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1. Introduction

Fix a prime p and let n ∈ N. Every polynomial f ∈ Z[x] defines a function from
Zpn = Z/pnZ to itself. If this function happens to be bijective, it is called a polynomial
permutation of Zpn . The polynomial permutations of Zpn form a group (Gn, ◦) with
respect to composition. The order of this group has been known since at least 1921
(Kempner [10]) to be

|G2| = p!(p− 1)ppp and |Gn| = p!(p− 1)pppp
∑n

k=3
β(k) for n � 3,

where β(k) is the least n such that pk divides n!, but the structure of (Gn, ◦) is elusive.
(See, however, Nöbauer [15] for some partial results.) Since the order of Gn is divisible
by a high power of (p−1) for large p, even the number of Sylow p-groups is not obvious.

We will show that there are (p − 1)!(p − 1)p−2 Sylow p-groups of Gn and describe
these Sylow p-groups, see Theorem 5.1 and Corollary 5.2.

Some notation: p is a fixed prime throughout. A function g:Zpn → Zpn arising from
a polynomial in Zpn [x] or, equivalently, from a polynomial in Z[x], is called a polynomial
function on Zpn . We denote by (Fn, ◦) the monoid with respect to composition of poly-
nomial functions on Zpn . By monoid, we mean semigroup with an identity element. Let
(Gn, ◦) be the group of units of (Fn, ◦), which is the group of polynomial permutations
of Zpn .

Since every function induced by a polynomial preserves congruences modulo ideals,
there is a natural epimorphism mapping polynomial functions on Zpn+1 onto polynomial
functions on Zpn , and we write it as πn:Fn+1 → Fn. If f is a polynomial in Z[x] (or in
Zpm [x] for m � n) we denote the polynomial function on Zpn [x] induced by f by [f ]pn .

The order of Fn and that of Gn have been determined by Kempner [10] in a rather
complicated manner. His results were cast into a simpler form by Nöbauer [14] and Keller
and Olson [9] among others. Since then there have been many generalizations of the order
formulas to more general finite rings [16,13,2,6,1,8,7]. Also, polynomial permutations
in several variables (permutations of (Zpn)k defined by k-tuples of polynomials in k

variables) have been looked into [5,4,19,17,18,11].

2. Polynomial functions and permutations

To put things in context, we recall some well-known facts, to be found, among other
places, in [10,14,3,9]. The reader familiar with polynomial functions on finite rings is
encouraged to skip to Section 3. Note that we do not claim anything in Section 2 as new.

Definition. For p prime and n ∈ N, let

αp(n) =
∞∑
k=1

[
n

pk

]
and βp(n) = min

{
m

∣∣ αp(m) � n
}
.

If p is fixed, we just write α(n) and β(n).
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Notation. For k ∈ N, let (x)k = x(x− 1) . . . (x− k + 1) and (x)0 = 1. We denote p-adic
valuation by vp.

2.1 Fact.

(1) αp(n) = vp(n!).
(2) For 1 � n � p, βp(n) = np and for n > p, βp(n) < np.
(3) For all n ∈ Z, vp((n)k) � αp(k); and vp((k)k) = vp(k!) = αp(k).

Proof. Easy. �
Remark. The sequence (βp(n))∞n=1 is obtained by going through the natural numbers in
increasing order and repeating each k ∈ N vp(k) times. For instance, β2(n) for n � 1 is:
2, 4, 4, 6, 8, 8, 8, 10, 12, 12, 14, 16, 16, 16, 16, 18, 20, 20, . . . .

The falling factorials (x)0 = 1, (x)k = x(x− 1) . . . (x− k + 1), k > 0, form a basis of
the free Z-module Z[x], and representation with respect to this basis gives a convenient
canonical form for a polynomial representing a given polynomial function on Zpn .

2.2 Fact. (Cf. Keller and Olson [9].) A polynomial f ∈ Z[x], f =
∑

k ak(x)k, induces the
zero-function mod pn if and only if ak ≡ 0 mod pn−α(k) for all k (or, equivalently, for all
k < β(n)).

Proof. Induction on k using the facts that (m)k = 0 for m < k, that vp((n)k) � αp(k)
for all n ∈ Z, and that vp((k)k) = vp(k!) = αp(k). �
2.3 Corollary. (Cf. Keller and Olson [9].) Every polynomial function on Zpn is represented
by a unique f ∈ Z[x] of the form f =

∑β(n)−1
k=0 ak(x)k, with 0 � ak < pn−α(k) for all k.

Comparing the canonical forms of polynomial functions mod pn with those mod pn−1

we see that every polynomial function mod pn−1 gives rise to pβ(n) different polynomial
functions mod pn:

2.4 Corollary. (See cf. Keller and Olson [9].) Let (Fn, ◦) be the monoid of polynomial
functions on Zpn with respect to composition and πn:Fn+1 → Fn the canonical projection.

(1) For all n � 1 and for each f ∈ Fn we have |π−1
n (f)| = pβ(n+1).

(2) For all n � 1, the number of polynomial functions on Zpn is

|Fn| = p
∑n

k=1
β(k).

Notation. We write [f ]pn for the function defined by f ∈ Z[x] on Zpn .
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2.5 Lemma. Every polynomial f ∈ Z[x] is uniquely representable as

f(x) = f0(x) + f1(x)
(
xp − x

)
+ f2(x)

(
xp − x

)2 + · · · + fm(x)
(
xp − x

)m + · · ·

with fm ∈ Z[x], deg fm < p, for all m � 0. Now let f, g ∈ Z[x].

(1) If n � p, then [f ]pn = [g]pn is equivalent to: fk = gk mod pn−k
Z[x] for 0 � k < n.

(2) [f ]p2 = [g]p2 is equivalent to: f0 = g0 mod p2
Z[x] and f1 = g1 mod pZ[x].

(3) [f ]p = [g]p and [f ′]p = [g′]p is equivalent to: f0 = g0 mod pZ[x] and f1 = g1 mod
pZ[x].

Proof. The canonical representation is obtained by repeated division with remainder by
(xp−x), and uniqueness follows from uniqueness of quotient and remainder of polynomial
division. Note that [f ]p = [f0]p and [f ′]p = [f ′

0 − f1]p. This gives (3).
Denote by f ∼ g the equivalence relation fk = gk mod pn−k

Z[x] for 0 � k < n.
Then f ∼ g implies [f ]pn = [g]pn . There are pp+2p+3p+···+np equivalence classes of ∼ and
pβ(1)+β(2)+β(3)+···+β(n) different [f ]pn . For k � p, β(k) = kp. Therefore the equivalence
relations f ∼ g and [f ]pn = [g]pn coincide. This gives (1), and (2) is just the special case
n = 2. �

We can rephrase this in terms of ideals of Z[x].

2.6 Corollary. For every n ∈ N, consider the two ideals of Z[x]

In =
{
f ∈ Z[x]

∣∣ f(Z) ⊆ pnZ
}

and Jn =
({

pn−k
(
xp − x

)k ∣∣ 0 � k � n
})

.

Then [Z[x]: In] = pβ(1)+β(2)+β(3)+···+β(n) and [Z[x]: Jn] = pp+2p+3p+···+np. Therefore,
Jn = In for n � p, whereas for n > p, Jn is properly contained in In.

Proof. Jn ⊆ In. The index of Jn in Z[x] is pp+2p+3p+···+np, because f ∈ Jn if and only if
fk = 0 mod pn−k

Z[x] for 0 � k < n in the canonical representation of Lemma 2.5. The
index of In in Z[x] is pβ(1)+β(2)+β(3)+···+β(n) by Corollary 2.4(2) and [Z[x]: In] < [Z[x]: Jn]
if and only if n > p by Fact 2.1(2). �
2.7 Fact. (Cf. McDonald [12].) Let n � 2. The function on Zpn induced by a polynomial
f ∈ Z[x] is a permutation if and only if

(1) f induces a permutation of Zp, and
(2) the derivative f ′ has no zero mod p.

2.8 Lemma. Let [f ]pn and [f ]p be the functions defined by f ∈ Z[x] on Zpn and Zp,
respectively, and [f ′]p the function defined by the formal derivative of f on Zp. Then
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(1) [f ]p2 determines not just [f ]p, but also [f ′]p.
(2) Let n � 2. Then [f ]pn is a permutation if and only if [f ]p2 is a permutation.
(3) For every pair of functions (α, β), α:Zp → Zp, β:Zp → Zp, there are exactly pp

polynomial functions [f ]p2 on Zp2 with [f ]p = α and [f ′]p = β.
(4) For every pair of functions (α, β), α:Zp → Zp bijective, β:Zp → Zp \ {0}, there are

exactly pp polynomial permutations [f ]p2 on Zp2 with [f ]p = α and [f ′]p = β.

Proof. (1) and (3) follow immediately from Lemma 2.5 for n = 2 and (2) and (4) then
follow from Fact 2.7. �
2.9 Remark. Fact 2.7 and Lemma 2.8(2) imply that

(1) for all n � 1, the image of Gn+1 under πn:Fn+1 → Fn is contained in Gn, and
(2) for all n � 2, the inverse image of Gn under πn:Fn+1 → Fn is Gn+1.

We denote by πn:Gn+1 → Gn the restriction of πn to Gn. This is the canonical
epimorphism from the group of polynomial permutations on Zpn+1 onto the group of
polynomial permutations on Zpn .

The above remark allows us to draw conclusions on the projective system of groups Gn

from the information in Corollary 2.4 concerning the projective system of monoids Fn.

2.10 Corollary. Let n � 2, and πn:Gn+1 → Gn the canonical epimorphism from the
group of polynomial permutations on Zpn+1 onto the group of polynomial permutations
on Zpn . Then

∣∣ker(πn)
∣∣ = pβ(n+1).

2.11 Corollary. (See cf. Kempner [10] and Keller and Olson [9].) The number of polyno-
mial permutations on Zp2 is

|G2| = p!(p− 1)ppp,

and for n � 3 the number of polynomial permutations on Zp2 is

|Gn| = p!(p− 1)pppp
∑n

k=3
β(k).

Proof. In the canonical representation of f ∈ Z[x] in Lemma 2.5, there are p!(p − 1)p
choices of coefficients mod p for f0 and f1 such that the criteria of Fact 2.7 for a polyno-
mial permutation on Zp2 are satisfied. And for each such choice there are pp possibilities
for the coefficients of f0 mod p2. The coefficients of f0 mod p2 and those of f1 mod p

then determine the polynomial function mod p2. So |G2| = p!(p−1)ppp. The formula for
|Gn| then follows from Corollary 2.10. �
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This concludes our review of polynomial functions and polynomial permutations
on Zpn . We will now introduce a homomorphic image of G2 whose Sylow p-groups bijec-
tively correspond to the Sylow p-groups of Gn for any n � 2.

3. A group between G1 and G2

Into the projective system of monoids (Fn, ◦) we insert an extra monoid E between
F1 and F2 by means of monoid-epimorphisms θ:F2 → E and ψ:E → F1 with ψθ = π1,

F1
ψ←− E

θ←− F2
π2←− F3

π3←− · · · .

The restrictions of θ to G2 and of ψ to the group of units H of E will be group-
epimorphisms, so that we also insert an extra group H between G1 and G2 into the
projective system of the Gi,

G1
ψ←− H

θ←− G2
π2←− G3

π3←− . . . .

In the following definition of E and H, f and f ′ are just two different names for
functions. The connection with polynomials and their formal derivatives suggested by
the notation will appear when we define θ and ψ.

Definition. We define the semigroup (E, ◦) by

E =
{(

f, f ′) ∣∣ f :Zp → Zpf
′ : Zp → Zp

}

(where f and f ′ are just symbols) with law of composition

(
f, f ′) ◦ (g, g′) =

(
f ◦ g,

(
f ′ ◦ g

)
· g′

)
.

Here (f ◦ g)(x) = f(g(x)) and ((f ′ ◦ g) · g′)(x) = f ′(g(x)) · g′(x).
We denote by (H, ◦) the group of units of E.

The following facts are easy to verify:

3.1 Lemma.

(1) The identity element of E is (ι, 1), with ι denoting the identity function on Zp and
1 the constant function 1.

(2) The group of units of E has the form

H =
{(

f, f ′) ∣∣ f :Zp → Zp bijective, f ′:Zp → Zp \ {0}
}
.
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(3) The inverse of (g, g′) ∈ H is

(
g, g′

)−1 =
(
g−1,

1
g′ ◦ g−1

)
,

where g−1 is the inverse permutation of the permutation g and 1/a stands for the
multiplicative inverse of a non-zero element a ∈ Zp, such that

(
1

g′ ◦ g−1

)
(x) = 1

g′(g−1(x))

means the multiplicative inverse in Zp \ {0} of g′(g−1(x)).

Note that H is a semidirect product of (as the normal subgroup) a direct sum of
p copies of the cyclic group of order p − 1 and (as the complement acting on it) the
symmetric group on p letters, Sp, acting on the direct sum by permuting its components.
In combinatorics, one would call this a wreath product (designed to act on the left) of
the abstract group Cp−1 by the permutation group Sp with its standard action on p

letters. (Group theorists, however, have a narrower definition of wreath product, which
is not applicable here.)

Now for the homomorphisms θ and ψ.

Definition. We define ψ:E −→ F1 by ψ(f, f ′) = f . As for θ:F2 → E, given an element
[g]p2 ∈ F2, set θ([g]p2) = ([g]p, [g′]p). θ is well defined by Lemma 2.8(1).

3.2 Lemma.

(i) θ:F2 → E is a monoid-epimorphism.
(ii) The inverse image of H under θ:F2 → E is G2.
(iii) The restriction of θ to G2 is a group-epimorphism θ:G2 → H with |ker(θ)| = pp.
(iv) ψ:E → F1 is a monoid-epimorphism and ψ restricted to H is a group-epimorphism

ψ:H → G1.

Proof. (i) follows from Lemma 2.8(3) and (ii) from Fact 2.7. (iii) follows from
Lemma 2.8(4). Finally, (iv) holds because every function on Zp is a polynomial function
and every permutation of Zp is a polynomial permutation. �
4. Sylow subgroups of H

We will first determine the Sylow p-groups of H. The Sylow p-groups of Gn for n � 2
are obtained in the next section as the inverse images of the Sylow p-groups of H under
the epimorphism Gn → H.
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4.1 Lemma. Let C0 be the subgroup of Sp generated by the p-cycle (0 1 2 . . . p− 1). Then
one Sylow p-subgroup of H is

S =
{(

f, f ′) ∈ H
∣∣ f ∈ C0, f ′ = 1

}
,

where f ′ = 1 means the constant function 1. The normalizer of S in H is

NH(S) =
{(

g, g′
) ∣∣ g ∈ NSp

(C0), g′ a non-zero constant
}
.

Proof. As |H| = p!(p − 1)p, and S is a subgroup of H of order p, S is a Sylow p-group
of H. Conjugation of (f, f ′) ∈ S by (g, g′) ∈ H (using the fact that f ′ = 1) gives

(
g, g′

)−1(
f, f ′)(g, g′) =

(
g−1,

1
g′ ◦ g−1

)(
f ◦ g, g′

)
=

(
g−1 ◦ f ◦ g, g′

g′ ◦ g−1 ◦ f ◦ g

)
.

The first coordinate of (g, g′)−1(f, f ′)(g, g′) being in C0 for all (f, f ′) ∈ S is equivalent to
g ∈ NSp

(C0). The second coordinate of (g, g′)−1(f, f ′)(g, g′) being the constant function
1 for all (f, f ′) ∈ S is equivalent to

∀x ∈ Zp, g′(x) = g′
(
g−1(f(g(x)

)))
,

which is equivalent to g′ being constant on every cycle of g−1fg, which is equivalent to
g′ being constant on Zp, since f can be chosen to be a p-cycle. �
4.2 Lemma. Another way of describing the normalizer of S in H is

NH(S) =
{(

g, g′
)
∈ H

∣∣ ∃k �= 0 ∀a, b, g(a) − g(b) = k(a− b); g′ a non-zero constant
}
.

Therefore, |NH(S)| = p(p− 1)2 and [H:NH(S)] = (p− 1)!(p− 1)p−2.

Proof. Let σ = (0 1 2 . . . p− 1) and g ∈ Sp then

gσg−1 =
(
g(0) g(1) g(2) . . . g(p− 1)

)
.

Now g ∈ NSp
(C0) if and only if, for some 1 � k < p, gσg−1 = σk, i.e.,

(
g(0) g(1) g(2) . . . g(p− 1)

)
=

(
0 k 2k . . . (p− 1)k

)
,

all numbers taken mod p. This is equivalent to g(x + 1) = g(x) + k or

g(x + 1) − g(x) = k

and further equivalent to g(a)−g(b) = k(a−b). Thus k and g(0) determine g ∈ NSp
(C0),

and there are (p−1) choices for k and p choices for g(0). Together with the (p−1) choices
for the non-zero constant g′ this makes p(p− 1)2 elements of NH(S). �
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4.3 Corollary. There are (p− 1)!(p− 1)p−2 Sylow p-subgroups of H.

4.4 Theorem. The Sylow p-subgroups of H are in bijective correspondence with pairs
(C, ϕ̄), where C is a cyclic subgroup of order p of Sp, ϕ:Zp → Zp \ {0} is a function and
ϕ̄ is the class of ϕ with respect to the equivalence relation of multiplication by a non-zero
constant. The subgroup corresponding to (C, ϕ̄) is

S(C,ϕ̄) =
{(

f, f ′) ∈ H
∣∣∣ f ∈ C, f ′(x) = ϕ(f(x))

ϕ(x)

}
.

Proof. Observe that each S(C,ϕ̄) is a subgroup of order p of H. Different pairs (C, ϕ̄)
give rise to different groups: Suppose S(C,ϕ̄) = S(D,ψ̄). Then C = D and for all x ∈ Zp

and for all f ∈ C we get

ϕ(f(x))
ϕ(x) = ψ(f(x))

ψ(x) .

As C is transitive on Zp the latter condition is equivalent to

∀x, y ∈ Zp
ψ(x)
ϕ(x) = ψ(y)

ϕ(y) ,

which means that ϕ = kψ for a non-zero k ∈ Zp.
There are (p−2)! cyclic subgroups of order p of Sp, and (p−1)p−1 equivalence classes

ϕ̄ of functions ϕ:Zp → Zp \ {0}. So the number of pairs (C, ϕ̄) equals (p− 1)!(p− 1)p−2,
which is the number of Sylow p-groups of H, by the preceding corollary. �
4.5 Proposition. If p is an odd prime then the intersection of all Sylow p-subgroups of H
is trivial, i.e.,

⋂
(C,ϕ)

S(C,ϕ) =
{
(ι, 1)

}
.

If p = 2 then |H| = 2 and the intersection of all Sylow 2-subgroups of H is H itself.

Proof. Let p be an odd prime, and let (f, f ′) ∈
⋂

(C,ϕ) S(C,ϕ). Suppose f is not the
identity function and let k ∈ Zp such that f(k) �= k.

Note that ϕ in (C,ϕ) is arbitrary, apart from the fact that 0 is not in the image.
Therefore, and because p � 3, among the various ϕ there occur functions ϑ and η with
ϑ(k) = η(k) and ϑ(f(k)) �= η(f(k)). Now (f, f ′) ∈ S(D,ϑ)∩S(E,η) for any cyclic subgroups
D and E of Sp of order p.
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Therefore

ϑ(f(k))
ϑ(k) = f ′(k) = η(f(k))

η(k) ,

and hence ϑ(f(k)) = η(f(k)), a contradiction. Thus f is the identity and therefore f ′ = 1.
If p = 2 then |H| = 2 and therefore the one and only Sylow 2-subgroup of H is H. �
In the case p � 5, the lemma above can be proved in a simpler way: There is more

than one cyclic group of order p, so for (f, f ′) ∈
⋂

(C,ϕ) S(C,ϕ), there are distinct cyclic
groups D and E of order p with f ∈ D ∩ E. Therefore f has to be the identity.

5. Sylow subgroups of Gn and of the projective limit

Again we consider the projective system of finite groups

G1
ψ←− H

θ←− G2
π2←− · · · πn−1←− Gn

πn←−

where (Gn, ◦) is the group of polynomial permutations on Zpn (with respect to com-
position of functions) and H is the group defined in section 3. Let G = lim←− Gn be the
projective limit of this system. Recall that a Sylow p-group of a pro-finite group is de-
fined as a maximal group consisting of elements whose order in each of the finite groups
in the projective system is a power of p.

5.1 Theorem.

(i) Let (Gn, ◦) be the group of polynomial permutations on Zpn with respect to composi-
tion. If n � 2 there are (p−1)!(p−1)p−2 Sylow p-groups of Gn. They are the inverse
images of the Sylow p-groups of H (described in Theorem 4.4) under the canonical
projection π:Gn → H, with π = θπ2 . . . πn−1.

(ii) Let G = lim←− Gn. There are (p − 1)!(p − 1)p−2 Sylow p-groups of G, which are the
inverse images of the Sylow p-groups of H (described in Theorem 4.4) under the
canonical projection π:G → H.

Proof. In the projective system G1
ψ←− H

θ←− G2
π2←− · · · πn−1←− Gn the kernel of the

group-epimorphism Gn → H is a finite p-group for every n � 2, because for n � 2 the
kernel of πn:Gn+1 → Gn is of order pβ(n+1) by Corollary 2.10 θ:G2 → H is of order pp

by Lemma 3.2(iii). So the Sylow p-groups of Gn for n � 2 are just the inverse images
of the Sylow p-groups of H and, likewise, the Sylow p-groups of the projective limit G

are just the inverse images of the Sylow p-groups of H, whose number was determined
in Corollary 4.3. �

If we combine this information with the description of the Sylow p-groups of H in
Theorem 4.4 we get the following explicit description of the Sylow p-groups of Gn. Recall
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that [f ]pn denotes the function induced on Zpn by the polynomial f in Z[x] (or in Zpm [x]
for some m � n).

5.2 Corollary. Let n � 2. Let Gn be the group (with respect to composition) of polynomial
permutations on Zpn . The Sylow p-groups of Gn are in bijective correspondence with pairs
(C, ϕ̄), where C is a cyclic subgroup of order p of Sp, ϕ:Zp → Zp \ {0} is a function
and ϕ̄ its class with respect to the equivalence relation of multiplication by a non-zero
constant. The subgroup corresponding to (C, ϕ̄) is

S(C,ϕ̄) =
{

[f ]pn ∈ Gn

∣∣∣ [f ]p ∈ C,
[
f ′]

p
(x) = ϕ([f ]p(x))

ϕ(x)

}
.

Example. A particularly easy to describe Sylow p-group of Gn is the one correspond-
ing to (C,ϕ) where ϕ is a constant function and C the subgroup of Sp generated by
(0 1 2 . . . p− 1). It is the inverse image of S defined in Lemma 4.1 and it consists of the
functions on Zpn induced by polynomials f such that the formal derivative f ′ induces
the constant function 1 on Zp and the function induced by f itself on Zp is a power of
(0 1 2 . . . p− 1).

Combining Theorem 5.1 with Proposition 4.5 we obtain the following description of
the intersection of all Sylow p-groups of Gn for odd p.

5.3 Corollary. Let p be an odd prime.

(i) For n � 2 the intersection of all Sylow p-groups of Gn is the kernel of the projection
π:G → H.

(ii) Likewise, the intersection of all Sylow p-groups of G is the kernel of the canonical
epimorphism of G onto H.

(iii) The intersection of all Sylow p-groups of Gn (n � 2) can also be described as the
normal subgroup

N =
{
[f ]pn ∈ Gn

∣∣ [f ]p = ι,
[
f ′]

p
= 1

}
,

where ι denotes the identity function on Zp. Its order is ppp
∑n

k=3
β(k) and its index

in Gn (for n � 2) is

[Gn : N ] = p!(p− 1)p.

(iv) Likewise, the index of the intersection of all Sylow p-subgroups of G in G is
p!(p− 1)p.

Proof. (i) and (ii) follow immediately from Theorem 5.1 and Proposition 4.5. To see (iii),
let π be the projection from Gn to H (that is π = θπ2 . . . πn−1). Then N is the inverse
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image of {(ι, 1)}, the identity element of H, under π, and is therefore the intersection of
the Sylow p-groups of Gn by (i). As the kernel of a group homomorphism, N is a normal
subgroup.

The order of N is the order of the kernel of π, which is the product of pp (the order
of the kernel of θ) and pβ(k) (the order of the kernel of πk−1) for 3 � k � n. Finally, the
index of the kernel of the homomorphism of Gn or G onto H is the order of H which is
p!(p− 1)p. �
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