
INFORMATION AND CONTROL 60, 1 -11 (1984)

Two Nonlinear Lower Bounds
for On-Line Computations

PAVOL DORIg *

Slovak Academy of Science

Zvl QALIL *

Columbia University and Tel-Aviv University

WOLFGANG PAUL

IBM, San Jose

AND

RUEDIGER REISCHUK

University of Bielefeld

The following lower bounds for on-line computation are proved: (1) Simulating
two-tape nondeterministic machines by one-tape machines requires I2(n log n) time.
(2) Simulating k-tape (deterministic) machines by machines with k-pushdown stores
requires Q(n log 1/~k+ 1)n) time. © 1984 Academic Press, Inc.

INTRODUCTION

One of the major goals of theoret ical computer science is proving
nontrivial lower bounds on the (time or space) complexi ty of specific
problems. Unfortunately, despite continued research effort for the last ten
years, the success in proving lower bounds has been minimal. The only
known general lower bounds are at least exponential [2, Chap. 1 1]. For no
specific problem in NP can we prove a nontrivial lower bound on its t ime
complexity. Being unable to prove general lower bounds, researchers
considered restricted models of computa t ion or restricted versions of lower
bounds. Here are a few examples:

* Research supported by National Science Foundation Grant MCS-8303139,

1
0019-9958/84 $3.00

Copyright © 1984 by Academic Press, Inc.
All rights of reproduction in any form reserved.

2 DURIS ET AL.

- - S t r a i g h t line programs

- - D e c i s i o n tree model

- - Monotone circuits

- - On-line computation

- -Time-spece trade-offs: lower bounds on time given upper bounds on
space

- - F o o l i n g automata: showing that certain automata cannot accept
certain languages.

As a result of restricting the problem, it has been possible to prove some
lower bounds in these restricted models. However, even in these cases results
are nontrivial and many open problems exist.

There are several reasons why we try to prove restricted lower bounds.
Sometimes the attempts to prove restricted lower bounds bring about the
discovery of interesting techniques that may be useful elwewhere. The study
of restricted lower bounds enables us to determine how far our current
techniques and their refinements can bring us. It helps us to identify the
simplest problems, where current techniques fail. Once these problems are
identified, the new ideas which will lead to their solution may be useful in
proving general lower bounds.

We prove here two lower bounds for restricted models of computation. In
both cases we consider on-line computation. By on-line we mean having an
additional one-way input tape. We also restrict the storage used. Our two
results are:

(1) Two tapes versus one for nondeterministic machines--an .Q(n log n)
lower bound. (Previously, we knew only that no real-time simulation exists
[4]. More recently [5] we proved an .O(n log log n) lower bound.)

(2) Tapes versus pushdown stores (for deterministic machines)---an
.Q(n log 1/Ck+ 1)n) lower bound. (No lower bound was previously known.)

The first result refines and extends the use of the crossing sequence
argument. The second result extends the use of the information theoretic
approach to proving lower bounds.

TWO TAPES VERSUS ONE FOR NONDETERMINISTIC MACHINES

It is known that a nondeterministic machine with two tapes can simulate a
k-tape linear-time machine in real time [3]. So, for nondeterministic
machines, the only question left concerning the influence of the number of
tapes on the computing power between one- and two-tape machines. (Recall
that the input tape is not counted.)

TWO NONLINEAR LOWER BOUNDS 3

The currently best upper bound for simulating a real-time two-tape
machine by a one-tape machine is (the tivial) O(n2). In [4] we showed that
two tapes are better than one. We considered the language
L = {x # xl Ixl = 2 m for some m}, and showed that it is accepted in real time
by a two-tape (deterministic) machine and cannot be accepted in real time
by a one-tape machine. Our first result is:

THEOREM 1. Any one-tape on-line nondeterministic machine that accepts
L requires I2(n log n) time.

For the sake of comparison, we roughly sketch the previous result that no
real-time simulation exists: we assume that L is accepted by a real-time one-
tape machine M and derive a contradiction. For every y E L we arbitrarily
fix an accepting computation. Then, by a simple counting argument we show
the existence of y E L, such that its accepting computation must use at least
a linear amount of space. We now consider the accepting computation of M
on y. We divide the working tape into blocks of some constant length. By
the pigeon hole argument, there must be a block such that the total time it is
scanned is small. Another counting implies that there are two identical
crossing sequences in this block. As a result, M must accept a shorter input.
This gives a contradiction, since the shorter input is not short enough. (It is
shorter by a constant and cannot be of length 2 • 2 k + 1.)

The global strategy of the proof of Theorem 1 is similar. We will fool a
machine M that supposedly accepts L in time < cn log n (for some c that we
specify) by showing that it must accept a shorter input that is not short
enough. This is achieved by finding two identical crossing sequences in
between which: (1) M reads an input symbol, and (2) M does not spend
much time. Finding such crossing sequences will not be as immediate as in
our previous paper [4].

Proof of Theorem 1. We assume that L is accepted by an on-line
nondeterministic Turing machine M that has q internal states and t different
symbols for its working tape. We consider the behavior of M on inputs from
L , , the subset of L of strings of length m = 2n + 1, n - - 2 k. We choose n to
be large enough for some of the inequalities below to be true. For each input
y in L n we arbitrarily fix an accepting computation of M. We refer to it as
the accepting computation of y.

During a computation M sometimes reads new input symbols. Without
loss of generality, when M does not read a new input symbol its next state
depends on its state and the symbol on the working tape but not on the input
symbol. This can be easily achieved by having reading states (when M reads
a new input symbol) and nonreading states. The latter can encode the last
input symbol that M has read.

4 DURIS ET AL.

Let

a = max(log 4q, log 2t) (1)

and fix a constant c small enough such that for sufficiently large n
(n > no(e))

a 8c"'l°gn+l < n~14/(32ac • log n). (2)

We assume that M accepts L , in time t (n) < c n l o g n , and derive a
contradiction following several definitions and lemmas. (Note that the length
of the input is actually m, but it does not matter because m = 2n + 1.)

For y in L , , y = x # x, consider the part of the computation of M on y
until M reads the #. A tape cell on the working tape of M is called an
important cell if M read a new input symbol in at least one of the times it
scanned it. Two important cells are said to be close if their distance is at
most 213ae log n 1. A bunch is a maximal sequence of important cells such
that two successive elements in it are close.

Assume there are r bunches, r/> 1. Consider the first (last) important cell
of the ith bunch, 1 ~< i ~< r. Of the [3ac log n] boundaries to the left (right) of
it, choose the one with the shortest crossing sequence. Denote this boundary
by b2i_ 1 (b2i) and the crossing sequence by Azi_ 1 (A2i). We call the part of
the tape between b2i_ 1 and b2i the ith piece. Let Yi be the contents of the ith
piece when M reads the #. For 1 ~< i ~< 2r let ~T i be a modified version ofAi :
i f A i = (ql , ql), then iT i = ((ql, el),..., (ql, et)), ej ~ {0, 1} for 1 ~<j~< l and
cj = 1 iff in between the jth and the (j + 1)st crossing M crossed an adjacent
boundary (hi_ l or hi+l).

The profile o f x is the following set: {(X2i_1,.4zi, Yi), i = 1 r, the
(important) cell scanned and the state when M reads the # / - See Fig. 1.

A 1 A 2 A 3 A 4

+ooooo++ooo/,, !
t t t t Yl Y2

t T i T
b, b 2 b 3 b 4

FIG. 1. The first two pieces. Circles denote important cells.

TWO NONLINEAR LOWER BOUNDS 5

LEMMA 1. I f x 1 4= x 2, then xl and x2 have different profiIes.

Proof Given an accepting computation of y = x # x in Ln we define the
special configuration of this computation to be the triple (z, i, p), where z is
the contents of the working tape, i the position of the head on the working
tape, and p the state of M when it reads the #. Assume C ~s the special
configuration of the accepting computation of x 1 # x~. If x~ and x 2 have the
same profile, then there is an accepting computation of x 2 # x 2 with the same
special configuration C. This follows from the usual cut and paste trick and
the fact that M did not read any input when it scanned the parts between b2i
and b2i+l of the working tape. (These parts are the ones that do not appear
in the profiles.) But this would imply that M must also accept x~ #x2
(another cut and paste), and hence x I --x2. II

LEMMA 2. There is a y = x # x C L , , such that the total length of all the
pieces in the profile of x (Y'~=l [Yil) is at least n/3a.

Proof By the choice of the boundaries b i

2r

IAil . [3ac log n] ~ t(n) <~ en log n.
i=1

Hence 2 ~ r l IAil ~ n/3a + o(n), and by (1) the number of possible {At}'s is
at most 2 "/3+°t") If we always have Y'~-I]Yi] < n/3a, then by (1) the
number of all possible {yi}'s would be 2 "/3, and the number of possible
profiles would be 2 2"/3+°(") < 2 n for n large enough. But by Lemma 1, the
latter is impossible. II

From now on we restrict attention to the y of Lemma 2. We partition the
working tape into blocks of n 1/2 consecutive tape cells. Each block we further
partition into n 1/4 subblocks. (Recall, that n = 2k.) A subblock is important
if it contain an important cell. Note that the total number of complete blocks
(subblocks) is at most t(n)/n 1/2 <~ cn 1/2 log n (cn 3/4 log n).

LEMMA 3. There are at least n3/4/4a important subblocks.

Proof. Let Y be the union of all the pieces. A nonimportant subblock
which hits Y can contain at most 213ca log n] cells of Y. (At most the last
[3ca log n 1 in a piece and the first [3calogn] in the next piece.) So
altogether nonimportant subblocks can contain at most cn3/41ogn.
2[3ca log n] = o(n) cells in Y. By Lemma 2, I YI >~ n/3a and the important
subblocks must cover at least n / 3 a - o (n) cells of Y. Hence their number
must be at least na/a/4a, for n large enough. II

6 DURIS ET AL.

Let S be the set of important subblocks in which M spent less than
8canl/4 log n time.

LEMMA 4. IS[~n3/4/Sa.

Proof Otherwise by Lemma 3, M spends at least 8can 1/4 log n time in
more than n a/4/Sa subblocks for a total > cn log n. II

LEMMA 5. Each subblock in S has a crossing sequence of length at most
8ca log n.

Proof Obvious. II

Let R be the set of blocks that contain at least nl/a/(16aclog n) subblocks
in S.

LEMMA 6. IRI ~/nl/Z/16ct.

Proof Otherwise, the number of subblocks in S would be smaller than

nl/2/16a • n 1/4 + cn 1/2 log n • nl/4/(16ae log n) <~ n3/4/8a,

contradicting Lemma 4. II

LEMMA 7. There exists a block B in R such that M spent at most
16acn 1/2 log n steps on B.

Proof. Otherwise the time bound of M would exceed I RI 16acn 1/~ log n >/
cnogn. |

We are ready to complete the proof of Theorem 1. Consider the block B.
It contains at least nl/4/(16ac log n) subblocks in S : B 1 , B 2 Consider
every other one: B1,B3,.... There are at least n~/4/(32ac log n) of them. By
Lemma 5, each one contains a crossing sequence of length at most 8ca log n.
By (2); two of them must be identical. Hence M accepts a shorter input (due
to at least one important subblock in between them). By Lemma 7, the length
of this shorter input is at least 2 • 2 k + 1 - O(k2 ~/2) > 2 • 2 k-~ + 1 for k
large enough. II

Remark. Theorem 1 answers affirmatively problem 2 in [4]. L can be
easily accepted in time O(n log n) by an on-line deterministic one-tape
Turing machine. Theorem 1 shows that even allowing the machine to be
nondeterministic it still requires time .O(n log n). Consequently we have an
interesting example where nondeterminism does not help.

TWO NONLINEAR LOWER BOUNDS 7

TAPES VERSUS PUSHDOWN STORES

In this section we use a slightly different notion of on-line computation.
Let M be a multitape (multipushdown) deterministic Turing machine that
given sequences E = e 1, e2 "" of input symbols as an input tape produces
sequences A = a 1, a 2 ... of output symbols as an output tape. M works on-
line if for every input E the computation of M given E proceeds in stages
1, 2,... such that for all i during the ith stage input symbol ei is read, some
computation is performed and output symbol ai is printed. M works in real
time if there is a constant c such that for all inputs E and all i the ith stage of
the cmputation of M given E consists of at most c steps. Machine S
simulates machine M if for all inputs E machine S given E produces the
same output as machine M given E.

We use the concepts of on-line and real-time computations, Kolmogorov-
complexity of strings, random strings and overlap. Their definitions can be
found in [9]. It is well known that k-tape Turing machines can be simulated
in real time by 2k-pushdown store (pds) machines. On the other hand, on-
line simulation of n-time bounded (k + 1)-pds machines by k-pds (or even k-
tape) machines requires time J?(n logl/(k+l~n) [9], Here, we observe that for
the purpose of the lower bound proof in [9], k-tape machines behave like
(k + 1)-pds machines and show:

THEOREM 2. For all k there is a k-tape Turing machine M k that works
in real time such that every k-pushdown machine S that simulates M k on-line
is ~?(n logl/(k + l)n)-time bounded.

We assume that the reader is familiar with [9].

DEFINITION OF M k. We number the tapes of M k from 1 to k. Each tape
has two tracks. Each cell of each track can store 0 or 1. Initially, all cells
store the blank symbol b. Input symbols for M k have the form (h, d, t, a)
where hC {1 k}, d ~ {left, right}, t ~ {1,2} and a ~ {print 0, print 1, do
nothing}. Upon receiving input symbol (h, d, t, a) machine M k moves the
head on tape h one step in direction d, outputs the symbol it finds on track t
of the cell it just moved to and then performs action a on that cell. For
natural numbers l, the input sequence (h, left; t, do nothing). . . (/-times) is
called an l-loop for track t of tape h.

INPUT SEQUENCES FOR M k

Let S be a k-pushdown machine with alphabet {0, 1, b} that simulates M k
on-line. Let n be large enough for the analysis that follows, let

8 DURIS ET AL.

s = [(log nf f2J and d - - [(log n)a/tk+l)J. For convenience, assume 8 k (k + 1)
divides n. Let w = z w a . . . w k E {0, 1}* be a random string where I whl =
n2Sd h for h ~ {1 k} and]z[= n2 s. Let G be an input sequence that makes
head 1 of M k print z from right to left on track 1 of tape 1.

For h C {1,..., k} let C h be an input sequence that makes head h of M k

print w h from left to right on track 2 of tape h. Let D 1=C1 and for
i E {2 k} obtain D i from Di_ ~ by inserting d commands from C i after
avery command from Ci_ 1 that is already inserted in Di_ 1. The sequence
E -- D k has length

IEI = n2S(d -t- d 2 ,1, . . . ,1, d k)

= O(n2 ~ log k/~k+ a)n) ,

and any subsequence E ' of E of length n ' (d + d 2 + .. . + d k) that begins with
a command from C a makes M k write n ' d h symbols from w h on tape h for
h = 1,..., k.

Divide E into 2 s parts Ei of length n (d + . . . ,1, dk). The final input
sequence for M k will have the form G E o F o E 1 F 1 ..., where each F i consists of
up to s + 1 /-loops. The choice of these /-loops depends on the behavior of
the simulator.

THE CHOICE AND EFFECT OF THE / - L o o P s IN F i

Let I be a time interval, i.e., a sequence of steps in a computation of S, let
h ~ {1,..., k}, and let e be a natural number. We say S extends pushdown h
be e during/ , if the number of steps in that interval when S pushes a symbol
on pushdown h minus the number of steps in that interval when S pops a
symbol from pushdown h is e. o9(1) denotes the internal overlap of time
interval L

We will partition the computation of the simulator S given E o F o E a F 1 . . .

into intervals Is, 0, ls,1,..., where interval Is,s. lasts from the first step of the
simulation of Ej to the last step of the simulation of Fs.. For 0 ~ i < s and
0 ~ j < 2 s-i intervals Ii,s. are defined by

Ii,s. = Ii + 1,2j L) li+ a,2s. + 1-

The weight w(Ii . j) of interval Ii, j is defined as 2 ~-i. For all j , let As.=
{(a, b) I interval la, b ends with the last step of Fj}. For each (a, b) C Aj there
will be a part Fa, b in Fs., which will be either an/-loop or empty.

Let B c As. and suppose that for all (a, b) C B part Fa, b has already been
defined and simulated by machine S. Let t be the last step performed so far

TWO NONLINEAR LOWER BOUNDS 9

by S. For each (a,b) E A i - B let Ia,b(t) be the time interval in the
computation of S that begins with the first step la, b and lasts until step t. Let

m = n/(8(k + 1)).

If w(I,,o(t))>~ m . W(I~,b) for all (a, b) E A j - - B , then all parts F, , b with
(a , b) E A j - B are empty and Fj is completed. Otherwise, we pick
(a, b) ~ Aj -- B such that

co(I~,~(t)) 4 m . w(I~,b)

and define an /-loop Fa, b. For the remainder of this section, a, b, and t will
be fixed and we will use the shorthand I for I,,b(t) and w(I) for w(I~.b).

Let E ' be the portion of E that is simulated during L Then I E ' I =
nw(I)(d + ... + dk). Partition it into k parts E 1 ... E k of equal length. This
induces a partition of I into parts 11 ... I k, where each interval I i begins with
the first step of the simulation of E i. Let N = nw(I) and N ' = N/(8k (k + 1)).
Following the argument in [1, 9] we say S neglects tape h of M k during I if
every pushdown that is extended by at least N ' d h during interval I h is
extended by at least N ' d h+l during I h+l ... I k.

Now we consider two cases:

Case 1. At least one pushdown of S extends by less than N ' d during I.
In this case, S behaves (for the purpose of the lower bound proof in [9])

like a (k - 1) pushdown machine and the arguments in [9] apply almost
literally. One finds h ~ { 1,..., k} such that S neglects tape h of M k during L
F~, b is defined as an/- loop for track 2 of tape h of M k that makes head h of
M k sweep over the portion u of w h that was written on tape h during interval
Ih; i.e.,

l = Ndh(k - h + 1)/k.

The simulation of F~, b will take S at lest Ndh+l /25k(k+ 1))>/c(21)d steps
by Lemma 2 in [9].

Case 2. All pushdowns of S extend by at least N ' d during/ . In this case,
we can treat track 1 of tape 1 of M k as a tape with number h = 0 that has
been neglected by S during L F, , b is defined as an/- loop for track 1 of M k
with l = N, and the simulation of Fa, b will take S at least Nd/(25k(k + 1))>/
e(2l)d steps by a simple version of the proof of Lemma 2 in [9]: Let u be the
contents of track 1 of the l tape cells immediately to the left of the head of
tape 1 of M k. For 1 ~< i ~< k let x i be the portion of w i that was written on
tape i of M k during I. Assuming the claim is false, one derives the con-
tradiction

l u] - O(log n) 4 K (u I x l" ' " xk) <~ I ul/2 + O(log n).

10 DURIS ET AL.

(Since all pushdowns of S extend by much during I and I has a small
overlap, we can simulate M k on I given x 1 ... x k and only small part of the
top of the k pushdown stores. The latter is bounded by the overlap ~ [u [/2.)

The rest of the proof follows as in [9]: let F = F o ... Fzs_ ~. In both cases
above S is slower than M k by the factor proportional to d (=log~/(k+l)n)
when it works on F. So if [F[/> IE[the proof is complete. If [F I is small, this
means that many F~,b's are empty. So many intervals with large overlap
exist. In this case the generalized version of the overlap lemma (Lemma 1 in
[9]) yields the desired lower bound.

OPEN PROBLEMS

(1) Can the gap between the trivial O(n 2) upper bound and the lower
bound of Theorem 1 be narrowed or closed?

(2) Is the ~ (n logl/(k+l)n) lower bound of Theorem 2 best possible?

(3) Are two heads on the same tape better than two (or even three heads
on different tapes? (They are not better than four [7].)

(4) Can 2(k) tapes sometimes be better than

3 (k + l , k + 2 or e v e n 2 k - l) pds's?

(5) Find tight bounds for the simulation of k + 1 tapes by k (or by j < k)
tapes k~>2 (known upper and lower bounds are O (n l o g n) [6] and
X?(n logUk+ln) [91).

(6) Find tight bounds for the simulation of k (or 2) tapes by one tape
(known upper and lower bounds: O(n2), ~(n log n) by Theorem 1).

(7) Can Kolmogorov-Uspenskii machines simulate storage modification
machines in real time?

(8) Can Turing machines with tree-tapes simulate two-dimensional Turing
machines in real time?

Note added in proof. W. Maass (1984, Quadratic lower bounds for deterministic and
nondeterministic one-tape Turing machines, in "Proceedings 16th Annual ACM Syrup. on
Theory of Computing," pp. 401~,08, ACM, New York) has recently improved Theorem 1
considerably. He defined another language £ that is recognized by a deterministic two-tape
machine in real time and proved that (1) any one-tape deterministic Turing machine that
recognizes £ requires t2(n 2) time, and (2) any one-tape nondeterministic Turing machine that
recognizes /], requires g2(n2/log 5 n) time. The second bound can be improved to O(n2/log 2 n)
by slightly modifying Maass' proof. Consequently, problem (6) above is solved, and the gap
mentioned in problem (1) is almost closed. It would still be interesting to close it entirely (as
in the deterministic case).

TWO NONLINEAR LOWER BOUNDS I1

M. Li (1984, On one-tape versus two stacks, Department of Computer Science, Cornell
University) has independently obtained similar results: an .Q(n 2) lower bound for the deter-
ministic case but only an .Q(n LS) lower bound for the nondeterministic case.

REFERENCES

1. AANDERAA, S. O. (1974), On k-tape versus (k-1)- tape real time computation, in
"Complexity of Computation" (R. M. Karp, Ed.), pp. 75-96, Amer. Math. Soc.,
Providence, R.I.

2. AHO, A. V., HOPCROFT, J. E., AND ULMAN, J. D. (1974), "The Design and Analysis of
Computer Algorithms," Addison-Wesley, Reading, Mass.

3. BOOK, R. V., AND GRE1BACH, S. A. (1970), Quasi real time languages, Math. Systems
Theory 4, 97-111.

4. DORlS, P., AND GALIL, Z. (1984), Two tapes are better than one for nondeterministic
machines, SIAM J. Comput. 13, 219-227.

5. DORlg, P., GALIL, Z., PAUL, W. J., AND REISCHUK, R. (1983), Two nonlinear lower
bounds, in "Proceedings, 14th Annual ACM Syrup. on Theory of Computing,"
pp. 127-132, ACM, New York.

6. HENNIE, F. C., AND STEARNS, R. E. (1966), Two-tape simulation of multitape Turing
machines, J. Assoc. Comput. Maeh. 13, 533-546.

7. LEONG, B. L., AND SEIFERAS, J. I. (1981), New real-time simulation of multihead tape
units, J. Assoc. Comput. Math. 28, 166-180.

8. PAUL, W. J. (1981), On heads versus tapes, in "Proceedings, 22nd Annual IEEE Symp.
on Foundation of Computer Science, IEEE Computer Society, Los Angeles," pp. 68-73.

9. PAUL, W. J. (1982), On-line simulation of k + 1 tapes by k tapes requires nonlinear time,
in "Proceedings, 22nd Annual IEEE Symp. on Foundation of Computer Science, IEEE
Computer Society, Los Angeles," pp. 53-56.

10. REISCHUK, R. (1980), A fast implementation of a multidimensional storage into a free
storage, in "Proceedings, 7th Int. Colloq. on Automata, Languages and Prog.,"
pp. 531-542, Springer-Verlag, New York.

11. SCHONHAGE, A. (1980), Storage modification machines, SIAM J. Comput. 9, 490-508.
12. STOSS, H. J. (1970), k-Band-Simulation von k-kopf-Turing Machinen, Computing 6,

309-317.

