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1. INTRODUCTION

The well-known inequality due to Hilbert can be stated as follows (see
[2, p. 226)).

THEOREM A. Ifp>1,p' =p/(p — 1 and L a? <A, Lb? < B, the
summations running from 1 to «, then

ambn
<
m+n  Sin(w/p)

XX

Al/pBl/p’, (1)

unless the sequence {a,,} or {b,} is null.

The integral analogue of the Hilbert’s inequality can be stated as follows
(see [2, p. 226)).
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THEOREM B. Ifp>1,p' =p/(p — 1) and

/:fp(x) dx <F, f:gp'(y) dy <G,

then
= = f(x)g(y) Vpi/p
A cry EY <G T (2)

unless f=0 org=0.

The inequalities in Theorems A and B were studied extensively and
numerous variants, generalizations, and extensions appeared in the litera-
ture, see [1-5, 8] and the references cited therein. The main purpose of
the present article is to establish some new inequalities similar to the
Hilbert’s inequality given in Theorem A, involving a series of nonnegative
terms. The integral analogues of our main results similar to that of those
given in Theorem B are also given. The analysis used in the proofs is
elementary and our results provide new estimates on these types of
inequalities.

2. MAIN RESULTS

Our main result is given in the following theorem.

THEOREM 1. Let p > 1, ¢ = 1 and {a,,} and {b,} be two nonnegative
sequences of real numbers defined for m = 1,2,...,k and n =1,2,...,r,

where k,r are the natural numbers and define A,, = X" a, and B, =
X' . b, Then

k r Apr PB4 k ) 1/2
. .q. k, k—m+ 1)(A27!
m§1n§1m+n <C(p.q r)(mgl( m + 1)( A}, am))
, 12
X Z(r—n—kl)(B,;"lbn)z) : (3)
n=1

unless {a,,} or {b,} is null, where

C(p.q.k,r) = 3pgikr. (4)
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Proof. By using the following inequality (see [1, 6)),

() =eEelEe)

where « > 1is a constant and z,, > 0, (m =1,2,...), it is easy to observe
that

m

AL <p Y a AP7Y,  m=1,2,... k, (5)
s=1
n

Bl <q) bBi™', n=12,..,r. (6)
t=1

From (5) and (6) and using the Schwarz inequality and the elementary
inequality ¢/2d*/? < 2(c + d), (for ¢, d nonnegative reals) we observe
that

m n
st <ou| F | £
=1

s=1

m 1/2 n 12

=1
1/2

é(aSAg’—l)z)l/z(é(stﬂ—l)z) .

Dividing both sides of (7) by m + n and then taking the sum over n from 1
to r first and then the sum over m from 1 to k£ and using the Schwarz
inequality and then interchanging the order of the summations (see [6, 7])
we observe that

< ;pq(m + n)

k

r APBI 1
DD squ{

m=1n= lm+n

IA
|
BS]
S
~~
>
N
~
N
N
—_—
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k k 1/2
2| S 23

- n=

x{ » (b,B;Il)z( itl)}l/z

P 1/2
_ C(p,q,k,r)( Y (a, A7) (k —s + 1)
s=1
B 1/2
Z(b B~ 1) r—t+1)
s , 1/2
= C(p,q,k,r)( ; (k—m+1)(a,Al™ ") )

, 1/2
x| ¥ (r—n+ 1)(an31)2) .
n=1

This completes the proof.

Remark 1. If we take p = ¢ = 1 in Theorem 1, then the inequality (3)
reduces to the following inequality,

m=1n= 1m

k r k 1/2
3 Z B, < C(l,l,k,r)( ;1(k_m + 1)(am)2)

, 1/2
| T rmne 1>(bn>2) , ®

where C(1,1, k, r) is obtained by taking p = g = 1 in (4).
Our next result deals with the further generalization of the inequality
obtained in (8).

THEOREM 2. Let{a,},{b,}, 4,,, B, be as defined in Theorem 1. Let {p,,}
and {q,} be two positive sequencesform =1,2,....,kandn =1,2,...,rand
define P, = X", p, and Q, = X/_, q,. Let ¢ and  be two real-valued,
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nonnegative, convex, and submultiplicative functions defined on R = [0, ).

Then
a,, 2
ool
Pm

1/2

qw(Z—)H o

k r A B k 172
Y ) —¢( n:’)jllg ") sM(k,r)( Zl(k—m+l)

m=1n=1 m=

X

il(r—n—i—l)

where

2

d(Pn)

m

1/2 o\ 1/2
[ w(Q,)
(z[ . ]) o

n

1 k
M(k,r) = E( ;l

Proof. From the hypotheses and by using Jensen’s inequality and the
Schwarz inequality (see [4]), it is easy to observe that

Pm Z;n: S S S
¢(Am)=¢( 1’”’/”)

Zgr; 1 ps

< ¢(Pm)¢( Zs:l psas/px)

Z;n: 1 Ps

: @wf”{ﬁ [w(p—)” S

and similarly,

n b 2
¥(B,) < %(”)m{ r [qlw(—t” } : (12)
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From (11) and (12) and using the elementary inequality c'/2d*/? <
1(c + d), (for ¢, d nonnegative reals) we observe that

2 1/2
(j)(A )(»[’(Bn)<_(m+ ) d)( m){¥1[ (;)}} ]
N i) |
Qn t=1 K ! |

Dividing both sides of (13) by m + n and then taking the sum over n from
1 to r first and then the sum over m from 1 to k and using the Schwarz
inequality and then interchanging the order of the summations we observe

that

k r A
L[ & o) [ m a \F\"”
{ A |
, lp(Q) n b 2 1/2
X{Z Q" {Z[%lﬁ(—t”}
n=1 n =1 q;
1 & (z)(Pm) 2 1/2
SE(E’l P, }
k m a 2\ /2
2 E[mel)])
2 1/2
" w(Q,)
- nzl[ Qm })
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X 1/2

=M(k,r)( Y (k—m+1)

m=

ol
wol2)])

Remark 2. By applying the elementary inequality ¢*/2d*/? < (c + d),
(for ¢, d nonnegative reals) on the right sides of (3) and (9), we get,
respectively, the following inequalities,

X

il(r—n—kl)

The proof is complete.

Lo ALBY 1 k 2
X L mtn EC(p,q,k,r)[ Y (k—m+1)(AL "a,,)
m=1n=1 ot
R
n=1
and
k r Am Bn k a )
mgl ngl% = EM(k’r)|:m;1(k -—m + 1) pmd)(a)}
r bn 2
+ ; (r—n+1) qnt!/(q—” w (15)

which we believe are new to the literature.
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The following theorems deal with slight variants of the inequality given
in Theorem 2.

THEOREM 3. Let {a,} and {b,} be as in Theorem 1 and define A,, =
1/mY" ja,and B, =1/nY}_ b, form=12,...,kandn =1,2,...,r,
where k,r are the natural numbers. Let ¢ and  be two real-valued,
nonnegative, and convex functions defined on R .. Then

k r

)»

mlnl

k 1/2
< C(l,l,k,r)( Y (k—m+ 1)[¢(am)]2)
m=1
, 1/2
<[ £ n e niue) (19

where C(1,1, k, ) is defined by takingp = q = 1 in (4).

Proof. From the hypotheses and by using Jensen’s inequality and the
Schwarz inequality, it is easy to observe that

1 m 1 m
d(A,) = ¢(Z ; as) < ; ¢(ay)
m 1/2
< (m)”z{ Zl[¢(a )] } , (17)
1~ 1~
lﬁ(Bn) = (; . bz)sz _Z w(bz)
1 n 1/2
sV Sl (19)

The rest of the proof can be completed by following the same steps as in
the proofs of Theorems 1 and 2 with suitable changes and hence we omit
the details.

THEOREM 4. Let {a,},{b,},{p,}.{q,}, P,, Q, be as in Theorem 2 and
defineA, =1/P, ¥, p;a, and B, = 1/0, X/_, q,b,, form =1,2,..., k
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and n = 1,2,...,r, where k, r are the natural numbers. Let ¢ and  be as
defined in Theorem 3. Then
k& P0,0(A,)w(B,)
)IEDY
m=1n=1 m+n
X 1/2
<Cc(LL,kr)| Y (k—m+ 1)[ps¢)(as)]2)
m=1
, 1/2
£ (-n s nlasol] (19
n=1

where C(1,1, k, r) is defined by takingp = q = 1 in (4).

Proof. From the hypotheses and by using Jensen’s inequality and the
Schwarz inequality, it is easy to observe that

1 m 1 m
$(A4,) = ¢(P— ZPS%) P ; pyd(ay)

1 1/2 - 2 v
< o (m) {S_l[“‘“‘“”} , (20)
B) =l = Yab|<— ¥ b
lﬂ( n) - (Q_nz_lq[ z) = Q_nt:]-qtlp( t)
1 n , 1/2
sQ—(n)”z{Zl[q,wa]} : (21)

Proceeding now much as in the proof of Theorems 1 and 2 given in the
preceding text with suitable modifications we get the required inequality in
(19), so we leave out the details.

3. INTEGRAL ANALOGUES

In this section we present the integral analogues of the inequalities
given in Theorems 1-4, which in fact are motivated by the integral
analogue of the Hilbert’s inequailty given in Theorem B.

An integral analogue of Theorem 1 is given in the following theorem.

THEOREM 5. Letp > 1, g =1 and f(d) =0, g(r) = 0 for o € (0, x),
7 € (0, y), where x, y are positive real numbers and define F(s) = [§ f(o)do
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and G(t) = [§ g(v) dr, fors € (0, x), t € (0, y). Then

ff F”(s)G"(t) -

y , \Y2
< D(p,q,x,y)(/?) (x = s)(FP~(s)f(s)) ds)

y , 1/2
<[ =@ wswya) (22)
unless f = 0 or g = 0, where

D(p.q.x,y) = spqyxy . (23)

Proof. From the hypotheses, it is easy to observe that
Fr(s)=p[Fri(o)f(a)do, sc(0x),  (24)
0

Gi(t) = q/O’Gq-l(T)g(T) dr, t€(0,y). (25)

From (24) and (25) and using the Schwarz inequality and the elementary
inequality ¢/2d*? < 3(c + d), (for ¢,d nonnegative reals) we observe
that

Fr)GH0) = pa [ (o)1) do [ [0 (g di
SM(S)W( A (FP () f(o)) dcr)l/z
x(t)l/Z(/o’(Gq—l(T)g(T))z df)l/z
1 s 1/2
< 5oats + 0 [ (o) (o)) do |

X (/()‘((;ff-l(f)g(T))2 df)l/z. (26)

Dividing both sides of (26) by s + ¢ and then integrating over ¢ from 0 to y
first and then integrating the resulting inequality over s from 0 to x and
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using the Schwarz inequality we observe that

« wFP(5)GI(1)
/(;_/(;?dsdl

sl [ [ rstonas) |

<[ osoya) )
s [ [ (oo ar| o]
< (o maen) e )

. , 1/2
- D(pgew [ =016 @

IA

IA

1/2
X(j(;y(y—t)(Gq1(T)g(7))2d7) .

This completes the proof.

Remark 3. In the special case when p =g = 1, the inequality (22)
reduces to the following inequality,

pEO0
L=+

s +

y 1/2
dsdt < D(1,1, x, y)(j; (x —s)f2(s) ds)
1/2
<([o-ogwa) (27)

where D(1,1, x, y) is obtained by taking p = g = 1 in (23).

The integral analogues of the inequalities in Theorems 2—4 are estab-
lished in the following theorems.

THEOREM 6. Let f, g, F,G be as in Theorem 5. Let p(o) and q(7) be
two positive functions defined for o € (0, x), 7 € (0, y) and define P(s) =
Js pla)do and Q) = [§ q(v)dr for s € (0,x), t € (0, y), where x, y are
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positive real numbers. Let ¢ and iy be as in Theorem 2. Then

s AFEDHG)
)

s+t

<L(x,y)

1/2
(s)
p(S)d>(p( ” dS)

f(x—s)

X(foy(y—t)[rJ(t)w(g(—

) (28)

where

(P(s)) P (0(1))
05) } ) (fo[ 0 } t) (29)

Proof. From the hypotheses and by using Jensen’s inequality and the
Schwarz inequality, it is easy to observe that

L(x,y) = (fo

P(s)/:p(s)];((z)) do
(F(s)) = ¢ 5
Ap(a)do-

d(P(s)) f(o)
=P /()d’(())"

d(P(s)) 1/2 [ ( )”2 o v
=| =5 }() {f ()| 2oy ]| 4o - GO

and similarly,

1/2
HG(1) = [‘”;Q((l;))}m”z{f;[ ( )w((—)” dr} e
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From (30) and (31) and using the elementary inequality c'/%d*/? < 1(c +
d), (for ¢, d nonnegative reals) we observe that

$(F(5))¥(G(1))
1 ¢( ()) ; f(o) 7
A O {fo[( {5 )”d}
2 1/2
W(O() [ 1 8(7)
| o0 /O q(r)lp(m) dT} : (32)

The rest of the proof can be completed by following the same steps as in
the proof of Theorem 5 and closely looking at the proof of Theorem 2 and
hence we omit the details.

THEOREM 7. Let f,g be as in Theorem 5 and define F(s) =
1/s [§ flo)do and G(t) = 1/t [§ g(v) dr, for s € (0, x), t € (0, y), where
X, y are positive real numbers. Let ¢ and iy be as in Theorem 3. Then

[ [ 2 o (F(s) (G0 dsa

. 1/2
<D 1) [ =980T &

1/2

<[ o= olueonal) (33)

where D(1,1, x, y) is obtained by takingp = q = 1 in (23).

THEOREM 8. Let f, g, p, q, P, Q be as in Theorem 6 and define F(s) =
1/P(s) [§ p(a)f(o)do and G(t) = 1/0) [3 q(7)g(r) dr for s € (0, x),
t € (0, y), where x, y are positive real numbers. Let ¢ and s be as defined in
Theorem 3. Then

x v P(s)0(1) p(F(s5)) #(G(1))
fof dsd

0 s+t

. , 1/2
<DL x| [ (5= )5 ST ]

1/2
<[ =ola@wsenra) (3

where D(1,1, x, y) is defined by takingp = q = 1 in (23).
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The proofs of Theorems 7 and 8 can be completed by following the
proof of Theorem 6 and by closely looking at the proofs of Theorems 3
and 4 and by making use of the integral versions of Jensen’s and the
Schwarz inequalities. Here, we omit the details.
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