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Let X be a real analytic orbifold. Then each stratum of X is a subanalytic subset of X . We
show that X has a unique subanalytic triangulation compatible with the strata of X . We
also show that every Cr -orbifold, 1 � r � ∞, has a real analytic structure. This allows us
to triangulate differentiable orbifolds. The results generalize the subanalytic triangulation
theorems previously known for quotient orbifolds.
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1. Introduction

This paper concerns with subanalytic triangulations of real analytic orbifolds. To every point x in a real analytic orbifold
X of dimension n one can associate a local group Gx , which is unique up to isomorphism. The sets X(H) = {x ∈ X | Gx ∼= H},
where H is a finite group, form a subanalytic stratification for X . The main result, Theorem 6.6, says that every real analytic
orbifold X has a unique subanalytic triangulation compatible with the strata of X .

Orbit spaces of real analytic manifolds by real analytic proper almost free actions of Lie groups are called real analytic
quotient orbifolds. Subanalytic triangulations of orbit spaces of proper real analytic G-manifolds where G is a Lie group
are already known, see [8] and Theorem 7.7 in [6], as well as Theorem 3.3 in [9] for the case of a compact Lie group.
These results cover the case of quotient orbifolds. The result of this paper generalizes the previous results by providing a
subanalytic triangulation for all real analytic orbifolds.

We also show that every Cr -orbifold, 1 � r � ∞, can be given a real analytic structure, by first giving a C∞ structure to
all Cr -orbifolds, 1 � r < ∞, and then equipping every C∞-orbifold with a real analytic structure (Theorems 7.4 and 8.2). By
using the subanalytic triangulation result for real analytic orbifolds, we obtain a “subanalytic” triangulation compatible with
the strata for any Cr -orbifold X , 1 � r � ∞. “Subanalytic” triangulations are known to exist for orbit spaces, see [9].

2. Preliminaries

We begin by recalling the definition and some basic properties of an orbifold.
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Definition 2.1. Let X be a topological space and let n > 0.

1. An n-dimensional orbifold chart for an open subset V of X is a triple (Ṽ , G,ϕ) such that
(a) Ṽ is a connected open subset of Rn ,
(b) G is a finite group of homeomorphisms acting on Ṽ , let ker(G) denote the subgroup of G acting trivially on Ṽ .
(c) ϕ : Ṽ → V is a G-invariant map inducing a homeomorphism from Ṽ /G onto V .

2. If V i ⊂ V j , an embedding (λi j,hij) : (Ṽ i, Gi,ϕi) → (Ṽ j, G j,ϕ j) between two orbifold charts is
(a) an injective homomorphism hij : Gi → G j , such that hij is an isomorphism from ker(Gi) to ker(G j), and
(b) an equivariant embedding λi j : Ṽ i → Ṽ j such that ϕ j ◦ λi j = ϕi . (The equivariantness means that λi j(gx) =

hij(g)λi j(x) for every g ∈ Gi and every x ∈ Ṽ i .)
3. An orbifold atlas on X is a family V = {(Ṽ i, Gi,ϕi)}i∈I of orbifold charts such that

(a) {V i}i∈I is a covering of X ,
(b) given two charts (Ṽ i, Gi,ϕi) and (Ṽ j, G j,ϕ j) and a point x ∈ V i ∩ V j , there exists an open neighborhood Vk ⊂

V i ∩ V j of x and a chart (Ṽk, Gk,ϕk) such that there are embeddings (λki,hki) : (Ṽk, Gk,ϕk) → (Ṽ i, Gi,ϕi) and
(λkj,hkj) : (Ṽk, Gk,ϕk) → (Ṽ j, G j,ϕ j).

4. An atlas U is called a refinement of another atlas W if for every chart in U there exists an embedding into some chart
of W . Two orbifold atlases having a common refinement are called equivalent.

Definition 2.2. An n-dimensional orbifold is a paracompact Hausdorff space X equipped with an equivalence class of n-
dimensional orbifold atlases.

The sets V ∈ V are called basic open sets in X .
An orbifold X is called reduced, if for every orbifold chart (Ṽ , G,ϕ) of X , the group G acts effectively on Ṽ .
An orbifold is called a Cr -orbifold, 1 � r � ω (where C∞ means smooth and Cω means real analytic), if each Gi acts via

Cr -diffeomorphisms on Ṽ i and if each embedding λi j : Ṽ i → Ṽ j is differentiable of degree r.
An n-dimensional orbifold X is called locally smooth, if for each x ∈ X there is an orbifold chart (Ũ , G,ϕ) with x ∈ U =

ϕ(Ũ ) and such that the finite group G acts on Ũ ∼=R
n via an orthogonal representation.

By the differentiable slice theorem (see Proposition 2.2.2 in [11] and, for the real analytic case, Theorem 2.5 in [6]), every
Cr -orbifold, 1 � r �ω, is locally smooth.

While it is well known that every reduced smooth orbifold is a smooth quotient orbifold, it is not known whether the
corresponding real analytic result holds, i.e., whether every reduced real analytic orbifold is a real analytic quotient orbifold.

We assume that every orbifold has only countably many connected components. It follows that our orbifolds are second
countable. Moreover, all orbifolds are paracompact, and for any orbifold, the dimension equals the covering dimension (i.e.,
the topological dimension).

In Section 6 we will make use of the following result, originally due to J. Milnor.

Theorem 2.3. Let X be a paracompact space with covering dimension n and let {Uα} be an open cover of X . Then there is an open
cover {O iβ | β ∈ Bi, i = 0, . . . ,n} of X refining {Uα} such that O iβ ∩ O iβ ′ = ∅ if β �= β ′ .

Proof. [10], Theorem 1.8.2. �
In the proof of the previous theorem each set Bi is the set of unordered (i + 1)-tuples from the indexing set of the Uα .

Thus, if the indexing set of the Uα is countable, it follows that we can assume each Bi to be countable.
A map f : X → Y between two Cr -orbifolds is called a Cr orbifold map if for every x ∈ X there are orbifold charts (Ũ , G,ϕ)

and (Ṽ , H,ψ), where x ∈ U and f (x) ∈ V , a homomorphism θ : G → H and a θ -equivariant Cr -map f̃ : Ũ → Ṽ such that
the following diagram commutes:

Ũ
f̃−−−−→ Ṽ⏐⏐� ⏐⏐�

Ũ/G −−−−→ Ṽ /H⏐⏐� ⏐⏐�
U

f |U−−−−→ V

.

A Cr -map f : X → Y is called a Cr -diffeomorphism, if it is a bijection and if the inverse map f −1 is a Cr -map.
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3. Orbifold stratification

Let X be a Cr -orbifold, 1 � r �ω. Let x ∈ X and let (Ṽ , G,ϕ) and (Ũ , H,ψ) be orbifold charts such that x ∈ ϕ(Ṽ )∩ψ(Ũ ).
Let x̃ ∈ Ṽ and ỹ ∈ Ũ be such that x = ϕ(x̃) = ψ( ỹ). Let Gx̃ and H ỹ be the isotropy subgroups at x̃ and ỹ, respectively. Then
Gx̃ and H ỹ are isomorphic. It follows that it is possible to associate to every point x ∈ X a finite group Gx , well-defined up
to an isomorphism of groups, and called the local group of x.

For a finite group H , we let

X(H) = {x ∈ X | Gx ∼= H}.
The sets X(H) are called the strata of X .

We point out, that if X is a Cr quotient orbifold, i.e., the orbit space of a Cr -manifold by a proper almost free action of a
Lie group G , then the local groups are defined not only up to isomorphism but up to conjugacy by an element in G .

4. Subanalytic subsets of real analytic orbifolds

For subanalytic subsets of real analytic manifolds, see for example [1] and [2]. Subanalytic subsets of real analytic orb-
ifolds were introduced in [7]. We recall the definitions.

Definition 4.1. Let X be a real analytic orbifold. A subset A of X is called subanalytic if for every point x of X there is an
orbifold chart (Ṽ , G,ϕ) of X such that x ∈ V = ϕ(Ṽ ) and ϕ−1(A ∩ V ) is a subanalytic subset of Ṽ .

Subanalytic orbifold maps are defined in the same way as Cr -maps, 1 � r �ω:

Definition 4.2. A map f : X → Y between two real analytic orbifolds is called subanalytic if for every x ∈ X there are orbifold
charts (Ũ , G,ϕ) and (Ṽ , H,ψ), where x ∈ U and f (x) ∈ V , a homomorphism θ : G → H and a θ -equivariant subanalytic map
f̃ : Ũ → Ṽ making the following diagram commute:

Ũ
f̃−−−−→ Ṽ⏐⏐� ⏐⏐�

Ũ/G −−−−→ Ṽ /H⏐⏐� ⏐⏐�
U

f |U−−−−→ V

.

Lemma 4.3. Let X be a real analytic orbifold. Then all the strata X(H) are subanalytic subsets of X .

Proof. This follows from the fact that if G is a finite group acting real analytically on a real analytic manifold M , then the
sets {x ∈ M | Gx = g H g−1, for some g ∈ G} are subanalytic subsets of M , see e.g. Lemma 3.2 in [9]. Then {x ∈ M | Gx ∼= H}
is subanalytic as a finite union of such subanalytic sets. �

The following lemmas follow immediately from the corresponding results for subanalytic maps from a real analytic
manifold to a Euclidean space, see e.g. Lemmas 4.25 and 4.28 in [6].

Lemma 4.4. Let X be a real analytic orbifold and let h : X → R and f : X → R
n, where n ∈N, be subanalytic maps. Then the product

hf : X → R
n is a subanalytic map. If h(x) �= 0 for every x ∈ X, then the quotient f /h : X → R

n is subanalytic.

Let ψ : X → R be a map. By the support of ψ , denoted by supp(ψ), we mean the closure of the set {x ∈ X | ψ(x) �= 0}.

Lemma 4.5. Let X be a real analytic orbifold and let ψi : X → R, i ∈ N, be subanalytic maps such that {supp(ψi)}i∈N is locally finite.
Then the map

ψ : X → R, x �→
∞∑

i=1

ψi(x),

is subanalytic.
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5. Subanalytic partitions of unity for orbifolds

In this section we prove the existence of subanalytic partitions of unity in the orbifold case.

Lemma 5.1. Let (Ṽ , G,ϕ) be a chart of a real analytic orbifold X. Let A and B be disjoint closed subsets of V = ϕ(Ṽ ). Then there is a
subanalytic map f : V → R such that f |A = 0, f |B = 1 and f (V ) ⊂ [0,1].

Proof. It is well known (see e.g. Proposition 5.4 in [6]) that there is a G-invariant subanalytic map f̃ : Ṽ → R such that
f̃ |ϕ−1(A) = 0, f̃ |ϕ−1(B) = 1 and f̃ (Ṽ ) ⊂ [0,1]. This map induces a subanalytic map f : V →R such that f ◦ϕ = f̃ . Clearly,
f has the desired properties. �
Definition 5.2. Let X be a real analytic orbifold. A subanalytic partition of unity is a collection {λi} of subanalytic maps X →R

with the following properties:

1. λi(x) � 0 for every x ∈ X ,
2. {supp(λi)} is a locally finite cover of X , and
3.

∑
i λi(x) = 1 for every x ∈ X .

A partition {λi} of unity is said to be subordinate to an open cover {U j} of X , if for every λi there is a U j such that
supp(λi) ⊂ U j .

Theorem 5.3. Let X be a real analytic orbifold and let U be an open cover of X . Then X has a subanalytic partition of unity subordinate
to U .

Proof. Since X is paracompact, U has a locally finite refinement by basic open sets. Thus we may assume that U consists
of basic open sets and it suffices to find a partition of unity subordinate to such U . Since X is paracompact, U = {U j} has
locally finite refinements {W j} and {V j} by open sets W j and V j , respectively, such that V̄ j ⊂ W j and W j ⊂ U j for every
j. According to Lemma 5.1, there exists for every j a subanalytic map f j : X → R such that f j(X) ⊂ [0,1], f j is identically
one on V̄ j and supp( f j) ⊂ W j . Since {V j} is a cover of X , it follows that the maps

λi : X → R, x �→ f i(x)

Σ j f j(x)
,

are well defined. The conditions (1), (2) and (3) of Definition 5.2 clearly hold. The maps λi are subanalytic by Lemmas 4.5
and 4.4. �

Notice that the maps λi in Theorem 5.3 are constructed in such a way that supp(λi) ⊂ Ui , for every i.

6. Triangulation theorem for real analytic orbifolds

We are now ready to prove the triangulation theorem for real analytic orbifolds. The corresponding result for orbit spaces
is proved in Section 7 of [6]. We construct the triangulation by adapting the ideas in [6] to the orbifold case. To get started,
we need a local result, which follows from a theorem of Matumoto and Shiota:

Theorem 6.1. Let G be a compact Lie group and let M be a real analytic G-manifold. Let π : M → M/G be the natural projection. Then
there exists a real analytic proper G-invariant map f : M → R

n, where n = 2 dim(M) + 1, such that the induced map f̄ : M/G →
f (M) is a homeomorphism. Moreover, if another subanalytic set structure on M/G is given by an inclusion j : M/G → R

p , p ∈ N,
such that j ◦ π : M → R

p is a proper subanalytic map, then j(M/G) and f (M) are subanalytically homeomorphic.

Proof. [9], Theorem 3.1. �
Recall that if M and N are real analytic manifolds, if f : M → N is a proper real analytic map and if A is a subanalytic

subset of M , then the image f (A) is a subanalytic set in N (Proposition 3.8 in [2]). Thus the map f in Theorem 6.1 really
induces a subanalytic structure for M/G .

By a subanalytic homeomorphism we mean a subanalytic bijection whose inverse map is subanalytic. Assume f : A → B
is a homeomorphism between subanalytic subsets A and B of two real analytic manifolds. If f is subanalytic, then the
inverse map of f is automatically subanalytic and we call A and B subanalytically homeomorphic. The orbifold case differs
form the manifold case, since a map between two orbifolds that is both subanalytic and a homeomorphism does not need
to be a subanalytic homeomorphism. The reason is that the inverse map does not need to be an orbifold map, i.e., it does
not necessarily have the local lifts as in Definition 4.2.
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Lemma 6.2. Let X be a real analytic orbifold. Then there exists a subanalytic map f0 : X → R
q, for some q ∈ N, such that f0 is a

homeomorphism onto f0(X).

Proof. Since orbifolds are second countable, it follows that the orbifold X can be covered by basic open sets V i , i ∈ N. By
Theorem 6.1, for every orbifold chart (Ṽ i, Gi,ϕi), there is a real analytic proper Gi -invariant map f̃ i : Ṽ i → R

s , for some
s ∈N, such that the induced map f̄ i : V i → f̃ i(Ṽ i) is a homeomorphism. We can choose s = 2 dim(X) + 1.

By Theorem 2.3, {V i}∞i=1 has an open locally finite refinement {O jβ | β ∈ B j, j = 1, . . . ,k}, such that O jβ ∩ O jβ ′ = ∅ if
β �= β ′ . As pointed out after Theorem 2.3, we may assume that each B j ⊂ N. For every j we denote

⋃
β∈B j

O jβ by O j .

For every j we define a map f j : O j → R
s+1, by setting f j(y) = ( f̄ i0(y), β) if y ∈ O jβ and i0 is the smallest i for which

O jβ ⊂ V i . Then f j is real analytic. Clearly, f j is an injection.
Since X is paracompact, we can choose open covers {W jβ | β ∈ B j, j = 1, . . . ,k}, {U jβ | β ∈ B j, j = 1, . . . ,k} and {Y jβ |

β ∈ B j, j = 1, . . . ,k} of X by open sets W jβ , U jβ and Y jβ , respectively, such that Ū jβ ⊂ W jβ , W̄ jβ ⊂ Y jβ and Ȳ jβ ⊂ O jβ
for every j and β . We write W j = ⋃

β∈B j
W jβ , U j = ⋃

β∈B j
U jβ and Y j = ⋃

β∈B j
Y jβ for every j. Let h j : X → [0,1] be a

subanalytic map which is identically one on Ū j and vanishes outside W j . Similarly, let h′
j : X → [0,1] be a subanalytic map

which is identically one on W̄ j and vanishes outside Y j . Clearly, the maps

f0 j : X → R
s+1, f0 j(y) =

{
h′

j(y) f j(y), if y ∈ O j

0, if y ∈ X \ O j

are subanalytic. Let

f0 : X → R
p, y �→ (

h1(y), . . . ,hk(y), f01(y), . . . , f0k(y)
)
,

where p = k(s + 2). Then f0 is subanalytic by Proposition 8.7 in [7].
Since the maps f i are embeddings, it follows that the restriction f0 j |W jβ is an embedding for every β . Let (xd)

∞
d=1 be

a sequence in X such that f0(xd) → f0(x), for some x ∈ X . Then x ∈ U jβ for some j and β and h j(x) = 1. Since h j(xd) →
h j(x), it follows that h j(xd) > 0 for sufficiently large d. Therefore xd ∈ W jβ for sufficiently large d. Since f0 j |W jβ is an
embedding and f0 j(xd) → f0 j(x), it follows that xd → x. Consequently, f0 is injective and the inverse map f −1

0 : f0(X) → X
is continuous. �
Theorem 6.3. Let X be a real analytic orbifold. Then there exists a proper subanalytic map f : X → R

n such that the induced map
X → f (X) is a homeomorphism. Thus f (X) is a closed subanalytic subset of Rn. If g : X → R

p is any proper subanalytic map that
also is a topological embedding, then g ◦ f −1 : f (X) → g(X) is a subanalytic homeomorphism.

Proof. Let {V i}∞i=1 be a cover of X by basic open sets. We may assume that the closure of each V i is compact. By Theo-
rem 5.3, there is a subanalytic partition of unity {λi} subordinate to {V i}∞i=1. Let

λ : X → R, x �→
∞∑

i=1

2−iλi(x).

By Lemma 4.5, λ is subanalytic. Clearly, 0 < λ(x) < 1, for every x ∈ X . By Lemma 6.2, there is a subanalytic map f0 : X → R
q ,

for some q ∈ N, such that f0 is a homeomorphism onto the image f0(X). Let

f1 : X → R
q+1, x �→ (

f0(x),1
)
,

and let

f : X → R
q+1, x �→ f1(x)

λ(x)
.

Then f is subanalytic. Since f0 is an embedding, it follows that also f is an embedding.
We show that f (X) is closed in R

q+1. If the contrary is true, there is a y ∈ f (X) \ f (X). Let (x j)
∞
j=1 be a sequence

in X such that f (x j) → y. Then ( 1
λ(x j)

)∞j=1 converges to the last coordinate yq+1 of y in R
q+1. Since 0 < λ(x) < 1 for

every x ∈ X , it follows that yq+1 > 0. Then f1(x j) �→ y
yq+1

. Assume first y
yq+1

/∈ f1(X) and let {Um}∞m=1 be a neighborhood

basis of y
yq+1

. Since the maps λi have compact supports, the sets U ′
m = Um \ ⋃m

i=1 f1(supp(λi)) also form a neighborhood

basis of y
yq+1

. For every m there exists an x jm ∈ {x j}∞j=1 such that f1(x jm ) ∈ U ′
m . We may choose jm+1 > jm for every m.

Then x jm /∈ ⋃m
i=1 supp(λi). Thus λ(x jm ) → 0, which is impossible. It follows that y

yq+1
∈ f1(X). Thus y

yq+1
= f1(x) for some

x ∈ X . Consequently, f0(x j) �→ f0(x). Since f0 is an embedding, it follows that x j �→ x. Thus λ(x j) �→ λ(x) and λ(x) = 1 .
yq+1
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Therefore, y = f1(x)
λ(x) = f (x), and it follows that f (X) is closed. Thus f is a proper subanalytic map and it follows from

Theorem 9.3 in [7] that f (X) is a closed subanalytic subset of Rq+1.
It remains to show that the subanalytic structure on X is unique. Therefore, let g : X → R

p be a proper subanalytic
map that also is a topological embedding, where p ∈N. Then g ◦ f −1 : f (X) → g(X) is a homeomorphism. Clearly, the map
( f , g) : X → R

q+1 ×R
p is subanalytic and proper. Theorem 9.3 in [7] indicates that the graph Gr(g ◦ f −1) = ( f , g)(X) is a

subanalytic subset of Rq+1 ×R
p . Thus g ◦ f −1 is a subanalytic map. �

Let K be a simplicial complex. We denote by |K | the space of K . The corresponding open simplex of any simplex σ ∈ K
is denoted by intσ . The space of any countable locally finite simplicial complex K admits a linear embedding as a closed
subset of some Euclidean space R

n , see Theorem 3.2.9 in [13]. If e : |K | → R
n is a closed linear embedding, then the image

e(|K |) is a subanalytic subset of Rn . If e∗ : |K | → R
m is another closed linear embedding, then e∗ ◦ e−1 : e(|K |) → e∗(|K |) is

a subanalytic homeomorphism. Hence the closed linear embeddings induce a unique subanalytic structure on |K |.

Definition 6.4. Let X be a real analytic orbifold. A subanalytic triangulation of X is a pair of a simplicial complex K and
a homeomorphism τ : |K | → X such that the inverse map τ−1 : X → |K | is subanalytic. We say that the triangulation is
compatible with the family {Xi} of subsets of X , if each Xi is a union of some τ (intσ), where σ ∈ K .

Theorem 6.5. Let {Xi} be a locally finite family of subanalytic subsets in R
n which are contained in a subanalytic closed set X in R

n.
Then there exists a locally finite simplicial complex K and a subanalytic homeomorphism τ : |K | → X such that each Xi is a union of
some τ (intσ), where σ ∈ K .

Proof. [3], Theorem on p. 180. �
Theorem 6.6. Let X be a real analytic orbifold. Then X has a subanalytic triangulation compatible with the strata of X .

Proof. Let f : X →R
n be as in Theorem 6.3. The strata X(H) are subanalytic in X , by Lemma 4.3. Clearly, they form a locally

finite family in X . Since f is proper and subanalytic, it follows that the sets f (X(H)) are subanalytic in R
n and that they form

a locally finite family. By Theorem 6.5, there exists a simplicial complex K and a subanalytic homeomorphism τ : |K | → f (X)

such that each f (X(H)) is a union of some τ (intσ), where σ ∈ K . Thus f −1 ◦ τ : |K | → X is a homeomorphism and each
X(H) is a union of some f −1 ◦ τ (intσ), where σ ∈ K . The inverse map τ−1 ◦ f of f −1 ◦ τ is subanalytic since τ−1 and f
are subanalytic and τ−1 is proper, see Corollary 9.4 in [7]. �

The subanalytic triangulation of X is unique in the sense that if τ1 : |K1| → X and τ2 : |K2| → X are two subanalytic
triangulations of X , then τ−1

1 ◦ τ2 : |K2| → |K1| is a subanalytic homeomorphism by Theorem 6.3. Moreover, by Corollary 4.3
in [12], the subanalytic triangulation is unique up to a PL homeomorphism.

7. Compatible differential structures

By a Cr -differential structure on an orbifold X we mean a maximal Cr -atlas α on X . A Cs-differential structure β on X ,
s > r, is called compatible with α, if β ⊂ α. In this case, every chart on β is a chart on α. Equivalently, it means that the
identity map of X is a Cr -orbifold diffeomorphism X(α) → X(β).

Let M be a Ck-manifold, 1 � k �ω. If a Lie group G acts on M via a Ck-action, we call M a Ck-G-manifold. The following
results are needed to prove Theorem 7.4:

Theorem 7.1. Let G be a finite group and let M and N be Ck-G-manifolds, 2 � k � ω. Then any Cr -differentiable G-equivariant map
M → N, 1 � r < k, can be approximated arbitrarily well in the strong Cr -topology by a Ck-differentiable G-equivariant map.

Proof. A special case of Theorem 1.2 in [9]. �
Theorem 7.2. Let G be a compact Lie group and let M be a Cr -G-manifold, 1 � r � ∞. Then, there is a Ck-G-manifold M̃ which is Cr

G-equivariantly diffeomorphic to M, r < k �ω.

Proof. Theorem 1.3 in [9]. �
Let 1 � r � ∞, and let M and N be Cr -G-manifolds, where G is a finite group. We denote the set of Cr -differentiable

G-equivariant maps M → N equipped with the strong, i.e., the Whitney topology, by Cr
G,S(M, N). For r = ∞, we denote the

set of C∞-differentiable G-equivariant maps M → N equipped with the Cerf topology (a topology finer than the Whitney
topology) by C∞

G,C(M, N). Then Cω(M, N) is dense in C∞
C (M, N) and, consequently, Cω

G (M, N) is dense in C∞
G,C(M, N), for

finite G .
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Lemma 7.3. Let U and V be open sets in R
n, for some n ∈ N. Assume a finite group G acts Cr -differentiably both on U and on V ,

1 � r < ∞. Let W be an open G-invariant subset of U . Let f : U → V be a Cr -differentiable G-equivariant map with V ′ = f (W )

open. Then the restriction f |W has a neighborhood N in Cr
G,S(W , V ′) such that if g0 ∈N , then the map

T (g0) = g : U → V ,

where

g(x) = g0(x), if x ∈ W and g(x) = f (x) if x ∈ U \ W ,

is a Cr -differentiable G-equivariant map, and T :N → Cr
G,S(U , V ), g0 �→ T (g0), is continuous.

Proof. It is clear that T (g0) is equivariant when g0 is equivariant. The rest of the claims follow immediately from
Lemma 2.2.8 in [4]. �

According to Theorem 2.2.9 in [4], every Cr -manifold, 1 � r < ∞, has a compatible Cs-differential structure, where r <

s �∞. We follow Hirsch’s proof to prove the corresponding result for orbifolds:

Theorem 7.4. Let α be a Cr -differential structure on the orbifold X, r � 1. For every s, r < s � ∞, there exists a compatible Cs-
differential structure β ⊂ α on X.

Proof. Let B denote the family of all pairs (B, β), where B is an open subset of X and β is a Cs-structure on B , compatible
with the Cr -structure B inherited from X . By Lemma 7.2, the basic open sets of X have a compatible Cs-structure. Thus B
is not empty.

Define

(B1, β1) � (B2, β2)

if and only if:

1. B1 ⊂ B2.
2. The Cs-structure β1 on B1 is the one induced from the Cs-structure β2 on B2.

Then � defines an order in B. Let C be a chain in B. We denote by C1 the family of all B occurring as the first coordinate
of a pair in C , and by C2 the family of all β occurring as the second coordinate of a pair in C . Let

B∗ =
⋃

B∈C1

B, and β ′ =
⋃

β∈C2

β.

Then B∗ is an open subset of X and β ′ is a Cs-atlas on B∗ , compatible with the Cr -structure on B∗ . Let β∗ be the maximal
Cs-atlas on B∗ generated by β ′ . Then (B∗, β∗) is an upper bound for C in B. It now follows from Zorn’s lemma, that B has
a maximal element (B, β). We show that B = X .

Assume that B �= X . Then there is a chart (Ũ , G,ϕ) of X such that U ∩ (X \ B) �= ∅, where U = ϕ(Ũ ). We have that
U ∩ B �= ∅, since U ∩ B = ∅ would contradict the maximality of B . By Theorem 7.2, we can assume there is an open set
Û of R

n , where n = dim(X), on which G acts Cs-differentiably, and a G-equivariant Cr -diffeomorphism f : Û → Ũ . Put
W ′ = U ∩ B , W̃ ′ = ϕ−1(W ′) and W = f −1(W̃ ′).

There now are two differential structures on W ′: the Cr -structure α and the compatible Cs-structure β ⊂ α. We shall
find a G-equivariant Cr -diffeomorphism θ : Û → Ũ such that the restriction θ |W : W → W̃ ′ is a Cs-diffeomorphism. Then θ

induces a Cr -diffeomorphism θ ′ : Û/G → U such that θ ′|W /G : W /G → W ′ is a Cs-diffeomorphism. In that case the chart
(Û , G, θ ′ ◦ π), where π : Û → Û/G is the natural projection, has Cs overlap with β . The Cs-atlas β ∪ (Û , G, θ ′ ◦ π) on B ∪ U
is contained in α, which contradicts the maximality of (B, β).

To construct θ , we use Lemma 7.3 to obtain a neighborhood N ⊂ Cr
G,S(W , W̃ ′) of f |W : W → W̃ ′ with the following

property: Whenever g0 ∈N , the map T (g0) = g : Û → Ũ defined by

g(x) = g0(x), if x ∈ W and g(x) = f (x) if x ∈ Û \ W ,

is Cr -differentiable and G-equivariant, and the resulting map

T : N → Cr
G,S(Û , Ũ )

is continuous. The set Diffr
G(Û , Ũ ) of G-equivariant Cr -diffeomorphisms is open in Cr

G,S(Û , Ũ ). Since T ( f |W ) is the diffeo-

morphism f , there is a neighborhood N0 ⊂ N of f |W such that T (N0) ⊂ Diffr
G(Û , Ũ ). Now, by Theorem 7.1, there is a

G-equivariant Cs-diffeomorphism θ0 ∈N0. The required map θ is then T (θ0). �
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We point out that the result of Theorem 7.4 is true, with the same proof, for 1 � r < ∞ and r < s �ω.
Notice that for Cr -differentiable quotient orbifolds the existence of a compatible Cs-differential structure follows imme-

diately from the corresponding equivariant results.

8. Triangulation theorem for differentiable orbifolds

In this section we show that every smooth orbifold has a compatible real analytic structure. Lemma 8.1 is similar to
Lemma 7.3 with one difference: In Lemma 7.3, the topology in the space of Cr -differentiable maps, 1 � r < ∞, is the
Whitney Cr -topology. A corresponding result for gluing C∞-maps does not hold in the Whitney C∞-topology. That’s why the
space of C∞-maps in Lemma 8.1 must be equipped with a finer topology, the Cerf topology.

Lemma 8.1. Let G be a compact Lie group and let M and N be smooth G-manifolds. Let f : M → N be a C∞-differentiable G-
equivariant map and let U be a G-invariant open subset of M. Then there exists an open neighborhood N of f |U in C∞

G,C(U , N) such
that the following holds: If h ∈N and T (h) : M → N is defined by

T (h)(x) = h(x), if x ∈ U and T (h)(x) = f (x), if x ∈ M \ U ,

then T (h) is a C∞-differentiable G-equivariant map. Furthermore, T :N → C∞
G,C(M, N), h �→ T (h), is continuous.

Proof. Lemma 8.1 in [5]. �
Theorem 8.2. Let α be a C∞-differential structure on the orbifold X. Then there exists a compatible real analytic differential structure
β ⊂ α on X.

Proof. The proof is similar to the proof of Theorem 7.4. The reference to Lemma 7.3 should be replaced by a reference to
Lemma 8.1. �

Theorems 7.4 and 8.2 imply:

Corollary 8.3. Let α be a C1-differential structure on the orbifold X. Then there exists a compatible real analytic structure β ⊂ α on X.

In other words:

Theorem 8.4. Let 1 � r � ∞. Then every Cr -orbifold is Cr -diffeomorphic to a Cω-orbifold.

Let X be a Cr -orbifold, 1 � r � ∞. If there is a real analytic orbifold Y and a Cr orbifold diffeomorphism f : Y → X , then
a subanalytic triangulation of Y induces a triangulation of X . We call such a triangulation of X “subanalytic”.

Theorem 8.5. Let X be a Cr -orbifold, 1 � r �∞. Then X has a “subanalytic” triangulation.

Proof. The result follows immediately from Theorems 8.4 and 6.6. �
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