L with a binary operation “.” such that

(i) if any two of x, y, z are given as elements of L, the equation
x -y =z uniquely determines the third as an element of L;
(i1) there exists an identity 1e L such that 1-x=x-1=x for all
xel.
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0021-8693/94 $6.00

Copyright €1 1994 by Academic Press, Inc.
All rights of reproduction in any form reserved.



410 FOOK AND ENG

2. Let x, y, z be elements of a loop L. Define:

{i} the associator (x, y,z)as xy-z=(x-yz)(x, y, z).

(i) L,, the associater subloop of L, as the subloop generated by
all the associators (x, y, z) of L.

(iii) N, the nucleus of L, as the set of all ne L such that (n, x, y) =
(x,n,y)=(x,y,n)=1for all x, yeL.

(iv) Z, the centre of L, as the set of all ne N such that (n, x)=1
for all x e L where nx = xn-(n, x).

(v) I(L), the inner mapping group of L, as the group of permuta-
tions of L generated by all the permutations R(x, y), L(x, y), and 7T(x)
of L, where gR(x,y)=(gx-y)-(xy) ', gLix,y)=x""y~'-[y(xg)], and
gT(x)=x"(gx), forall ge L.

3. If K is a subloop of L, then K is normal in L if K6 =K for all
fel(L).

4. L is simple if it has no proper normal subloop.

5. A loop (L,-) is a Moufang loop if xy.-zx=(x-ypz)x for all
x,y,z€ L.

3. RESULTS wITH MOUFANG LooPs

Let L be a Moufang loop. Then:

1. The identity xy.zy=(x-yz)x is equivalent to each of the
identities

y(x-zx)=(yx-z)x

x(y-xz)=(xy-x)z

[1, Lemma 3.1, p. 115].

2. L is diassociative, i.e., {x,y) is a group for all x, ye L [1, p. 115,
Lemma 3.1].

3. If (x,y,2z)=1, then {(x,y,z) is a group for all x,y,zelL
[1, p. 117, Moufang’s Theorem ].

4. L, is normal in L. In fact, L, is the smallest normal subloop of L
such that L/L, is a group [S, p. 32, Thm. 2].

5. N and Z are normal subloops of L. Clearly, N and Z are
associative [1, p. 114, Thm. 2.1].

6. R(x~',y Y Y=L(x,») [1, p. 124, Lemma 54].
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4. MouFrANG Looprs ofF EVEN ORDER

LEMMA 1. Let L be a Moufang loop of order 2m, (2, m)=1. Then there
exists a normal subloop M of order m in L. Hence, L=C,xM, ie.,
L=C,M,and C,nM=1.

Proof. If L is associative, then it is true by group theory. Assume L is
not associative. As 120 is not a divisor of |L| and L is not associative, L
is not simple. Let K- < L; i.e., K is a minimal normal subloop of L. Clearly
|K| | 2m.

Case 1. |K}=2. Let K={w) and Be I(L). Clearly, wB=w. So Kc Z.
By [2, p. 44, Prop. 1], there exists one subloop M of L such that |[M|=m.
Hence L=KM. As Kc Z, T(km)=T(m) and L(k,m,, k,m,)=L{m,, m,)
for all k, k,,k,e K. Thus M@= M for all e I(L). Therefore M <L and
L=Kx M, a direct product of X and M.

Case 2. |K|=2my,, 1<mg<m. By induction, K=C,xM, with
[Mg)l=m,. Let weM, and 6el(L). As K<L, wleK As |wl|||w|
and My<K, wleM,. Thus M,<tL. This contradicts the minimality
of K.

Case 3. |K|=m. Let x be an element of order 2 in L. Then L=
{(x>xK=C,xK.

LEMMA 2. Let L be a Moufang loop of order 2p*, (2,p)=1. Then L is
a group.

Proof. Suppose L is not a group. By Lemma 1, there exists a normal
subloop M of order p> and L=C,x M. If M is a cyclic group, then L
would be a group by diassociativity. So we can assume M=C,xC,=
{y>x{z>. Let C;=<{x). By [3, Lemmall, p.34], if H=<{x, g, then
|H| =2p for any ge M. If M < H, then |M|=p?| |H| and |H| =2p*=|L|.
Lwould be a group by diassociativity. So Mc H. If |H|>2p, then
|(H, w)| >2p* for any we M — H. So |H|=2p. Clearly H cannot be a
cyclic group. So H is a dihedral group D,, and we have xg =g~ 'x for all
geM.

Now

x-y(xz)=(xy)x-z by Moufang identity
=y 'x)x-z by dihedralness
=(y~'x?.z by diassociativity

1

=y 'z by x?=1.



412 FOOK AND ENG

Thus

yz 7 x)=(y"'z)"x! by dihedralness
=(z " 'p)x by x=x""
=(yz ")x as M is commutative.

So(y,z L, x)=1
By [1, Moufang Theorem, p. 117], {»,z"', x> =L is a group.
Remark. This result was first obtained by Mark Purtill as mentioned in

[9]. Allthough our proof is somehow different and shorter, the essential
steps are the same. We record our appreciation here.

Lemma 3. Let L be a Moufang loop of order 2pq; p and q are distinct
primes; p<gq and g # 1 mod(p). Then L is a group.

Proof. By Lemma I, there exists a normal subloop M in L such that
IM|=pgq.So L=C,xM. As g# 1 mod(p), M=C,xC,=C,,. Then L can
be generated by two elements. By diassociativity, L is a group.

LEmMMa 4. Let L be a Moufang loop of odd order n such that
(i) n=p}---p¥ a,<2 and p, are distinct odd primes.
(i1) p;# 1 mod(p;) for all i, j.
(iii) pi+#1mod(p)) if o;,=2, for all i, j.
Then L is an Abelian group.
Proof. Let m=a,+ --- +0o,. We prove by induction on m.
Step 1. m=l=2>n=p, m=2=n =pf or p;p,- These cases are obvious.

Step 2. m=3=>n=p’p, or ppp,. As n is odd, L is solvable
[6, p.413, Thm. 16]. Let K- <1 L. Then K is an elementary Abelian group
[6, p.402, Thm. 7].

(a) n=pfpk. If |K| zpj? or p;, then Kc N, the nucleus of L by
[6, p. 402, Thm. 7 and p. 405, Thm. 10]. There exists a Hall subloop H
such that (|K], |H|)=1 by [6, p.409, T.12(a)]. Then L=NH. So L, =
(NH, NH, NH)=(H, H, H)=1 and L is a group. It is an Abelian group by
using Sylow’s theorem with conditions (i1} and (iii).

If |K|=p;, then L/K is an Abelian group of order p;p,. Then L/K=
P,/Kx P,/K with |P|=p} |P,=pyp; But P,=Q,xK by Step 1. Let
0el(L). Qy<P,<L=>Q0cP =P, =Q,<L Thus L=P;x(, is an
Abelian group.
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(b) n=p;pp,, We may assume |K|=p,. As before, using Step 1,
L/K=P,/KxP,/K, P;=KxQ,and P;=KxQ, So L=KxQ;xQ, is an
Abelian group. In fact L is a cyclic group C,,.

Step 3. We assume the proposition is true for all m<k. Now let
m=o,+ ---+a,=k+1. Let K-<aL. Then L/K is an Abelian group by
induction. Without loss of generality, we may assume

|Kl=pP, I1<pi<a,.

(a) Let |K|=p, <a,. Now m=(x;—1)+a,+ --- +a,=k. Then
L/IK=P/KxQ,/Kx --- xQ,/K where |P/|=p} and |Q,/K|=p} or
19l =pp}, 2< j<r. Clearly Q;= K x P, where P, is a subloop of order p7.
As Q,<L, P,<al for j=2,3,..,r. Thus L=P xP,x --- xP, is an
Abelian group.

(b) Let |K|=p}. Now m=a,+ ---+a,=k—1. Then L/K=
0,/Kx --- xQ,/K. As before, we obtain a normal subloop P, of L for j=
2,3,.,r. Then L=Kx P,x Pyx --- x P, is an Abelian group.

THEOREM. Let L be a Moufang loop of order 2m where
(i) m=py . .-pr, a,<2, p, are distinct odd primes;
(i) p,# 1 modp; for all i and j. Then L is a group.
(ii) pl#1modp, if a,=2, for all i, j.

Proof. We prove by induction on r. By Lemma 1, there exists a normal
subloop M of orderm. So L=C,x M. By Lemma4, M is an Abelian
group. If m=p?, then we are through by Lemma 2. Assume that the
theorem is true for m when m is a product of less than r primes, with
restrictions as stated in (i), (i1), and (iii) above.

Now, let m=p{'-..p%, r=2. Let P, be a Sylow p;-subgroup of M for
i=1,2. Then P,<<M. As M<aL, we have P,<aL. L/P, is a group by
induction. So L, P, for i=1,2. Thus L,c P, nP,={1}. Thus L is a
group.

S. CONCLUSION

There exist nonabelian groups of orders p°, pg (¢ # 1 mod p), and pq>
(4°# 1 mod p) where p and ¢ are odd primes with p<g. Then non-
associative Moufang loops of orders 2p*, 2pq, and 2pg” can be constructed
by [3, p. 35, Thm. 1]. Given any odd integer m=p3 ---p¥, where m is
different from (i), (ii), or (iii) as stated in the Theorem, a nonassociative
Moufang loop of order 2m can be obtained by using the direct product. So
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conditions (i), (ii), and (iii) in the Theorem are necessary and sufficient
conditions for all Moufang loops of order 2m to be groups.

Since there exist nonassociative Moufang loops of orders 2* and 22 x 3,
our problem is completely solved.
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