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This paper is part of a continuing investigation of the dot-depth hierarchy of 

recognizable languages, a topic in the theory of automata and formal languages, with 

close connections to logic, semigroup theory and computational complexity. We shall 

give the precise definition of dot-depth in Section 2. For the moment it is sufficient to 

say that the hierarchy is a strictly increasing sequence of families of recognizable 

languages, and that the union of this sequence is the family of all aperiodic recogniz- 

able languages - those whose syntactic monoids contain no nontrivial groups. The 

paper by Straubing [22] contains a thorough discussion of the topic and its connec- 

tions with other areas of mathematics and computer science. 

We are particularly interested in the problem of effectively determining the dot- 

depth of a given aperiodic language ~ that is, determining the first level of the 

hierarchy to which a given language belongs. This is trivial for level 0, and results of 

Simon [ 171 and Knast [ 121 show that one can effectively determine whether a given 

language has dot-depth 1. Straubing [22] gave an effective criterion for determining 

whether a given aperiodic language over a binary alphabet has dot-depth 2. Weil[26] 

showed that Straubing’s condition, which can be formulated for languages over 

arbitrary alphabets, decides dot-depth 2 for languages whose syntactic monoids are 

inverse monoids with two inverse generators. (As these are languages over a four-letter 

alphabet, this fact does not follow directly from the original results of [22].) 

It is known that the dot-depth of a given aperiodic language depends only on the 

structure of its syntactic monoid. The method used in [22] was to associate with each 

finite monoid M a category C(M). It was shown that a language L over a two-letter 

alphabet has dot-depth at most 2 if and only if the category C( M(L)) can be covered 

by a finite f-trivial monoid. Here M(L) denotes the syntactic monoid of L. Precise 

definitions of the other terms used in this introduction will be given in Section 2. 
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Straubing conjectured that this condition decides dot-depth 2 for languages over an 

arbitrary finite alphabet. Indeed, a stronger conjecture was formulated: Let J ** DA 
denote the family of finite monoids that divide a two-sided semidirect product of 

a finite $-trivial monoid and a monoid in which every regular $-class is a rectangular 

band. Furthermore, let V2 denote the variety of finite monoids generated by the 

syntactic monoids of languages of dot-depth 2, and CJ the class of finite monoids 

M such that C(M) divides a finite 2-trivial monoid. Then we know that 

with equality holding in place of both inclusions for monoids generated by two 

elements. The precise conjecture was that both inclusions can be replaced by equali- 

ties in general. 

There are three principal results in the present paper. First of all, we correct an error 

in the paper [22] ~ the category C(M) described therein is not well defined. The 

correct definition appears in an earlier version [21] of the same paper, which was 

published in the proceedings of a conference. In Section 2 we give this corrected 

definition, and indicate how the proof in [22] must be modified. As it turns out, the 

required modifications are relatively slight, and all the principal results of [22] 

continue to hold. Second, we show that the strong conjecture cited above is true for 

inverse monoids with three inverse generators. Finally, we prove that the conjecture is, 

in general, false. Indeed, we give an example of an inverse monoid M with four inverse 

generators such that McCJ\(J ** DA). Thus, at least one of the two inclusions given 

above is strict. The weaker conjectures CJ = Vz and V2 = J ** DA are both open 

questions at present, although we do know that at least one of them is false. 

2. Basic definitions and previous results 

2.1. The dot-depth hierarchy 

Let A be a finite alphabet. For each k 3 0, we define a family A * V;, of subsets of A * 

as follows: 

A*V~={@, A*}, 

and, for k>O, A*“& is the boolean closure of the family of languages 

LOalL,...a,_,L,, 

where r 3 0, a,EA for all i, and Litany-,_ 1 for all i. 

Thus, A *-I; E A * ̂ 1’;, + 1 for all k 2 0. This hierarchy of families of languages is called 

the dot-depth hierarchy. The union of the hierarchy is the smallest family of languages 

in A* containing the letters and closed under boolean operations and concatenation, 

that is, the family of star-free languages in A *. The dot-depth of a star-free language 

L is the least k such that LEA*V~. 
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For each k 3 0 there is a variety Vk of finite monoids (that is, a class of finite 

monoids closed under submonoids, quotients and finite direct products) such that for 

any finite alphabet A, L G A* belongs to A*Yk if and only if M(L), the syntactic 

monoid of L, is in V,. In particular, the dot-depth of a star-free language depends only 

on the syntactic monoid of the language. It is known that V,, is the variety consisting 

of the trivial monoid alone, Vi is the variety of finite 2-trivial monoids [17], the union 

of the Vk is the variety of finite aperiodic monoids [15] and for all k 2 0, V, is properly 

contained in Vk+ i [4]. 

The dot-depth hierarchy, thus, gives a parametrization of the star-free languages 

that appears natural from the standpoint of both language theory and semigroup 

theory. The works of Thomas [23] and Barrington and Therien [l] show that this 

parametrization also has natural interpretations in terms of first-order logic and 

boolean circuit complexity. The principal open question concerning the hierarchy is 

whether one can effectively calculate the dot-depth of a star-free language. In view of 

the semigroup-theoretic characterization, this is equivalent to deciding whether 

a given finite monoid belongs to V,. At present, such decision criteria exist only for 

k< 1. 

We should mention that the original definition of the dot-depth hierarchy [2] was 

for subsets of A +, and gave rise to a hierarchy of varieties of finite semigroups [6]. It 

follows from work of Knast [12] and Straubing [20] that the decision problems for 

the two hierarchies are equivalent. 

2.2. The algebra ofjnite categories 

The present treatment of finite categories as algebraic objects is due to Tilson [23]. 

Here we present just enough of the theory to state the principal conjectures and 

results. 

A finite category C is given by a finite set of objects, denoted as Obj(C), and for all 

a, bgObj(C), a finite set of arrows from a to b, denoted as Horn,-(a, b). The sets 

Homc(a, b) are pairwise disjoint for different ordered pairs (a, b) of objects. If 

x~Homc(a, b) and yEHomc(b, c) (that is, if x and y are consecutive arrows), then there 

is a product arrow xy in Homc(a,c). This product is associative, and for each object 

a there is an identity arrow l,~Hom(a, a) that is a left identity for all Hom(a, b) and 

a right identity for all Hom(b, a). 

The central notion of this theory is that of one category dividing another. We say 

that a category C divides a category D, or that D covers C, and we write C 4 D, if there 

is a function cp : Obj(C) + Obj(D), and for each x~fZomc(a, 6) a nonempty subset O(x) 

of Hom,(acp, bq) such that 

(i) if x and y are consecutive arrows and x’~O(x), y’~O(y), then x’y’~O(xy); 

(ii) If x, y are distinct elements of Horn,-(a, b), then O(x)nO(y)=@; 

(iii) for all aEObj(c), l,,~O(l,). 

A monoid can be viewed as a category with a single object. The definition above 

then generalizes the usual definition of monoid division (a monoid M divides a 



On a conjecture concerning dot-depth two languages 165 

monoid N if A4 is a quotient of a submonoid of N). Division is a reflexive, transitive 

relation on categories. It is not, in constrast to division of monoids, antisymmetric 

on isomorphism classes of categories; that is, two nonisomorphic categories can 

divide one another. We define two categories to be equivalent if each divides the 

other. 

A category C is said to be strongly connected if Homc(u, b) # Q!I for all a, b~Obj(C). 

Let J1 denote the variety of finite idempotent and commutative monoids. Simon 

showed that a category C divides an element of J1 if and only if each of the base 

monoids Homc(u, a) is in J1. (Simon’s original work [16,5] makes no reference to 

categories, but the principal combinatorial lemma in this work is easily equivalent to 

the assertion about categories.) 

The structure of the base monoids alone is not sufficient to determine whether 

a given category C divides a finite $-trivial monoid. Knast [12] gives an effective 

criterion for this based on the structure of the two-object subcategories of C. More 

precisely, C divides a finite 2-trivial monoid if and only if there exists n > 0 such that 

for all a, beObj(C), and all U, vEHomc(u,b), x,ygHomc(b, a), 

(ux)“uy(vy)” = (ux)“(vy)“. 

If this condition is satisfied, then taking a = b and u = v =y= 1, shows that each 

monoid Homc(u,u) satisfies the identity xn=xnfl. It follows that the above condition 

is satisfied with n no larger than the maximum of the cardinalities of the monoids 

Homc(u, a). Thus, one can verify effectively if the condition holds in a given category. 

Let A be a finite alphabet, M, N finite monoids, and 9: A* +M, $: A* + N 

morphisms, with cp surjective. There results a relational morphism y = cp - ’ $ : M + N. 

The derived category of this relational morphism has A*$ as its set of objects. Arrows 

from wlc/ to (WV)+ will be defined as equivalence classes of triples 

(4, v, (WVML 

where u, WEA*. Two arrows are multiplied according to the rule 

Two arrows (w$, u,,(wu~)$), (w$, uz,(wuz)$) are identified if for all w’ such that 

w’$ = w$, one has (w’ul)cp = (w’u~)(P. It is straightforward to verify that the multipli- 

cation of triples yields a well-defined associative multiplication on equivalence classes, 

and that the equivalence class of (w$, 1, w$) is the identity at the object w$. The 

resulting category is denoted as D,. We shall denote the equivalence class of a triple 

(w$, v, (wv)$) by [wrl/, v, (wv)$]. The definition given here is equivalent to the one 

given in [24], where the notion of derived category was first defined. The principal 

result concerning the derived category is the following: Let V and W be varieties of 

finite monoids. The product variety V * W is the variety of finite monoids generated 

by all semidirect products S * T, where SEV, TEW. Then MEV * W if and only if there 

exists a relational morphism ye : M + N with NEW such that D, divides a monoid in V. 



166 H. Straubiny, P. Weil 

We can associate with the relational morphism r~ : A4 + N another category, called 

the kernel of y. Here the objects are pairs (w,$, w,$), where wl, w~EA*. A triple 

((w$, (nx)$), u> ((wn)$, x$)) 

represents an arrow from (w$, (ux)$) to ((wu)$,x$). Two such triples, with middle 

coordinates u1 and u2, are identified if and only if for all w’, x’EA* with w$ = w’$, 

x$ =x’$, one has (w’u, x)~ =(w’u~x)~. Multiplication of triples is given by 

Once again, this induces a well-defined multiplication on equivalence classes, and 

results in a finite category K,, which is called the kernel of y. 

Let V and W be pseudovarieties of finite monoids. We define V ** W to be the class 

of all finite monoids M for which there exists a relational morphism q : M + N with 

NEW and K, dividing a member of V. It is easy to show that V ** W is 

a pseudovariety. Indeed, there is a two-sided version of the semidirect product with 

respect to which the kernel plays the same role as the derived category plays with 

respect to the semidirect product. V ** W can then be defined in terms of this 

two-sided semidirect product, in which case the above definition of V ** W becomes 

a theorem. See [14]. We note that K, <II,, so that V * W G V ** W. 

2.3. The associated category 

In [22] a category C(M) is defined for each monoid M as follows: Obj(C(M)) is the 

set of idempotents of M, and there is an arrow from e to f labelled by an element s of 

M if and only if e and s can be expressed as products of elements that are above fin 

the y-ordering on M. Unfortunately, the existence of an arrow from e to f and an 

arrow from f to g does not imply the existence of an arrow from e to g. Thus this 

“definition” does not really define a category. 

To obtain the decidability results of [22], we must go back to an earlier version [21] 

of this paper, and use the category defined there: Let M be a finite monoid and let 

cp : A * + M be a surjective morphism from a free monoid into M. If WE A *, wtl denotes 

the set of letters of w. The objects of the category C(M, cp) are pairs (e, X) where eeM 
is idempotent, X G A, and there is a word WEA* such that wcp =e and wc~=X. 

There is an arrow ((e, X), w, (JT Y)) f rom (e,X) to (JT Y) labelled by WEA* if and only 

if Xuwcc=Y. Arrows ((e,X),w,,(J; Y)) and ((e,X),w,,(f, Y)) are identified if 

e * w1 cp *f= e * w2 cp *f: (Thus an arrow in this category is actually an equivalence class 

of triples.) The product of arrows is defined by 

where UEA* is any word such that ucp =f and uc( = Y. Now it can be verified that this is 

a well-defined associative multiplication on equivalence classes of triples, and that the 
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equivalence class of ((e, X), 1, (e, X)) is the identity arrow at (e, X). Thus, C(M, cp) is 

a category. 

We note two properties of the category C(M, ~0) with respect to division. First 

let cp: A*-+M, $: M+N be surjective morphisms, with M, N finite. Then 

C(N, cp$)< C(M, cp). The map on objects is defined by covering (n,X) with any 

(ucp, X), where UC( =X and ucp$ =n. An arrow represented by ((n, X), u,(n’, Y)) is 

covered by the set of all arrows represented by triples of the form ((m, X), w, (m’, Y)), 

where (m, X) covers (n, X), (m’, Y) covers (n’, Y), and ((n, X), w, (n’, Y)) is equivalent to 

((n,X), v,(n’, Y)). It is then straightforward to verify that the definition of category 

division is satisfied. 

Second, let cp : A*+M, $ : B*+M be surjective morphisms. Then C(M, cp) and 

C(M, $) are equivalent. To see this, observe that there is a morphism ‘1: A*+B* such 

that q$=cp. We can cover the object (m, X) of C(M, cp) by 

and the arrow represented by ((m, X), w, (m’, Y)) with the arrow represented by ((m, X), 

wy, (PI’, Y)). Again one verifies easily that this is a division. Division in the other 

direction is proved in an identical manner. This last result is particularly important, 

for while the category defined here requires that one specify a system of generators for 

M, the equivalence class of the category is independent of this choice of generators. 

2.4. The characterization of dot-depth tbvo 

Let CJ denote the class of finite monoids M such that C(M, cp) divides a &-trivial 

monoid, where cp is a morphism from a free monoid onto M. By the remarks at the end 

of the preceding subsection, this property depends only on M and not on the 

particular morphism 40. The principal results of [22] can then be stated as follows. 

Theorem 2.1. V, c CJ. 

Theorem 2.2. If MECJ is generated by two elements, then MEV,. 

The proof of these results given in [22] uses the incorrect definition of the 

associated category. We indicate here the minor modifications that must be made in 

order to obtain correct proofs. In what follows, we shall make free use of the notation 

and terminology of [22] without giving the definitions. 

The crucial step in the proof of Theorem 2.2 is showing that if M is a 

Schutzenberger product of idempotent and commutative monoids then MECJ 

([22], Lemma 3.2). Let 

q:A*-+M=O(M1,...,Mk), 
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be a surjective morphism and let 

be the projection morphism. Since M, x ... x MR~ J1, uc( = VCI implies ucplc/ = vcp$. Now 

observe that if (e, X) and (L Y) belong to the same strongly connected subcategory of 

C(M, cp), then X = Y. Thus, there exist u, VEA* such that uc( = VCI, ucp = e, and vcp =f: 

Thus, e$=f$. The proof that M&J now proceeds exactly as in [22]. 

The proof of Theorem 2.2 requires that we modify Lemma 5.4 of [22]. This lemma 

should now read: 

Let 40 : {a, b}*-+M be a surjective morphism, with MECJ. Let y = ‘p-l E. Then 

the derived category D, divides a jinite &-trivial monoid. 

(The congruence z is defined in [22].) 

The proof then proceeds as that of the original: It is sufficient to verify that each 

strongly connected component of D, divides a finite y-trivial monoid, and it is 

therefore enough to consider the subcategory of D, whose objects are all the w E such 

that w has more than 2T blocks. One must now show that this subcategory D divides 

C(M, cp). The map on the objects is defined by: Let w = uv be the standard factoriz- 

ation, and e the associated idempotent. Then w E is covered by (e, {a, b}). Let wl, w2 

be words with at least 2T blocks, with standard factorizations urvr, u2v2 and 

associated idempotents e,, e2, respectively. The arrow [w, %‘,x, w2 E] is covered by 

the set of all equivalence classes of triples ((el, {a, b}),z,(e2, {a, b})) such that 

zcp~er Mez, and for all WZW, with standard factorization uv, (wx)(P=(uzv~)(P. The 

proof that this is indeed a division now proceeds exactly as in [22]. 

2.5. The fundamental conjectures 

Let DA denote the variety of finite monoids in which every regular 2-class is 

a rectangular band. It is not difficult to show the following proposition. 

Proposition 2.3. J ** DA G V, G CJ. 

A consequence of the proof given in [22] is that for monoids generated by two 

elements, these three classes coincide. It was, thus, conjectured that the three classes 

coincide in general. 

Old Conjecture 2.4. J **DA = V2 = CJ. 

As we shall soon show, this conjecture is false. It remains an open question, 

however, whether Theorem 2.2 holds in general. 

Conjecture 2.5. CJ = V2. 
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3. The dot-depth of inverse monoids 

In the next sections we are going to prove that Conjecture 2.4 holds if A4 is an 

inverse monoid with 3 inverse generators. In preparation for this proof, we shall prove 

in the present section that for inverse monoids Conjecture 2.4 has a particularly 

simple form. Let us first review a few classical facts about inverse monoids. 

3.1. Inverse monoids 

Recall that a monoid M is said to be inverse if and only if, for each rnE M, there exists 

a unique rn’c M such that mm’m = m and m’mm’ = m’. Then m’ is called the inverse of 
m and is denoted by m-‘. The following facts are well known [lo]. 

Proposition 3.1. Let M be a monoid and m, m’EM. 
(1) Zf M is inverse, then (m-‘)-‘=m and (mm’)-‘=m’-‘m-l. 
(2) M is inverse if and only if M is regular and the idempotents commute in M. 
(3) If M is inverse, there exists a unique idempotent e (f) that is W- (Y-) equivalent to 

m, and e=mm-l (f-m-‘m). 
(4) If M is a monoid of partial one-to-one transformations on a set Q and if, for each 

transformation mfrom Q1 onto Q2 in M (Q1, Qz G Q), m-l : Q2+Q1 is also in M, then 
M is an inverse monoid. In that case, the idempotents of M are exactly the partial 
identities in M. 

The class of examples of inverse monoids mentioned in Proposition 3.1(4) above is 

very general, as is shown by the classical Preston-Vagner Theorem, which states that 

every (finite) inverse monoid is a submonoid of the monoid of one-to-one partial 

transformations on a (finite) set Q. 

In fact, from a variety-theoretic point of view, the study of inverse monoids is 

equivalent to the study of certain automata. Let us first turn to a few definitions and 

conventions regarding the presentation of inverse monoids. Let A be an alphabet and 

A= {a) ae A}. We define an involution on (Au A)* by setting, for all UE(A uA)* 

and aEA, i = 1, ua = titi and uZ = ati. So, if M is an inverse monoid and cp : (A u A)* + M 

is a monoid morphism such that Zcp = (acp)- ’ for all agA, then, for all u@AuA)*, 

Uqo = (u~)~ ‘. If cp is onto, we shall say that Aq is a set of inverse generators for M. Note 

that M is generated by (A u A)cp in the usual sense. 

We shall call a connected deterministic automaton d over the alphabet Au 2 an 

inverse automaton over A if each letter induces a partial one-to-one transition function 

on the state set and if, for all aE A, C? induces the reciprocal transformation of the one 

induced by a. Then, for all UE(A u A) *, the transition induced by u is a partial 

one-to-one function and its reciprocal function is the transition induced by U. By 

Proposition 3.1, the transition monoid of d is inverse. When drawing an inverse 

automaton over A, we shall avoid drawing the edges labelled by barred letters. The 

following result is proved in [13]. 
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Proposition 3.2. Let ,JZ! be an inverse automaton. Then JZI’ is the minimal automaton of 
the language it recognizes. 

By Proposition 3.1(4), the transition monoid of an inverse automaton is inverse. 

Proposition 3.3 below provides us with a weak converse. 

Proposition 3.3. Let p : A* + M be a morphism onto an inverse monoid. Then there exists 

a family (&i)isI ofinverse automata over A, with transition monoids Mi, and there exists 
a submonoid N Of niEI Mi such that M is isomorphic to N, and the projections of N into 
each Mi are onto. If M is jnite, then I can be chosen to be jnite, as well as the di. 

Proof. Let R be an &??-class of M, and let -QI, be the automaton with state set R and 

edges shown in Fig. 1, where r and r(ap) lie in R. Then dR is an inverse automaton. 

Indeed, by definition of 2, it is trivially connected. Now, let UEA* be the word such 

that up=(ap)-‘. We must show that r(a,u)(up)=r. Since r 92 r(ap), we have 

rr-l =r(au)pr-‘. So 

r(au)p=rr-’ r(au)p=r(au)pF1r(au)p. 

But r- ’ r and (au) p are idempotents of M. So 

r(au)p=r(au)pr-‘r=rr-‘r=r. 

Let ~1~ : A*+MR be the transition morphism of A$‘,. To conclude the proof, it 

suffices to show that, for each u, VE A*, up = up if and only if upR = vpR for each g-class 

R of M. By definition of dR, it is immediate that if u~=v,u, then u and v induce 

the same transition in dR. Let us now assume that u and v induce the same trans- 

formations in all the dR’s. In particular, since u,u&Y up(up)-’ and up3 vk(v,~-~, 

we have (uy(u,u-‘)v~=(u~(u~)~l)u~=u~ and (v~(v~)-l)u~=(v~(v~)-l)v~. So 

up d Y VP Gip up, i.e. U,U 2 v,u. This implies (up)-l UP = (VP)- ’ up. But, by the first part 

of this proof, if u’ and v’ are words such that u’p=(u~)-~ and v’,u=(v~)- ‘, then 

(use)- ’ = u’p and (vpR)- ’ = v’p for each R. So the transformations induced by u’ 

and v’ also coincide in each dR. Thus, (U/A-’ =(up)-‘u~(u’~)=(u$‘u~(v’~) 

=(v~)~‘vy(v~)-‘=(v~)~l and, hence, up=vp. 0 

The monoids MR above are sometimes called the right Schiitzenberger repre- 
sentations of M. For a complete study of the automata -02, and their use in the 

solution of word problems, see Stephen’s work [18,19]. 

Fig. 1. 
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3.2. Conjecture 2.4 for inverse monoids 

Let us first consider the categories of the form C(M,q) when M is an inverse 

monoid. 

Proposition 3.4. Let M be an inverse monoid. Then MECJ if and only if for each 

idempotent e of M, eM,ecJi. 

Proof. Let cp : (A u ii)* +M be an onto morphism such that acp = (acp)- ’ for all a in A. 

It is easy to check that the base monoid of C(M, cp) at object e (eEE(M)) is exactly the 

submonoid eM,e of M. So, if C(M, cp) divides a 2-trivial monoid, then each eM,e is 

f-trivial. Now, by definition, if mGM,, then rn_lEM,, so that M, is an inverse 

semigroup, and eM,e is an inverse monoid. Thus, eM,e, being both inverse and 

f-trivial, lies in J1. 

Conversely, let us assume that eM,eEJi for each idempotent e of M. Then, by 

Simon’s result mentioned in Section 2.2 above, C(M, cp) divides a $-trivial monoid 

and, hence, MECJ. U 

Let W be the M-variety of all monoids M such that eM,eEJi for each idempotent 

e of M. Then the restrictions of Conjecture 2.4 to the case of inverse monoids are given 

by the following conjecture. 

Conjecture 3.5. Let M be an inverse monoid. Then MEV, g and only if MEW, if and 

only if ME J ** DA. 

We now turn to a detailed study of the inverse monoids in W. 

By Proposition 3.3, each inverse monoid M is a subdirect product of a 

family of inverse monoids Mi (1 < i < n), each of which is the transition monoid of 

some inverse automaton. It is then clear that M lies in V, (W) if and only if each of the 

Mis does. Note also that if M has k inverse generators, then so does each Mi. Thus, it 

is enough to work on monoids that are the transition monoids of inverse automata. 

So we need to characterize the W-inverse automata, that is, the inverse automata 

whose transition monoid is in W. Let ZX! be an inverse automaton over the alphabet A, 

with state set Q, M its transition monoid, and ,u the canonical projection from (Au A)* 

onto M. For each WE(A u A)*, we let 0% (o$) be the set of letters a of A uA (A) such 

that a (a or 5) occurs in w. This defines onto morphisms c(: (A uA)*+~~~’ and 

/I: (A u A)*-+2A. Note that fl factors through c( and that w/I= W/I for each word 

WE(‘4 u A)*. 

Lemma 3.6. The following conditions are equivalent. 

(1) MEW. 

(2) If wE(A u A)* and both q.w and q’.w are defined in d (q, q’EQ), and if there exists 

u@AuA) such that ~$5 ofl and q.u=q’, then q=q’. 
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Proof. If MEW and both q.w and q’.w exist, then e=(~G)p is an idempotent and 

q. WW = q, q’.wW=q’. Further, for each letter a of wp, e</ up and e 6, ZF, that is, a~, 

@EM,. So, if ufi:~ w& u,u~M,. If u is such that g.u==q’, then q.(wWuwW)=q’ and 

(wC~wG)p=e(uy)e~eM,e. Thus, if MEW, then e(up)eEE(M). By Proposition 3.1, this 

implies that WWUWW induces a partial identity of Q, so that q=q’. 

Conversely, assume that &’ satisfies (2) and let eEE(M). Also let mEM,. Then 

m=ml . . . m, for some ml,. , m, such that e 6, mi (1 < i < n). For each i, there exist Ui, 

vi, wiE(A uA)* such that e=(uiviwi)p and mi=uip. Therefore, e=vp and m= W/L, 

where v=vl . . . v,, and w=ulvlwl...u,v,w,. Let q be a state such that q.(wvw) is 

defined in &‘. Then, since e is idempotent, q. w = q and q’. w = q’, where q’ = q.v. Since 

up G wfi, we have q = q’ and, hence, q .(wvw) = q. So eme is a partial identity of Q, that 

is, eme is an idempotent of M. Finally, the idempotents of M commute since M is 

inverse, so that eM,eEJ1. 0 

If B c A and qEQ, it makes sense to consider the B-connected component W of q in 

d. This component W consists of all paths containing q and labelled by words in 

(Bu B)*. Let Q,d be the state set of 98 and let p’r be the transition morphism of B. Since 

,D~ factors through the restriction of ,u to (B u B)*, M, divides M. In particular, if ,& is 

a W-inverse automaton, then so is W. 

Lemma 3.6 implies the following property. 

Corollary 3.7. Let d be u W-inverse uutomaton. For all qEQ and UE(A VA)*, q.u2 

exists if and only if q.u = q. In particular, ijrn~M and m2 # 0, then m2 = m. 

Proof. If 4.u = 4, it is clear that q.u2 exists, and is equal to 4. Conversely, let us assume 

that q.u2 exists, and let g be the u&connected component of q in SB. Then %Y is 

a W-inverse automaton and both q.u and (g.u).u exist in 99. By Lemma 3.6, this 

implies q=q.u. 0 

Another consequence of Lemma 3.6, which is immediate, is the following. 

Corollary 3.8. Let & be a W-inoerse automaton. Let u~(Au A)* and let 98 be a up- 

connected component of d. If ups # 0, then up, has rank 1, that is, there exists a unique 

state q of Q& such that q.u exists. 

4. Conjecture 2.4 is true for inverse monoids with 3 inverse generators 

Let A1 be the variety of finite idempotent monoids, that is, the variety defined by the 

identity x2 =x. In this section we shall prove the following theorem. 

Theorem 4.1. Let M be an inverse monoid with 3 inverse generators, The following are 

equivalent. 
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(1) MeJl *Al. 

(2) MEV~. 

(3) MEW. 

The implications (1) a(2) and (2) *(3) are true in general by the results of Section 2 

and the inclusion A, G DA. So we need to show that, if M is an inverse monoid with 

3 inverse generators that lies in W, then MEJ~ *Al. 

Note that J, * A, G J ** Al G Vz. So Theorem 4.1 proves that, if M is an inverse 

monoid with 3 inverse generators that lies in W, then it is equivalent for M to be in V2 

(W) and in J ** DA, thus proving Conjectures 2.4, 2.5 and 3.5 in this particular case. 

Let us mention that parts of this theorem were proved before. In the case of an 

inverse monoid M with a single inverse generator, it is a consequence of a result by 

Brzozowski and Fich [3] that MEW if and only if MEJ~ * L. This implies the 

equivalence (2)0(3). Also, it is a consequence of a result by Straubing [21,22] that, for 

such a monoid M, MEV, if and only if MEJ * L. The equivalence (2)0(3) was also 

proved by Weil [26] in the case of an inverse monoid with 2 inverse generators. The 

mechanism of the proof in [26] was very different from the one presented here. 

Before proving Theorem 4.1, let us review some facts about free bands. Let A be 

a finite alphabet and let y :(A uA)* +FB(A u 2) be the free band over A UP?. It is 

known that FB(A u A) is finite and its word problem was solved in [9,8]. Let FIB(A) 

(the free inuolutorial band over A) be the quotient of FB(AuA) by the congruence 

generated by the pairs of the form ((wWw)y,wy) (w@AuA)*) and let 7c be the 

canonical projection of (A u A)* onto FIB(A). 

Since FB(A uA) is finite, so is FIB(A). We shall be interested in the solution of its 

word problem. For each WE(A u A)* that is not the empty word, we let w(0) (w(1)) be 

the longest prefix (suffix) of w whose P-image is not wfi. Let also w(O) (w(1)) be the 

letter that occurs in w immediately to the right of w(0) (to the left of w(1)). 

For instance, if w =abkzbct%Eu, then w(0) = abbab, w(O)=c, ?(l)= 6 and 

w(l)=caca. 

Proposition 4.2. Let w, w’E(A u A)*. If wn=1,thenw=1.Ifw,w’#1,thenw~=w’~~if 

and only ifwP=w’P, w(O)7c= w’(O)7r, s(o)=g(o), w(1)7c= W’(l)X and w(l)=$(l). 

This solves the word problem for FIB(A) by induction on IwbI. In particular, we 

have the following corollary. 

Corollary 4.3. Let wc(A u A)* and w # 1. Then w7c is characterized by the 4-tuple [w(O), 

w(O), w(l), w(l)l, and w~=(w(O)~(O)w(l)w(1))~. 

In order to prove Theorem 4.1, we need to show that, if M is an inverse monoid with 

3 inverse generators that lies in W, then MEJ, * Al. We have seen that it suffices to 

show the result when M is the transition monoid of some inverse automaton. So let 

G!’ be a W-inverse automaton, and let M be its transition monoid. We use the notation 

of Section 3. 
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Lemma 4.4. Zf UE(A WA)* and u/I= {a}, then there exists a unique v in {a, a&, a, 5~) 

such that u7c=wc. Furthermore, for each q in Q, if q.u exists, then q.v exists and 

q.u=q.v. 

Proof. By Corollary 4.3, urr is characterized by a 4-tuple of the form [l, x, y, 11, where 

x, YE {a, a}, and ux = (xy)~. We let u = x if x = y, v = xy otherwise. Then, since FIB(A) is 

a band, u~=urc. Also note that, by definition of u(0) and u(1) and by Corollary 3.7, 

u = uu’= u”v for some u’, u”E(A uA)*. Now let qEQ such that q.u exists. Then q.v 

exists and, by Corollary 3.8, q’=q.u is the only state in the {a}-connected component 

of q in & such that q’.V exists. Thus, q.v=q’=q.u. 0 

The main combinatorial tool of the proof of Theorem 4.1 is the following 

proposition. 

Proposition 4.5. If 1 uj? d 3 and WC = U’TC, and if 59 is a @-connected component of 

~2 such that up, # 0 and U’,LL~ # 0, then up& = u’P,~. 

Proof. Recall that, by Corollary 3.8, up, and u’p,# both have rank 1 if they are not 0. 

So it is enough to show that up,# and u’p,& have the same domain and the same range. 

If u/I = 8, then u = 1 = u’ and the result is trivial. 

If up= {a>, by Lemma 4.4, there exists a prefix v of u such that, for all qEQ, if q.u 

(q.u’) exists, then q.u=q.u (q.u’=q.v). By Corollary 3.8, there exists at most one state 

q in Q, such that q. v exists. So, if up& # 0 and u’p& # 0, we have upLd = vpLd = u’~~. 

If IupI=2, then u(O)p=u’(O)p and u(l)fi=u’(l)p are singletons. Let y = g(O) = g’(O) 

and z=g(l)=&(l). In particular, (u(O)y)p, (u’(O)y)b, (zu(l))p, (zu’(l))fi and u’p are all 

equal to ufi so that, by Corollary 3.8, u,u#, u’p,, (u(O)y)~,~, (u’(O)y)~~, (zu(l))~,~ and 

(zu’(l))p, all have rank 1. So we have 

qr.n(O)Y=q,, q,.zu(l) = q4, 41-u=q4> 

4;.u'(o)Y=q;, q\.zu’(l)=qk, qi.u’=qk, 

for elements ql, q;, q2, q;, q3, q;, q4, qk uniquely determined in Q,@. Now let v. (vi) be 

the word associated with u(0) and u’(0) (u(l) and u’(1)) by Lemma 4.4. Then we have 

q1*vo4‘=q2, q3.zc1=94, 

dl.voy=q;, q;.zv*=q;. 

By Corollary 3.8, this implies q1 =q; and q4=qk, so that UP, and u’,u~ coincide 

with the transformation of Q, that maps q1 on q4. 

Finally, let us consider the case where lu/j = 3. Let x =g(O)=g’(O) and 

y=u(l)=$(l). Recall that u(O)Z=U’(O)X, u(l)rc=u’(1)7c and lu(O)Pl=Iu(l)BI=2. 

Then let x” = u(O)( 1) = u’(O)(l), y” = u(l)(O) = u’(l)(O) and x’ ( y') be the unique element 

u(O)(l)/? (u(l)(O)p) (see Fig. 2). Finally, let vol (ziio) be the word associated with u(O)(l) 

and u’(O)(l) (u(l)(O) and u’(l)(O)) by Lemma 4.4. 
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Fig. 2. 

If up, # 0 and u’~,~ # 0, then u~,~, u’~~, (x”u(O)(l)x)P& (x”u’(O)(l)x)K#, 
(Yu(l)(O)y”)p, and (yu’(l)(O)y”),~, all have rank 1 by Corollary 3.8. So we have 

q1.x”u(0)(l)x=q2, q,.Yu(l)(O)Y”=% 

q;.x”u’(o)(l)x=q;, q\.yu’(l)(O)y” = 6, 

for elements ql, q;, q2, q;, q3, q;, q4 and qk uniquely determined in Q,. By 

Lemma 4.4, this implies 

q1.x”%1x=q2, 43.Y~lOY" =q4, 

q;.x”o()lx=q;, q;.Y~lOY” =qk 

and, hence, by Corollary 3.8, q2 = q; and q3 = qj. 

Then let ‘% be the (x’x”)fi-connected component of q2.X. Then u(O)p% #O 

and u’(O),U~ # 0, so that ~(0)l-l~ and u’(O),U, both have rank 1 and are equal, by the 

(1 u/l I= 2)-case above. Thus up,# and U’P& have the same domain. Also, let 9 be the 

(y’y”)p-connected component of q3.y. Then u(l)pLy # 0 and u’(1)p9 #O and, hence, as 

above, u(l),~, and u’(l)p, both have rank 1 and are equal. Thus, upLI and u’p& have 

the same range, which proves that up,=u’p,#. 0 

Proof of Theorem 4.1. Let z =p -’ 7~. Then, z is a relational morphism, and the 

diagram shown in Fig. 3 commutes. 

By Section 2.2, in order to prove that MEJ~ *Al, it is enough to show that D, 
divides an element of J1, and by Simon’s result, this will be done if we prove that each 

base monoid of D, lies in J1. It is not difficult to see that each of these base monoids of 

D, divides M and, hence, has commuting idempotents. So it suffices to prove that each 

base monoid of D, is idempotent, i.e. that, if w, w’E(A u A)* and (ww’)~ = wrc, then 

(“W’2)P = (ww’)p. 

(Au A)’ 

I .1--- FrB(A) 
A4 

Fig. 3 
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Since we are assuming that I A I d 3, we may use Proposition 4.5. Let g be any 

w/&connected component. First, it is clear that if wp&=O, then (ww’)p#=O. Now, if 

w,u& # 0 and (ww’)~~ # 0, then w,u&= (ww’)~,~ by Proposition 4.5. So (ww’)~ is a re- 

striction of wp, that is, for each ~EQ, if q.ww’ exists, then q.ww’=q.w. So if q.ww’ 

exists, then q.ww” exists and q.ww”- - q.ww’. Thus, since the existence of q.ww” 

implies the existence of q.ww’, we have proved that (ww’)~=(ww’~)~. 0 

5. Some strict inclusions 

We shall make the statement of Theorem 4.1 more precise in the case of a 2-letter 

alphabet. Then we shall give examples of inverse monoids that illustrate some strict 

inclusions. In particular, we shall construct an inverse monoid with 4 inverse gener- 

ators, that is in W and not in J ** DA. This will prove that Theorem 4.1 cannot be 

extended to the 4-generator case, and also that the strong conjecture is false or, 

equivalently, that one of the containments J ** DA G V2 and V2 G CJ is strict. 

5.1. A refinement of Theorem 4.1 

Let L, (R,) be the M-variety of _Y- (BY-) trivial idempotent monoids. Over each 

finite alphabet A, AI (R,, L1, RI v L,) has a finite free object ~c~:A*+FB(A) 

(7~~: A*+FRB(A), 7~~: A*+FLB(A), zRL: A* +FRLB(A)) [9]. Note that Ri and 

Li are the smallest idempotent M-varieties strictly containing J1 [27]. The solutions 

of the word problems for FB(A u A), FRB(A u A), FLB(A u 2) and FRLB(A u A) are 

similar to Proposition 4.2, but we need to modify our notations slightly. 

In this section, for each WE(A u A)*, we shall denote by w(0) (w( 1)) the longest prefix 

(suffix) of w whose a-image is not WE, and by ~(0) (w( 1) the letter of A u 2 that occurs 

in w immediately to the right of w(0) (to the left of w(l)). The difference from the 

definitions in Section 4 is that, here, no link whatsoever is established between the 

letters a and a, while in Section 4, a and a played equivalent roles in the determination 

of w(0) and w(1). Then we have [l l] the following lemma. 

Lemma 5.1. Let u and u’ be in (Au A)*. 
(1) urcg=u’ng ifand only ifua=u’cc, u(O)~,=U’(O)~~, g(O)=zJ(O), u(l)=&(l) and 

u(l)rc~=u’(l)n~. 

(2) u7cR = u’znR if and only if UN = U’CI, u(0)xR = u’(0)xR and g(O) = g’(O). 

(3) u7cL=u’nl. ifand only ifuc~=u’cc, u(l)zL=u’(l)rcL and g(l)=g’(l) 

(4) urcRL= u’rrRL if and only if uzR =u’zR and u7cL=u’nL. 

One can modify Lemma 4.4 and the proof of Proposition 4.5 in the (I up I=2)-case 

by replacing rt with 7tRL, thus showing the following theorem. 
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Theorem 5.2. Let M be an inverse monoid with 2 inverse generators. The following are 

equivalent. 
(1) MEJ, *(RI v L,). 

(2) MEV,. 

(3) MEW. 

We now turn to the construction of a few examples of inverse monoids. By 

Theorem 5.2, if M has 2 inverse generators and MEW, then MEJ, *(RI v L,). 

Example 5.5 will be of a 2-generated inverse monoid in V2 that is neither in Al ** RI 

nor in A 1 ** L1 (and, hence, neither in AI * R 1 nor in Al * L,). Also concerning 

Theorem 5.2, we shall give in Example 5.6 an example of a 3-generated inverse 

monoid in W that is not in Al **(RI v L,) (and, hence, not in AI *(RI v L,)). 

For both these examples, we are going to need the following two results. 

Lemma 5.3. Let cp : S-+ T be an onto relational morphism, and let $ : F+ T be an onto 

morphism (see Fig. 4). Let z = cp$ - ‘. Then D, divides D, and K, divides K,. 

Proof. The construction of the division 6: D,< D, is as follows. The object 

map 6 : Obj(D,) = F1 -+Obj(D,) = T 1 is given by fS =f$ for each ~EF. For each fi , 

~,EF I, the arrow-set relation 6 from Horn n,(fi, f2) into Homnp(fi$, f2 $) is given by 

(fr, [s,f])s=(fr$, [s,fi]) for each seS and f~sz such that fif=f2. The division 

6’ : K, < K, is constructed similarly. 0 

Corollary 5.4. Let V and W be M-varieties, and assume that V has a finite free object 
x : B* +F over some finite alphabet B. Let u : B *+M be an onto morphism and let 

z=/.l - lrt. Then the following are equivalent. 
(1) MEW * V (W ** V). 

(2) There exists a relational morphism cp : M-F such that D, (K,) divides a monoid 
in W. 

(3) D, (K,) divides a monoid in W. 

Proof. (3)-(2) is trivial and (2)*(l) is a consequence of the results mentioned in 

Section 2.2. 

S 
cp - T 

Fig. 4. 
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Now let us assume that MEW * V (W ** V). Then, there exists a relational mor- 

phism rp : M+ T such that TEV and D, (K,) divides an element of W. For each bEB, 
let us choose ba in bpcp. This defines (see Fig. 5) a morphism (T from B* into T such 

that a=p~cp; hence, ~-‘a c cp. Thus, p-lo is a restriction of cp, B*~-lo=B*a~V and 

Dp-lo (Kp-lb) is a subcategory of D,(K,), so that D,-1,4D, (K,-1.<K,). So we 
may assume that c is onto and 9 = p- ’ c. Since TEV, there exists an onto morphism 

$ : F+ T such that G = z$. 

Then, we have T=~~~x=(P~-~ 7~ = cpll/- ’ since all the morphisms are onto. By 

Lemma 5.3, this implies D, < D, (K, < K,); hence, D, (K,) divides a monoid in W. 0 

Example 5.5. Let p : (A u ii)*-+ M be the transition monoid of the inverse automaton 

shown in Fig. 6. It is easy to see that MEW, by Lemma 3.6. Let T =p-rzL (Fig. 7). Let 

wl,w and w2 be the following words: 

w 1 = ab6b, w=abb, - - w2 = bbba, 

By Lemma 5.1, we have(w, w)zL=wlzLand (ww2)7rL=w27rL. So s=(w,Tc~, [wi, wrcL], 

w27rL)isinHomK~((w,7rL,w27rJ). But (w,~~~)~#Oand(w~w~w~)~=O,so that s#s2. 

Thus, K, does not divide an idempotent monoid and, hence, M$A, ** Ll. 

B' 
R 

*F 

M 
‘p * T 

Fig. 5. 

Fig. 6 

(AU A)’ 

p -.- FLB(A) 
M 

Fig. 7 
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Fig. 8. 

(AU A)’ TRL 
- FRLB(A) 

c1 

I / 

T 

M 

Fig. 9. 

Similarly, we can prove that M$A1 ** RI. The proof is the same, where we replace 
-- 

nL by rtl, wi by Ebbb, w by 5bba and w2 by bbbti. 0 

Example 5.6. Let p : (A u A)* +M be the transition monoid of the inverse automaton 

shown in Fig. 8. It is easy to check, using Lemma 3.6, that MEW,. Let r = pL- ‘rrRL 

(Fig. 9). Let wi, w and w2 be the following words: 

w1 = bbbaaacc, w = ccaacb~batia~c~, w2 = cccaacbb. 

By Lemma 5.1, we have(w, ~)~~~=w~n~~and(ww,)n,,=w,7c,,. Sos=(wlnRLI [ww 

w7cRLI, w271RL) is in Hm$((W1nRL, w271RL )).But(w1wwz)~#Oand(w,~2~2)~=0,~~ 

that s#s2. Thus, K, does not divide an idempotent monoid and, hence, 

M$Ai **(RI v L,). 0 

5.2. Inverse monoids with at least 4 inverse generators 

In this section, we shall exhibit an inverse automaton over a 4-letter alphabet whose 

transition monoid is in W but not in J ** DA, thus proving that Conjecture 2.4 does 

not hold in general. The proof of this fact requires the following results concerning the 

M-variety DA, due to Fich and Brzozowski [7]. 

Let A be a finite alphabet. For each WEA* and n > 1, we let wp,, be the set of all 

subwords of u of length at most n: 

WY,= {al . ..aJkdn.aiEA, 3u0 ,..., U,EA*,w=Ugalul...akuk). 

In particular, wpi = wa is the alphabet of w. We say that w is n-full if wp,, = u I= o(wa)i, 

that is, if the set of subwords of w of length n is as large as possible (with respect to the 

size of the alphabet of w). 



180 H. Straubing, P. Wed 

Following Fich and Brzozowski [6], we define =n to be the least congruence 

satisfying: 

For all U, u, WE A* such that UCI E UCL = wc( and u and w are n-full, 

we have uvw --n uw. 

Then, we have [6] the following theorem. 

Theorem 5.7. Let p: A*-+M be an onto morphism. Then the following are equivalent. 

(1) MEDA. 

(2) eM,e=e for each idempotent e of M. 

(3) 24 E n v implies up = up for some n 3 1. 

Then, similar to Corollary 5.4, we can prove the following corollary. 

Corollary 5.8. Let V be an M-variety and let p: A*+M. Let also X, be the canonical 

projection from A* onto A*J=, and let z,=pL1z,. Then the following are equivalent. 

(1) MEV*DA (V**DA). 

(2) There exists a relational morphism cp: M+A*I=, such that D, (K,) divides an 

element of V for some n. 

(3) Dzn (KJ divides an element of V for some n. 

Proof. The proof is very similar to the proof of Corollary 5.4. Implications (3)=~(2) 

and (2) +( 1) are immediate. 

Then let us consider M in V * DA (V ** DA). We know that there exists a relational 

morphism cp : M+ T such that TEDA and D, (K,) divides a monoid in V. As in the 

proof of Corollary 5.4, we may assume that there exists an onto morphism o : A*+ T 

such that (p=p-lo. Then, by Theorem 5.7, there exists an onto morphism 

Ic/ : A*/ E ,,+ T such that g= rr,,$ for some n (see Fig. 10). 

Then, we have t,=~L’rr,,=~o~lrc,=~~-l since all the morphisms are onto. By 

Lemma 5.3, this implies D,,, -=C D, (K,, < Klp) and, hence, D,,, (K,,) divides an element 

of v. 0 

A4 
9 * T 

Fig. 10 
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Fig. 11. 

We are now ready to construct our counterexample to the extension of Theorem 4.1 

to the 4-generator case and to the strong conjecture. 

Example 5.9. Let A = {a, b, c, d} and let p : (A u A)*+M be the transition monoid, 

over A, of the inverse automaton shown in Fig. 11. 

Again, using Lemma 3.6, it is easy to see that MEW. For all IZ 2 1. let 

u:, = (b&i)” bcb(&cb )“, 

v:, = (bc&)” bcbcb(&b )“. 

Since (bc&)” and (l&b)” are n-full, we have 

u; =,,(bccb)‘@Ecb)” =,,I$. 

Let also 

u:: = (dcC~d)“dcd(&d)“, 

v:: = (dcCd)“dcdcd(&cd )“. 

Similarly, ui = n vi. In particular, the following words, 

r,=(u~v~aii~T~ii~)“, 

r~=(U~u~v~aiiG~)“, 

s,=(u~u~aiiu~i$)“, 

s~=(zT~v~u~atiii~)“, 

are n-full, use all the letters of (A u A)*, and satisfy 

Y” --n&I, r:, Ens:, 

since it is clear that, for any two words z and t, z =n t if and only 

Now let the words w,, u,, x,, v, and y, be defined as follows: 

w,=r,r,, 

u,=r,u’r’ n II, 

I I, x,=rnunvnacav~s~, 

v,=u,w,, 

yn=Xnwn. 
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Fig. 12. 

Then, we have u, -,, r,,rL -,,x, and v, sn r;r, -,,y,; hence, the following 

E .-equivalences hold: 

I 
w,u, E~W,X, Enrvr,, 

w,u,v, -_wW,x,y, Enr,r,=w,, 

-, 
u,w, =n~nwn Enr,r,, 

u,v,w, ~~x,y,w, cnr,r,=w,. 

Let q1 =(w,x,, (x,w,)‘/I,) and q2 =((w,x,,)x~, w,~,). The above =.-equivalences 

mean that we have the picture shown in Fig. 12 in K,,. 

Note, however, that for all k 3 1 

(W,(X,Y,)k(~,V,)kW,)~=(W,X,Y”~,U,W,)~#O, 
while 

since w~x~~~x,v,u,~,w~=w~x,~,x,U,W~U~~~W, and (x,U,)IA=O. 

By Knast’s result (see Section 2.2), this proves that K,” does not divide a 2-trivial 

monoid and, hence, by Corollary 5.8, that M$J **DA. 0 
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