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This article presents a numerical investigation of MHD flow of Casson fluid model with variable viscosity
towards a stretching sheet with variable thickness. Cattaneo-Christov heat flux model is used instead of
Fourier’s law to explore the heat transfer characteristics. The governing partial differential equations are
transformed into nonlinear ordinary differential equations by using suitable similarity transformations.
These equations are solved by using a numerical technique, known as Keller box method. The relevant
physical parameters appearing in velocity and temperature distributions are analyzed and discussed
through graphs. In order to check the accuracy of the method comparison has been made with some
previous published results.
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1. Introduction

The study of non-Newtonian fluids is an important topic for
researchers due its industrial applications in construction of paper
production, polymer sheet, hot rolling, glass-fabric, wire drawing
and petroleum production. The tangent hyperbolic fluid, Maxwell
fluid, Williamson fluid, viscoelastic fluids, etc. are non-Newtonian
fluids describing the nonlinearity behavior. Casson fluid model is
one of the most commonly used rheological model and has number
of examples such as blood, fruit juices, soup, sauce, chocolate, etc.
Nadeem et al. [1] studied the boundary layer flow of a Casson fluid
for a heat transfer towards an exponentially stretching surface in
presence of thermal radiation. Mukhopadhyay et al. [2] presented
the concept of two-dimensional flow over unsteady stretching
surface. Mukhopadyay [3] discussed the boundary layer for a
Casson fluid and heat transfer passing through a nonlinear stretch-
ing surface. Nadeem et al. [4] investigated three-dimensional
steady flow of Casson fluid past a porous linear stretching sheet.
Mukhopadhyay et al. [5] investigated the numerical solution for
a steady boundary layer flow and heat transfer in a Casson fluid
over exponentially stretching permeable surface with prescribed
heat flux. Mahanta et al. [6] presented the concept of MHD
three-dimensional Casson fluid pass a porous linear stretching
sheet. Mustafa et al. [7] studied the boundary layer flow for a
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Casson nano fluid convinced by nonlinear stretching surface. Ani-
masaun et al. [8] investigated the boundary layer flow for steady
incompressible laminar free convective magneto-hydrodynamic
(MHD) Casson fluid over an exponential stretching surface rooted
in a thermal stratified medium. Das et al. [9] analyzed the effect
of mass and heat transfer for unsteady Casson fluid in a vertical
plat. Raju et al. [10] discussed the heat and mass transfer of Casson
fluid over an exponentially porous stretching sheet. Ramesh et al.
[11] presented the idea of generalized Couette flow for an
incompressible Casson fluid between the same plates using same
boundary condition. Khalid et al. [12] investigated the free
convection flow of a Casson fluid over a fluctuating vertical plat
with constant wall temperature.

The study of boundary layer flow over a continuously stretching
sheet has practical applications in physics, chemistry and
engineering. Many metallurgical processes such as drawing of
plastic films, annealing, thinning of copper wires, etc plays an
important role for governing momentum and heat transfer bound-
ary layer flow for a stretching sheet. Ganesh et al. [13] investigated
the numerical solution for nano-fluid over linearly semi-infinite
stretching sheet in the presence of magnetic field. Dessie et al.
[14] presented the concept of MHD flow for incompressible viscous
fluid and heat transfer phenomena over a stretching sheet
embedded in porous medium in presence of heat source/sink and
viscous dissipation. Hakeem et al. [15] studied the effect of partial
slip on hydro-magnetic boundary layer flow and heat transfer due
to stretching surface with thermal radiation. Ene et al. [16]
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investigated the approximate solution for steady boundary layer
flow and heat transfer over an exponentially stretching sheet.
Abass et al. [17] presented the laminar flow for a viscous fluid
due to unsteady stretching/shrinking cylinder with partial slip con-
ditions. Hayat et al. [18] investigated the hydromagnetic third-
grade fluid over a continuously stretching cylinder and solved
the problem via homotopic procedure. Malik et al. [19] studied
the approximate solution for MHD flow of tangent hyperbolic fluid
model over a stretching cylinder. Sandeep et al. [20] deliberated
the concept of two dimensional MHD radiative flows and heat
transfer of a dusty nano fluid over exponentially stretching surface.

The study of non-flatness stretching sheet with variable thick-
ness is useful in the mechanical, civil, marine, aeronautical struc-
ture and designs. Fang et al. [21] investigated numerically the
boundary layer flow of viscous fluid over a stretching sheet with
variable thickness. Khader et al. [22] studied two dimensional
boundary layer flows over a continuously stretching sheet with
variable thickness by encountering the slip. Sarangi et al. [23]
analyzed the boundary layer flow and heat transfer of two
dimensional two phase flow over a stretching sheet. Khader et al.
[24] investigated the boundary layer flow for a Newtonian fluid
over a permeable stretching sheet with power law surface over a
stretching sheet with variable thickness. Hayat et al. [25] studied
the boundary layer flow for a Maxwell fluid over a stretching sheet
with variable thickness.

The classical Fourier’s law describes the heat transfer mecha-
nism for relevant situations. The major drawback for parabolic
energy equation is that unique disturbance is felt instantly
throughout whole medium. Cattaneo-Cheristov heat flux model
is the modified Fourier’s form which gives thermal relaxation time.
Christov [26] amended the Cattaneo’s law by thermal relaxation
time along with Oldroyd’s upper-convicted derivative, in order to
preserve the material invariance of the model. Han et al. [27] pre-
sented the coupled flow and heat transfer in viscoelastic fluid over
a stretching plat with velocity slip boundary. Raju et al. [28] stud-
ied the numerically solution for heat and mass transfer behavior of
Casson fluid over an exponentially stretching sheet. Mustafa [29]
investigated the Cattaneo-Christov heat flux model in a rotating
flow of viscoelastic fluid bounded by stretching surface.

From published literature it is observed that steady MHD flow
of Casson fluid over a stretching sheet with variable thickness
has not been discussed so far. The viscosity of the fluid is assumed
to be erratic with temperature. Cattaneo—Christov heat flux model
which is a modified version of the classical Fourier’s law is used in
this work to explore the insight of heat transfer phenomena. For
better accuracy the modeled differential equations are solved
numerically using Keller box method. The behavior of different
pertinent parameters on velocity and temperature profiles is dis-
cussed in detail.

2. Mathematical formulation

Consider the steady two-dimensional incompressible boundary
layer flow of Casson fluid over stretching sheet with variable thick-
ness. The velocity of sheet is assumed to be U,, = Uy(x + b)™, where
Uy the reference velocity is. It is assumed that the wall thickness of
the stretching sheet may increase or decrease with distance from
slot by varying the power index m.

For m=1 the problem reduces to flat stretching sheet. The
viscosity of the fluid is assumed to be variable i.e., pt = p 7T,
Cattaneo-Christov heat flux model is used instead of Fourier’ s
law to explore the heat transfer characteristic. Cartesian coordi-
nates x-axis along the sheet with y-axis are taken normal to it.
The magnetic field of strength By is applied normal to the sheet
(as shown in Fig. 1).

Variable sheet thickness

Fig. 1. Stretching sheet with variable.

V.V =0, (1)

DV
P o= V.T + pb, (2)

where V is the velocity field, p is the density, 2 material time
derivative, t is Cauchy stress tensor, V operator and b =] x Bp is
the body force. The stress tensor is defined below

. 2<u3+f'72—n)e,-j, > T, 3
2<u3+\%>e,-j, T < T,

where P, is the yield stress of the field, 7 is the product of the com-
ponent of rate of deformation rate itself, ug is a plastic dynamic vis-
cosity of the non-Newtonian fluid, i.e. 7 = e;e; and e; denotes the
(i, j) component of the deformation rate and 7. the critical value
of © based on non-Newton model.The conservation law of mass,
momentum and energy equations takes the following form after
applying the boundary layer approximation.

ou ov

ﬁJFE)_y:Q (4)
ou  ou u( 1)82u ( 1)8u8u oB;
U—4+V—="—(1+=|5+V|1+5 ]|+ = ——1, 5
ax oy = p,\! 1) oy playoy p ©
pcV - VT =-V.q, (6)

where u and v are the velocity components along x and y-directions
respectively, v is the kinematic viscosity, ¢, is the specific heat, p is
the density, T is the temperature of the fluid, g is the Casson param-
eter, By is the magnitude of magnetic field, g is the heat flux and pu is
the variable viscosity. From Eq. (6)
q+),2(%+‘/'v'Q*Q.VV‘F(V'V)Q):7ICVT, (7)
where 4, is the thermal relaxation time and k is the thermal con-
ductivity of the fluid. Eliminating q from Egs. (6) and (7) gives:

ar ar du 9T v aT v T du oT PT 29T 2 0*T
UW—F Uw-’riz (UWW‘F Ua—yw-‘!‘u%W-‘r UWW—O—ZW/MA{%—U (9)‘—2+ v W)

_ k2T

T pep 9y
8)
The boundary conditions for the present problem are:
U=Uyx)=Up(x+b)", v=0,T =T, at y = A(x + b)'*", 9)

u—0,T—>T,asy— occ. (10)
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Considering the following transformations

/(m+1)Uq(x-+b) 29Ug (x+b
n= (””07"+>l/, %F(”l)v

= Uo(x+b)"F/(1), 0= —/MHgb () 4 g 2L F (1)
o) =, 7

(11)

The governing equations are reduced to the following
equations:

1 I ’ 2m /N2 2
(1 +E>(l — BO)(F" — BO'F') + FF' fm(li) - M°F =0,
(12)
" / m— 3 ! m+ 1 2
®" + PrFO®’ + Pry 5 FF O — 5 FFO" ) =0, (13)
the boundary conditions becomes
Flo) = %M F(o)=1,0(0) =1, 14

F’(oo) — 07 @(OO) — 0,

where o = A M denotes the plat surface. In order to dimen-

sionalize the requ1red equations and boundary conditions define F
(0) = fin - o) = fin) which gives

VY oMY¥ =0, (15)

<1 + %) (1-BO)(f" — BOf")

+Prf6’+Pry(7ﬂ“ 9’7L“f 0”) -0, (16)

fO) = H=mF(0)=1,00) =1, 17
f(o0) — 0, 6(c0) — 0.

where M? = % is Hartmann number, B = e=*"-T=) is the

(m+1)pU3 (x+b)™
variable viscosity parameters, Pr=£2 is Prandtl number and

7 = J,Uq(x + b)™ " is the thermal relaxation parameters.
The wall shear stress at the sheet is given by

fwzu(u%)%, (18)

the skin friction can be defined as

(19)

1
C
= «/m—&-l U02v<x+b >

while the dimensionless forms of skin friction

Crv/Rey = Kl + %) 1- Be)f’} " (20)

Where Re, = \/@x‘

3. Numerical solutions

The numerical solutions of non-linear ordinary differential Egs.
(15) and (16) subject to boundary condition Eq. (17) are obtained
by Keller box method. Let u(x, 1), u(x, ), p(x, ) and q(x, ) with
u=f,v=u,q=0 andp=q,Eqgs.(15) and (16) reduces to first order
form, i.e.

(1+%>(1 — BO)(¢v' — Bq'v) +fv7m2’+"1u271\/12u=07 21)

q’+Pr"f+Pr7( fuqu—Hf q)

1987

(22)

The rectangular grid in x-# plane is shown in Fig. 2 and the net

points are:
X= 0,xX=x"1+k,i=1, 2, 3,.1,
1/’0: 017]:17]714"'}1}7]:17 27 37---.]:

where k; and h; are the Ax and Ay -spacing.

Using central difference formulation at midpoint (x', #; ; ;) as

i i h; i i
Ifi —fii] :jj[uj+uj—1]7

i i i i
wW-w, Y+,

2

pi-p, 4+a,
h 2

Similarly at point (x"~'/2, 5, ; ,), Egs. (21) and (22) gives
1 . . .
(1 + B) (1-B0) (%) — vy — hB(q y2h 1) ) +hfi0p¥ e
2m i
_ h(m) (u;_l /2) ~hM*u,, = Ri1a,

-3
(q} q] 1)+Pr q] 1/2f1 1/2+Prh7’( )qj 172U 1/2f1 172

—Pry (mTH) (f;—l/z) (qjl - Q;_1) =Tjp,

where

Riip=— (1 + %) (1-Bo)( (¥~ v} ~hB(qyul1) )
+ hf 12 Vi~ 1/2 h(mz—T]) (u}j/z)z _ thuj’ljﬂ),

and

Ti12 :_((qJH q +Prhq 2f ~172
3
+Prhy< )q] 1/2“, 1/2f; 172

-y (M) (1) @ - ),

* Known

@ Unknown
@Centering

Py Py

Nj == I .

I
Nj-1/2 = ———’-——. K

Moy ™ Y= —
s Ps k; Pa X
| | |
K11

Fig. 2. Schematic representation of domain.

(23)

(24)

(25)

(26)

(27)

(29)
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such that R;.1> and Ty, are known quantities.
The following boundary conditions reduces to
i a(l-m) : : :
fo:mﬁlf):1,11}:07136:1713}:0 (30

Newton’s method is used to linearize Eqgs. (22)-(26).
For this case

FED :f]@ n 6f]§i)’ ujgm) _ ujgi) n 6u}(i)7 ngiﬂ) — 0 4 5y

j J J?
R P 31)
P](-'H) _ p;) + ()P}l)v qj(_m) _ qjo + éq;).,

put Eq.(31)in Egs. (26) and (27) and neglecting higher order of 6

hi . .

of; — of i1 — jf(au,- +0uUj1) = (1)) (32)
. by
OU]' — 511]',1 — 7(51/]' + 51/_)',1) = (rz)j, (33)
; hy 34
op; — op;q1 — 5(5%' +0q;1) = (13);, (34)

(@1);1200; + (02);_1 30 Vj-1 + (A3)j_1 ;20U + (Aa);_q ,0Uj1 + (a5);_1 2 0f

+(86)j_129f1-1 = (r4)j_1 )2 (35)

(b1); 1205+ (b2);_120G;_1 + (b3); 1 26U; + (ba); 1 20U 1 + (bs); 4 29f;

+(be);_120fj-1 = (15);_1.2, (36)
where
1 hf;_ Bh ;
(al)jq/z = (1 +B> (1 - B0) +%_7q}—1/27 (37)
1 hf._ Bh .
()10 = —(1 +E>(1 — BO) +% ~5 G (38)
mh hM?
(@3)j_1p = — (m—-i-l) Y12 = (4)j_1 = (A3)j_1 )2 39)
hv;_
(As)j_1)2 = ]21/27 (A5);1,2 = (as5);_1 12, (40)

hvj 126 1)

(G6)j_1p = 2 (@7)j-1)2 = (G6)j_1 )25 (41)

Prhf;_ m-3
(b1)j1p =1+ % + Prhy (T)fj—l/Zujfl/z

m+1
— Prgamma (T) fiia (42)
Prhf;_ m-3
(1)2)1-71/2 =-1+ g 1/2 + Pl‘h’)) <T)fj71/2uj_l/2
m+1

-y (M3 ) @3)

fi1295-
(bs); 1, =252, (44)
(b4)j—1/2 = (b3)]>1/2’ (45)

m-—3
P\ Qj1/2Uj-1/2

Prhq;_
(bS)j,]/z = gj 12 + Prh'y(

m+1 ,
—Pryh (T)fj—l/ij—l/zv (46)

(bG)jq/z = (b5)j—1/27 (47)
2m 2 2
(ra)ia 2 = —hfi12 vz + g h(Wo2)” + AMT U2 + R,
(48)
(r5)j7]/2 = _(qj - ijl) - Prhqjq/zqu/z
m+1 ,
—Pryh (T)sz—l/ij—l/z +Tj1p2, (49)
the boundary conditions become
ofg =0, up =0, opy = 0, ou; = 0, op; = 0. (50)
Writing Eqgs. (33)-(37) in block tridiagonal matrix form. i.e.
Al [G [01] 1]
Bi] [A2] [Cy) [62] [r2]
Bi-1] (Al (Gl | | [04] [r1]
Bl [A)] (9] (1]
that is:
[Al[o] = [r], (51)

where the elements are

o
o
—_
o
o

Al=| 0 -4 0 0o i, (52)
(az2); (as); (as); (a1); (a7),
(ba); (bs); O (b1),
0O 0 -1 0 0
10 0 -% o
Al=|0 o0 0o -¥l.2<i<y (53)
0 0 (as); (a2); (as),
L0 0 (bs); O (ba)
= 1 0
-1 o -% o
Bl=| 0o -1 o 0o -hl.2s<is<] (54)
(ag); 0 (as); (m); (a7);
[ (@s); 0 (bs); O (by)
[-% 0000
1 0000
Gl=| 0 100 0[,2<j</J (35)
(@); 0 0 00
L(bs)y 0 0 0 O

to solve Eq. (51), assume that A is nonsingular and can be factored
into

[A] = [LIU] (56)
where
[on]
(Ba]  [02]
(L] = - -
= [oy-1]
Bl oyl
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and

0 [Ty
(]
where [I] is the identity matrix of order 5 and [¢;], and [T;] are 5 x 5
matrices which elements are determent by the following equation:

[oa] = [T}, (37)
[ou][T4] = [C4], (58)
and
o] = [Aj] = [Bj][Tj-1], (39)
[og][Tj] = Gl (60)
Eq. (56) can now be substituted into Eq. (51), we get
[LIUIS] = 1], (61)
If we define
[U1s] = (W, (62)
then Eq. (61) becomes
[LIW] = [r], (63)
where
Wi
W,
W= ;
W4
W,

where [Wj] are 5 x 1 column matrices. The elements w can be
solved from Eq. (63)

[oa][wa] = [r4]; (64)

[o4][Wj] = [ry] = [Bj][W;_1], (65)

The step in which T, o and Wj are calculated is usually referred
to as the forward sweep. Once the elements of W are found, Eq.
(62) gives the solution so-called backward sweep, in which the ele-
ments are obtained by following relations:

9] = W), (66)

(0] = Wil = [Tj][oj1), 1 <j<J - 1. (67)

Once the elements of are found, Eq. (37) can be used to find the
(i+ 1)-th iteration in Eq. (31). These calculation are repeated until
some convergence criterion is satisfied and calculations are
stopped when

svd) < x, (68)

where x =0.001 is a small value.

4. Discussion

In this section, the influence of various pertinent parameters
such as Casson fluid parameter 3, variable viscosity parameter B,
Hartmann number M, thermal relaxation parameter y and Prandtl
number Pr are deliberated for velocity and temperature profiles.
Fig. 3 shows the effect of the Casson fluid parameter v on velocity
profile. It is observed that the Casson parameter § creates a

1

0.9;”,’ dnn B=0.2
- B=0.6
— =1

0sfF

0.7 ; \”’,
[ Pr=1,vy=01,m= 0.1,

o S N M=0.1,B=0.1,a=01,

Eosk
~ I
04
0.3 —
02F

01

oy,

A BRI SNUTATE IR B
00 1 2 3 4 5 6

n

Fig. 3. Influence of § on f'(1).

09K

0.8F

07F \v ®

osf \.* M=0.1,0=0.1,0=0.1,

y=0.1,B=0.1,m= 0.1,

03F
02F

01F

Fig. 4. Influence of Pr on 6(n).

resistive-type force in the fluid flow. Consequently, the magnitude
of the velocity profile and boundary layer thickness reduces for
higher values of B. It is clear from Fig. 4 that temperature profile
reduces for higher value of Prandtl number Pr . The Prandtl number
Pr is contrariwise connected with thermal diffusivity. An increase
in Prandtl number Pr corresponds to decrease the thermal diffusiv-
ity, which causes temperature of the fluid to reduce. From Fig. 5 it
is observed that for higher value of Hartmann number M, magni-
tude of velocity profile and boundary layer thickness reduces.
Because an increase in magnetic field up rises the opposite force
to the flow direction, which is called resistive-type force (Lorentz
force), which redueces the velocity profile. Fig. 6 shows the impact
of wall thickness parameter o on velocity profile. It is evaluated
that the boundary layer thickness and the velocity profile reduces
with the increase in wall thickness parameter o«. Because by
increasing wall thickness parameter o, stretching velocity of the
plate reduces which results reduction in the velocity profile
Fig. 7 describes the influence of power index m on velocity profile.
On increasing the power index m the stretching velocity increases
which produce distortion in the fluid causing velocity of the fluid
to increase. Fig. 8 shows the impact of thermal relaxation parame-
ter 7 on temperature profile. It is clear that temperature distribu-
tion and thermal boundary layer thickness reduces for higher
values of wall thickness parameter 7.
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o

Physically, an increase in thermal relaxation parameter causes
less transfer of heat from sheet to the fluid. So temperature of
the fluid reduces with the increase in thermal relaxation
parameter. Fig. 9 shows the physical behavior of variable viscosity

1
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Fig. 9. Influence of B on f'(1).
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Fig. 10. Influence of B and M on skin friction coefficient.

parameter B on velocity profile. It is obvious from the figure that
velocity of the fluid reduces with the increase in variable viscosity
parameter B. This is because as the variable viscosity parameter B
is increased the thickness of the fluid particles increases which
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Table 1
Comparison of the present results for f'(0) with the literature on varying Hartmann
number M when Pr=1,y=8=0=0butm=1.

M Akbar et al. [30] Salahuddin et al. [31] Present Results

0 1 1 1

0.5 —-1.11803 —-1.11801 —-1.118105

1 —1.41421 -1.41418 —1.14415

5 —2.44949 —2.44942 —2.44947

10 -3.31663 —3.31656 —3.31696

100 —10.04988 —10.04981 —10.04983

500 —22.38303 —22038293 —22.38284

1000 —31.63839 —31.63846 —31.63851
Table 2

Comparison of —0'(0) for different values of Prandtle number Pr when
y=M=a=p=0butm=1.

Pr Wang [32] Salahuddin et al. [31] Present result
0.07 0.0656 0.0654 0.0651

0.20 0.1691 0.1688 0.1683

0.70 0.4539 0.4534 0.4537

2.00 0.9114 0.9108 0.9109

7.00 1.8954 1.8944 1.8948

20.00 3.3539 3.3522 3.3521

70.00 6.4622 6.4619 6.4626

Table 3
Numerical effects the skin friction coefficient for the different values B,  and M.

M B p —CyRel?
0.1 0.1 0.1 2.5862
0.2 0.1 0.1 2.6353
0.3 0.1 0.1 2.7160
0.1 0.1 0.1 2.5862
0.1 0.2 0.1 23154
0.1 0.1 0.1 2.0423
0.1 0.1 0.1 2.5862
0.1 0.1 0.2 1.8849
0.1 0.1 0.3 1.6303

disrespects the velocity of the fluid to decrease. Figs. 10 and 11,
present the influence of Hartmann number M on local skin friction
coefficient for different values of variable viscosity parameter B
and Casson fluid parameter B. It is cleared from Fig. 10 that for
large values of Hartmann number M and variable viscosity param-
eter B the skin friction coefficient increases. Whereas, Fig. 11 shows
that skin friction coefficient reduces for large values of Casson fluid

parameter f. Table 1 and 2 shows the comparison of the present
work with the previous literature. It is observed that the obtained
results are in excellent agreement with the published work [30-
32]. Table 3 shows the effect of different physical parameters on
skin friction coefficient.

5. Conclusions

An analysis is done to solve the MHD flow of Casson fluid model
over a stretching sheet with variable thickness by assuming the
viscosity of the fluid to be variable. Cattaneo-Chirstov heat flux
model is used to discover the heat relocation phenomena. Keller
box method is applied to solve the governing nonlinear differential
equations. The main findings of this problem are listed below.

Velocity reduces for the large values of wall thickness parame-
ter o.

o For large values of power index m the velocity profile increases.

e Temperature profile increases more rapidly in Fourier‘s law case
instead of Cattaneo-Christov heat flux model.

e Velocity profile reduces for higher values of Hartmann number
M and variable viscosity B.

The momentum boundary layer thickness decreases for large values
of Casson fluid parameter p.
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