Sylow p-groups of polynomial permutations on the integers $\bmod p^{n}$

Sophie Frisch ${ }^{\mathrm{a}, *, 1}$, Daniel Krenn ${ }^{\mathrm{b}, 2}$
${ }^{\text {a }}$ Institut für Mathematik A, Technische Universität Graz, Steyrergasse 30, A-8010 Graz, Austria
${ }^{\text {b }}$ Institut für Mathematik B, Technische Universität Graz, Steyrergasse 30, A-8010 Graz, Austria

A R T I C L E I N F O

Article history:

Received 9 July 2012
Accepted 23 June 2013
Available online 4 September 2013
Communicated by D. Wan

MSC:

primary 20D20
secondary $11 \mathrm{~T} 06,13 \mathrm{M} 10,11 \mathrm{C} 08$, 13F20, 20E18

Keywords:
Polynomial permutations
Polynomial functions
Polynomial mappings
p-Groups
Pro- p-groups
Sylow p-groups
Finite rings

A B S T R A C T

We enumerate and describe the Sylow p-groups of the groups of polynomial permutations of the integers $\bmod p^{n}$ for $n \geqslant 1$ and of the pro-finite group which is the projective limit of these groups.
© 2013 The Authors. Published by Elsevier Inc.
Open access under CC BY license.

[^0]
1. Introduction

Fix a prime p and let $n \in \mathbb{N}$. Every polynomial $f \in \mathbb{Z}[x]$ defines a function from $\mathbb{Z}_{p^{n}}=\mathbb{Z} / p^{n} \mathbb{Z}$ to itself. If this function happens to be bijective, it is called a polynomial permutation of $\mathbb{Z}_{p^{n}}$. The polynomial permutations of $\mathbb{Z}_{p^{n}}$ form a group (G_{n}, \circ) with respect to composition. The order of this group has been known since at least 1921 (Kempner [10]) to be

$$
\left|G_{2}\right|=p!(p-1)^{p} p^{p} \quad \text { and } \quad\left|G_{n}\right|=p!(p-1)^{p} p^{p} p^{\sum_{k=3}^{n} \beta(k)} \quad \text { for } n \geqslant 3
$$

where $\beta(k)$ is the least n such that p^{k} divides n !, but the structure of $\left(G_{n}, \circ\right)$ is elusive. (See, however, Nöbauer [15] for some partial results.) Since the order of G_{n} is divisible by a high power of $(p-1)$ for large p, even the number of Sylow p-groups is not obvious.

We will show that there are $(p-1)!(p-1)^{p-2}$ Sylow p-groups of G_{n} and describe these Sylow p-groups, see Theorem 5.1 and Corollary 5.2.

Some notation: p is a fixed prime throughout. A function $g: \mathbb{Z}_{p^{n}} \rightarrow \mathbb{Z}_{p^{n}}$ arising from a polynomial in $\mathbb{Z}_{p^{n}}[x]$ or, equivalently, from a polynomial in $\mathbb{Z}[x]$, is called a polynomial function on $\mathbb{Z}_{p^{n}}$. We denote by $\left(F_{n}, \circ\right)$ the monoid with respect to composition of polynomial functions on $\mathbb{Z}_{p^{n}}$. By monoid, we mean semigroup with an identity element. Let $\left(G_{n}, \circ\right)$ be the group of units of $\left(F_{n}, \circ\right)$, which is the group of polynomial permutations of $\mathbb{Z}_{p^{n}}$.

Since every function induced by a polynomial preserves congruences modulo ideals, there is a natural epimorphism mapping polynomial functions on $\mathbb{Z}_{p^{n+1}}$ onto polynomial functions on $\mathbb{Z}_{p^{n}}$, and we write it as $\pi_{n}: F_{n+1} \rightarrow F_{n}$. If f is a polynomial in $\mathbb{Z}[x]$ (or in $\mathbb{Z}_{p^{m}}[x]$ for $m \geqslant n$) we denote the polynomial function on $\mathbb{Z}_{p^{n}}[x]$ induced by f by $[f]_{p^{n}}$.

The order of F_{n} and that of G_{n} have been determined by Kempner [10] in a rather complicated manner. His results were cast into a simpler form by Nöbauer [14] and Keller and Olson [9] among others. Since then there have been many generalizations of the order formulas to more general finite rings [16,13,2,6,1,8,7]. Also, polynomial permutations in several variables (permutations of $\left(\mathbb{Z}_{p^{n}}\right)^{k}$ defined by k-tuples of polynomials in k variables) have been looked into [5,4,19,17,18,11].

2. Polynomial functions and permutations

To put things in context, we recall some well-known facts, to be found, among other places, in $[10,14,3,9]$. The reader familiar with polynomial functions on finite rings is encouraged to skip to Section 3. Note that we do not claim anything in Section 2 as new.

Definition. For p prime and $n \in \mathbb{N}$, let

$$
\alpha_{p}(n)=\sum_{k=1}^{\infty}\left[\frac{n}{p^{k}}\right] \quad \text { and } \quad \beta_{p}(n)=\min \left\{m \mid \alpha_{p}(m) \geqslant n\right\} .
$$

If p is fixed, we just write $\alpha(n)$ and $\beta(n)$.

Notation. For $k \in \mathbb{N}$, let $(x)_{k}=x(x-1) \ldots(x-k+1)$ and $(x)_{0}=1$. We denote p-adic valuation by v_{p}.

2.1 Fact.

(1) $\alpha_{p}(n)=v_{p}(n!)$.
(2) For $1 \leqslant n \leqslant p, \beta_{p}(n)=n p$ and for $n>p, \beta_{p}(n)<n p$.
(3) For all $n \in \mathbb{Z}, v_{p}\left((n)_{k}\right) \geqslant \alpha_{p}(k)$; and $v_{p}\left((k)_{k}\right)=v_{p}(k!)=\alpha_{p}(k)$.

Proof. Easy.
Remark. The sequence $\left(\beta_{p}(n)\right)_{n=1}^{\infty}$ is obtained by going through the natural numbers in increasing order and repeating each $k \in \mathbb{N} v_{p}(k)$ times. For instance, $\beta_{2}(n)$ for $n \geqslant 1$ is: $2,4,4,6,8,8,8,10,12,12,14,16,16,16,16,18,20,20, \ldots$.

The falling factorials $(x)_{0}=1,(x)_{k}=x(x-1) \ldots(x-k+1), k>0$, form a basis of the free \mathbb{Z}-module $\mathbb{Z}[x]$, and representation with respect to this basis gives a convenient canonical form for a polynomial representing a given polynomial function on $\mathbb{Z}_{p^{n}}$.
2.2 Fact. (Cf. Keller and Olson [9].) A polynomial $f \in \mathbb{Z}[x], f=\sum_{k} a_{k}(x)_{k}$, induces the zero-function $\bmod p^{n}$ if and only if $a_{k} \equiv 0 \bmod p^{n-\alpha(k)}$ for all k (or, equivalently, for all $k<\beta(n)$).

Proof. Induction on k using the facts that $(m)_{k}=0$ for $m<k$, that $v_{p}\left((n)_{k}\right) \geqslant \alpha_{p}(k)$ for all $n \in \mathbb{Z}$, and that $v_{p}\left((k)_{k}\right)=v_{p}(k!)=\alpha_{p}(k)$.
2.3 Corollary. (Cf. Keller and Olson [9].) Every polynomial function on $\mathbb{Z}_{p^{n}}$ is represented by a unique $f \in \mathbb{Z}[x]$ of the form $f=\sum_{k=0}^{\beta(n)-1} a_{k}(x)_{k}$, with $0 \leqslant a_{k}<p^{n-\alpha(k)}$ for all k.

Comparing the canonical forms of polynomial functions mod p^{n} with those $\bmod p^{n-1}$ we see that every polynomial function $\bmod p^{n-1}$ gives rise to $p^{\beta(n)}$ different polynomial functions $\bmod p^{n}$:
2.4 Corollary. (See cf. Keller and Olson [9].) Let $\left(F_{n}, \circ\right)$ be the monoid of polynomial functions on $\mathbb{Z}_{p^{n}}$ with respect to composition and $\pi_{n}: F_{n+1} \rightarrow F_{n}$ the canonical projection.
(1) For all $n \geqslant 1$ and for each $f \in F_{n}$ we have $\left|\pi_{n}^{-1}(f)\right|=p^{\beta(n+1)}$.
(2) For all $n \geqslant 1$, the number of polynomial functions on $\mathbb{Z}_{p^{n}}$ is

$$
\left|F_{n}\right|=p^{\sum_{k=1}^{n} \beta(k)} .
$$

Notation. We write $[f]_{p^{n}}$ for the function defined by $f \in \mathbb{Z}[x]$ on $\mathbb{Z}_{p^{n}}$.
2.5 Lemma. Every polynomial $f \in \mathbb{Z}[x]$ is uniquely representable as

$$
f(x)=f_{0}(x)+f_{1}(x)\left(x^{p}-x\right)+f_{2}(x)\left(x^{p}-x\right)^{2}+\cdots+f_{m}(x)\left(x^{p}-x\right)^{m}+\cdots
$$

with $f_{m} \in \mathbb{Z}[x], \operatorname{deg} f_{m}<p$, for all $m \geqslant 0$. Now let $f, g \in \mathbb{Z}[x]$.
(1) If $n \leqslant p$, then $[f]_{p^{n}}=[g]_{p^{n}}$ is equivalent to: $f_{k}=g_{k} \bmod p^{n-k} \mathbb{Z}[x]$ for $0 \leqslant k<n$.
(2) $[f]_{p^{2}}=[g]_{p^{2}}$ is equivalent to: $f_{0}=g_{0} \bmod p^{2} \mathbb{Z}[x]$ and $f_{1}=g_{1} \bmod p \mathbb{Z}[x]$.
(3) $[f]_{p}=[g]_{p}$ and $\left[f^{\prime}\right]_{p}=\left[g^{\prime}\right]_{p}$ is equivalent to: $f_{0}=g_{0} \bmod p \mathbb{Z}[x]$ and $f_{1}=g_{1} \bmod$ $p \mathbb{Z}[x]$.

Proof. The canonical representation is obtained by repeated division with remainder by ($x^{p}-x$), and uniqueness follows from uniqueness of quotient and remainder of polynomial division. Note that $[f]_{p}=\left[f_{0}\right]_{p}$ and $\left[f^{\prime}\right]_{p}=\left[f_{0}^{\prime}-f_{1}\right]_{p}$. This gives (3).

Denote by $f \sim g$ the equivalence relation $f_{k}=g_{k} \bmod p^{n-k} \mathbb{Z}[x]$ for $0 \leqslant k<n$. Then $f \sim g$ implies $[f]_{p^{n}}=[g]_{p^{n}}$. There are $p^{p+2 p+3 p+\cdots+n p}$ equivalence classes of \sim and $p^{\beta(1)+\beta(2)+\beta(3)+\cdots+\beta(n)}$ different $[f]_{p^{n}}$. For $k \leqslant p, \beta(k)=k p$. Therefore the equivalence relations $f \sim g$ and $[f]_{p^{n}}=[g]_{p^{n}}$ coincide. This gives (1), and (2) is just the special case $n=2$.

We can rephrase this in terms of ideals of $\mathbb{Z}[x]$.
2.6 Corollary. For every $n \in \mathbb{N}$, consider the two ideals of $\mathbb{Z}[x]$

$$
I_{n}=\left\{f \in \mathbb{Z}[x] \mid f(\mathbb{Z}) \subseteq p^{n} \mathbb{Z}\right\} \quad \text { and } \quad J_{n}=\left(\left\{p^{n-k}\left(x^{p}-x\right)^{k} \mid 0 \leqslant k \leqslant n\right\}\right)
$$

Then $\left[\mathbb{Z}[x]: I_{n}\right]=p^{\beta(1)+\beta(2)+\beta(3)+\cdots+\beta(n)}$ and $\left[\mathbb{Z}[x]: J_{n}\right]=p^{p+2 p+3 p+\cdots+n p}$. Therefore, $J_{n}=I_{n}$ for $n \leqslant p$, whereas for $n>p, J_{n}$ is properly contained in I_{n}.

Proof. $J_{n} \subseteq I_{n}$. The index of J_{n} in $\mathbb{Z}[x]$ is $p^{p+2 p+3 p+\cdots+n p}$, because $f \in J_{n}$ if and only if $f_{k}=0 \bmod p^{n-k} \mathbb{Z}[x]$ for $0 \leqslant k<n$ in the canonical representation of Lemma 2.5. The index of I_{n} in $\mathbb{Z}[x]$ is $p^{\beta(1)+\beta(2)+\beta(3)+\cdots+\beta(n)}$ by Corollary 2.4(2) and $\left[\mathbb{Z}[x]: I_{n}\right]<\left[\mathbb{Z}[x]: J_{n}\right]$ if and only if $n>p$ by Fact 2.1(2).
2.7 Fact. (Cf. McDonald [12].) Let $n \geqslant 2$. The function on $\mathbb{Z}_{p^{n}}$ induced by a polynomial $f \in \mathbb{Z}[x]$ is a permutation if and only if
(1) f induces a permutation of \mathbb{Z}_{p}, and
(2) the derivative f^{\prime} has no zero $\bmod p$.
2.8 Lemma. Let $[f]_{p^{n}}$ and $[f]_{p}$ be the functions defined by $f \in \mathbb{Z}[x]$ on $\mathbb{Z}_{p^{n}}$ and \mathbb{Z}_{p}, respectively, and $\left[f^{\prime}\right]_{p}$ the function defined by the formal derivative of f on \mathbb{Z}_{p}. Then
(1) $[f]_{p^{2}}$ determines not just $[f]_{p}$, but also $\left[f^{\prime}\right]_{p}$.
(2) Let $n \geqslant 2$. Then $[f]_{p^{n}}$ is a permutation if and only if $[f]_{p^{2}}$ is a permutation.
(3) For every pair of functions (α, β), $\alpha: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}, \beta: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$, there are exactly p^{p} polynomial functions $[f]_{p^{2}}$ on $\mathbb{Z}_{p^{2}}$ with $[f]_{p}=\alpha$ and $\left[f^{\prime}\right]_{p}=\beta$.
(4) For every pair of functions (α, β), $\alpha: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ bijective, $\beta: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p} \backslash\{0\}$, there are exactly p^{p} polynomial permutations $[f]_{p^{2}}$ on $\mathbb{Z}_{p^{2}}$ with $[f]_{p}=\alpha$ and $\left[f^{\prime}\right]_{p}=\beta$.

Proof. (1) and (3) follow immediately from Lemma 2.5 for $n=2$ and (2) and (4) then follow from Fact 2.7.
2.9 Remark. Fact 2.7 and Lemma 2.8(2) imply that
(1) for all $n \geqslant 1$, the image of G_{n+1} under $\pi_{n}: F_{n+1} \rightarrow F_{n}$ is contained in G_{n}, and
(2) for all $n \geqslant 2$, the inverse image of G_{n} under $\pi_{n}: F_{n+1} \rightarrow F_{n}$ is G_{n+1}.

We denote by $\pi_{n}: G_{n+1} \rightarrow G_{n}$ the restriction of π_{n} to G_{n}. This is the canonical epimorphism from the group of polynomial permutations on $\mathbb{Z}_{p^{n+1}}$ onto the group of polynomial permutations on $\mathbb{Z}_{p^{n}}$.

The above remark allows us to draw conclusions on the projective system of groups G_{n} from the information in Corollary 2.4 concerning the projective system of monoids F_{n}.
2.10 Corollary. Let $n \geqslant 2$, and $\pi_{n}: G_{n+1} \rightarrow G_{n}$ the canonical epimorphism from the group of polynomial permutations on $\mathbb{Z}_{p^{n+1}}$ onto the group of polynomial permutations on $\mathbb{Z}_{p^{n}}$. Then

$$
\left|\operatorname{ker}\left(\pi_{n}\right)\right|=p^{\beta(n+1)}
$$

2.11 Corollary. (See cf. Kempner [10] and Keller and Olson [9].) The number of polynomial permutations on $\mathbb{Z}_{p^{2}}$ is

$$
\left|G_{2}\right|=p!(p-1)^{p} p^{p},
$$

and for $n \geqslant 3$ the number of polynomial permutations on $\mathbb{Z}_{p^{2}}$ is

$$
\left|G_{n}\right|=p!(p-1)^{p} p^{p} p^{\sum_{k=3}^{n} \beta(k)} .
$$

Proof. In the canonical representation of $f \in \mathbb{Z}[x]$ in Lemma 2.5, there are $p!(p-1)^{p}$ choices of coefficients mod p for f_{0} and f_{1} such that the criteria of Fact 2.7 for a polynomial permutation on $\mathbb{Z}_{p^{2}}$ are satisfied. And for each such choice there are p^{p} possibilities for the coefficients of $f_{0} \bmod p^{2}$. The coefficients of $f_{0} \bmod p^{2}$ and those of $f_{1} \bmod p$ then determine the polynomial function $\bmod p^{2}$. So $\left|G_{2}\right|=p!(p-1)^{p} p^{p}$. The formula for $\left|G_{n}\right|$ then follows from Corollary 2.10.

This concludes our review of polynomial functions and polynomial permutations on $\mathbb{Z}_{p^{n}}$. We will now introduce a homomorphic image of G_{2} whose Sylow p-groups bijectively correspond to the Sylow p-groups of G_{n} for any $n \geqslant 2$.

3. A group between G_{1} and G_{2}

Into the projective system of monoids $\left(F_{n}, \circ\right)$ we insert an extra monoid E between F_{1} and F_{2} by means of monoid-epimorphisms $\theta: F_{2} \rightarrow E$ and $\psi: E \rightarrow F_{1}$ with $\psi \theta=\pi_{1}$,

$$
F_{1} \stackrel{\psi}{\longleftarrow} E \stackrel{\theta}{\longleftarrow} F_{2} \stackrel{\pi_{2}}{\longleftarrow} F_{3} \stackrel{\pi_{3}}{\leftrightarrows} \cdots .
$$

The restrictions of θ to G_{2} and of ψ to the group of units H of E will be groupepimorphisms, so that we also insert an extra group H between G_{1} and G_{2} into the projective system of the G_{i},

$$
G_{1} \stackrel{\psi}{\longleftarrow} H \stackrel{\theta}{\longleftarrow} G_{2} \stackrel{\pi_{2}}{\leftarrow} G_{3} \stackrel{\pi_{3}}{\leftrightarrows} \ldots
$$

In the following definition of E and H, f and f^{\prime} are just two different names for functions. The connection with polynomials and their formal derivatives suggested by the notation will appear when we define θ and ψ.

Definition. We define the semigroup (E, \circ) by

$$
E=\left\{\left(f, f^{\prime}\right) \mid f: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p} f^{\prime}: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}\right\}
$$

(where f and f^{\prime} are just symbols) with law of composition

$$
\left(f, f^{\prime}\right) \circ\left(g, g^{\prime}\right)=\left(f \circ g,\left(f^{\prime} \circ g\right) \cdot g^{\prime}\right) .
$$

Here $(f \circ g)(x)=f(g(x))$ and $\left(\left(f^{\prime} \circ g\right) \cdot g^{\prime}\right)(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x)$.
We denote by (H, \circ) the group of units of E.
The following facts are easy to verify:

3.1 Lemma.

(1) The identity element of E is $(\iota, 1)$, with ι denoting the identity function on \mathbb{Z}_{p} and 1 the constant function 1 .
(2) The group of units of E has the form

$$
H=\left\{\left(f, f^{\prime}\right) \mid f: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p} \text { bijective, } f^{\prime}: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p} \backslash\{0\}\right\}
$$

(3) The inverse of $\left(g, g^{\prime}\right) \in H$ is

$$
\left(g, g^{\prime}\right)^{-1}=\left(g^{-1}, \frac{1}{g^{\prime} \circ g^{-1}}\right)
$$

where g^{-1} is the inverse permutation of the permutation g and $1 /$ a stands for the multiplicative inverse of a non-zero element $a \in \mathbb{Z}_{p}$, such that

$$
\left(\frac{1}{g^{\prime} \circ g^{-1}}\right)(x)=\frac{1}{g^{\prime}\left(g^{-1}(x)\right)}
$$

means the multiplicative inverse in $\mathbb{Z}_{p} \backslash\{0\}$ of $g^{\prime}\left(g^{-1}(x)\right)$.
Note that H is a semidirect product of (as the normal subgroup) a direct sum of p copies of the cyclic group of order $p-1$ and (as the complement acting on it) the symmetric group on p letters, S_{p}, acting on the direct sum by permuting its components. In combinatorics, one would call this a wreath product (designed to act on the left) of the abstract group C_{p-1} by the permutation group S_{p} with its standard action on p letters. (Group theorists, however, have a narrower definition of wreath product, which is not applicable here.)

Now for the homomorphisms θ and ψ.

Definition. We define $\psi: E \longrightarrow F_{1}$ by $\psi\left(f, f^{\prime}\right)=f$. As for $\theta: F_{2} \rightarrow E$, given an element $[g]_{p^{2}} \in F_{2}$, set $\theta\left([g]_{p^{2}}\right)=\left([g]_{p},\left[g^{\prime}\right]_{p}\right) . \theta$ is well defined by Lemma 2.8(1).

3.2 Lemma.

(i) $\theta: F_{2} \rightarrow E$ is a monoid-epimorphism.
(ii) The inverse image of H under $\theta: F_{2} \rightarrow E$ is G_{2}.
(iii) The restriction of θ to G_{2} is a group-epimorphism $\theta: G_{2} \rightarrow H$ with $|\operatorname{ker}(\theta)|=p^{p}$.
(iv) $\psi: E \rightarrow F_{1}$ is a monoid-epimorphism and ψ restricted to H is a group-epimorphism $\psi: H \rightarrow G_{1}$.

Proof. (i) follows from Lemma 2.8(3) and (ii) from Fact 2.7. (iii) follows from Lemma 2.8(4). Finally, (iv) holds because every function on \mathbb{Z}_{p} is a polynomial function and every permutation of \mathbb{Z}_{p} is a polynomial permutation.

4. Sylow subgroups of \boldsymbol{H}

We will first determine the Sylow p-groups of H. The Sylow p-groups of G_{n} for $n \geqslant 2$ are obtained in the next section as the inverse images of the Sylow p-groups of H under the epimorphism $G_{n} \rightarrow H$.
4.1 Lemma. Let C_{0} be the subgroup of S_{p} generated by the p-cycle (0 $12 \ldots p-1$). Then one Sylow p-subgroup of H is

$$
S=\left\{\left(f, f^{\prime}\right) \in H \mid f \in C_{0}, f^{\prime}=1\right\}
$$

where $f^{\prime}=1$ means the constant function 1. The normalizer of S in H is

$$
N_{H}(S)=\left\{\left(g, g^{\prime}\right) \mid g \in N_{S_{p}}\left(C_{0}\right), g^{\prime} \text { a non-zero constant }\right\} .
$$

Proof. As $|H|=p!(p-1)^{p}$, and S is a subgroup of H of order p, S is a Sylow p-group of H. Conjugation of $\left(f, f^{\prime}\right) \in S$ by $\left(g, g^{\prime}\right) \in H$ (using the fact that $f^{\prime}=1$) gives

$$
\left(g, g^{\prime}\right)^{-1}\left(f, f^{\prime}\right)\left(g, g^{\prime}\right)=\left(g^{-1}, \frac{1}{g^{\prime} \circ g^{-1}}\right)\left(f \circ g, g^{\prime}\right)=\left(g^{-1} \circ f \circ g, \frac{g^{\prime}}{g^{\prime} \circ g^{-1} \circ f \circ g}\right)
$$

The first coordinate of $\left(g, g^{\prime}\right)^{-1}\left(f, f^{\prime}\right)\left(g, g^{\prime}\right)$ being in C_{0} for all $\left(f, f^{\prime}\right) \in S$ is equivalent to $g \in N_{S_{p}}\left(C_{0}\right)$. The second coordinate of $\left(g, g^{\prime}\right)^{-1}\left(f, f^{\prime}\right)\left(g, g^{\prime}\right)$ being the constant function 1 for all $\left(f, f^{\prime}\right) \in S$ is equivalent to

$$
\forall x \in \mathbb{Z}_{p}, \quad g^{\prime}(x)=g^{\prime}\left(g^{-1}(f(g(x)))\right),
$$

which is equivalent to g^{\prime} being constant on every cycle of $g^{-1} f g$, which is equivalent to g^{\prime} being constant on \mathbb{Z}_{p}, since f can be chosen to be a p-cycle.
4.2 Lemma. Another way of describing the normalizer of S in H is
$N_{H}(S)=\left\{\left(g, g^{\prime}\right) \in H \mid \exists k \neq 0 \forall a, b, g(a)-g(b)=k(a-b) ; g^{\prime}\right.$ a non-zero constant $\}$.
Therefore, $\left|N_{H}(S)\right|=p(p-1)^{2}$ and $\left[H: N_{H}(S)\right]=(p-1)!(p-1)^{p-2}$.
Proof. Let $\sigma=(012 \ldots p-1)$ and $g \in S_{p}$ then

$$
g \sigma g^{-1}=(g(0) g(1) g(2) \ldots g(p-1))
$$

Now $g \in N_{S_{p}}\left(C_{0}\right)$ if and only if, for some $1 \leqslant k<p, g \sigma g^{-1}=\sigma^{k}$, i.e.,

$$
(g(0) g(1) g(2) \ldots g(p-1))=(0 k 2 k \ldots(p-1) k),
$$

all numbers taken $\bmod p$. This is equivalent to $g(x+1)=g(x)+k$ or

$$
g(x+1)-g(x)=k
$$

and further equivalent to $g(a)-g(b)=k(a-b)$. Thus k and $g(0)$ determine $g \in N_{S_{p}}\left(C_{0}\right)$, and there are $(p-1)$ choices for k and p choices for $g(0)$. Together with the $(p-1)$ choices for the non-zero constant g^{\prime} this makes $p(p-1)^{2}$ elements of $N_{H}(S)$.
4.3 Corollary. There are $(p-1)!(p-1)^{p-2}$ Sylow p-subgroups of H.
4.4 Theorem. The Sylow p-subgroups of H are in bijective correspondence with pairs $(C, \bar{\varphi})$, where C is a cyclic subgroup of order p of $S_{p}, \varphi: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p} \backslash\{0\}$ is a function and $\bar{\varphi}$ is the class of φ with respect to the equivalence relation of multiplication by a non-zero constant. The subgroup corresponding to $(C, \bar{\varphi})$ is

$$
S_{(C, \bar{\varphi})}=\left\{\left(f, f^{\prime}\right) \in H \mid f \in C, f^{\prime}(x)=\frac{\varphi(f(x))}{\varphi(x)}\right\} .
$$

Proof. Observe that each $S_{(C, \bar{\varphi})}$ is a subgroup of order p of H. Different pairs $(C, \bar{\varphi})$ give rise to different groups: Suppose $S_{(C, \bar{\varphi})}=S_{(D, \bar{\psi})}$. Then $C=D$ and for all $x \in \mathbb{Z}_{p}$ and for all $f \in C$ we get

$$
\frac{\varphi(f(x))}{\varphi(x)}=\frac{\psi(f(x))}{\psi(x)}
$$

As C is transitive on \mathbb{Z}_{p} the latter condition is equivalent to

$$
\forall x, y \in \mathbb{Z}_{p} \quad \frac{\psi(x)}{\varphi(x)}=\frac{\psi(y)}{\varphi(y)},
$$

which means that $\varphi=k \psi$ for a non-zero $k \in \mathbb{Z}_{p}$.
There are $(p-2)$! cyclic subgroups of order p of S_{p}, and $(p-1)^{p-1}$ equivalence classes $\bar{\varphi}$ of functions $\varphi: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p} \backslash\{0\}$. So the number of pairs $(C, \bar{\varphi})$ equals $(p-1)!(p-1)^{p-2}$, which is the number of Sylow p-groups of H, by the preceding corollary.
4.5 Proposition. If p is an odd prime then the intersection of all Sylow p-subgroups of H is trivial, i.e.,

$$
\bigcap_{(C, \bar{\varphi})} S_{(C, \bar{\varphi})}=\{(\iota, 1)\} .
$$

If $p=2$ then $|H|=2$ and the intersection of all Sylow 2-subgroups of H is H itself.

Proof. Let p be an odd prime, and let $\left(f, f^{\prime}\right) \in \bigcap_{(C, \bar{\varphi})} S_{(C, \bar{\varphi})}$. Suppose f is not the identity function and let $k \in \mathbb{Z}_{p}$ such that $f(k) \neq k$.

Note that φ in $(C, \bar{\varphi})$ is arbitrary, apart from the fact that 0 is not in the image. Therefore, and because $p \geqslant 3$, among the various φ there occur functions ϑ and η with $\vartheta(k)=\eta(k)$ and $\vartheta(f(k)) \neq \eta(f(k))$. Now $\left(f, f^{\prime}\right) \in S_{(D, \bar{\vartheta})} \cap S_{(E, \bar{\eta})}$ for any cyclic subgroups D and E of S_{p} of order p.

Therefore

$$
\frac{\vartheta(f(k))}{\vartheta(k)}=f^{\prime}(k)=\frac{\eta(f(k))}{\eta(k)}
$$

and hence $\vartheta(f(k))=\eta(f(k))$, a contradiction. Thus f is the identity and therefore $f^{\prime}=1$.
If $p=2$ then $|H|=2$ and therefore the one and only Sylow 2-subgroup of H is H.
In the case $p \geqslant 5$, the lemma above can be proved in a simpler way: There is more than one cyclic group of order p, so for $\left(f, f^{\prime}\right) \in \bigcap_{(C, \bar{\varphi})} S_{(C, \bar{\varphi})}$, there are distinct cyclic groups D and E of order p with $f \in D \cap E$. Therefore f has to be the identity.

5. Sylow subgroups of $\boldsymbol{G}_{\boldsymbol{n}}$ and of the projective limit

Again we consider the projective system of finite groups

$$
G_{1} \stackrel{\psi}{\longleftarrow} H \stackrel{\theta}{\longleftarrow} G_{2} \stackrel{\pi_{2}}{\longleftarrow} \cdots \stackrel{\pi_{n-1}}{\longleftarrow} G_{n} \stackrel{\pi_{n}}{\longleftarrow}
$$

where $\left(G_{n}, \circ\right)$ is the group of polynomial permutations on $\mathbb{Z}_{p^{n}}$ (with respect to composition of functions) and H is the group defined in section 3. Let $G=\underset{\rightleftarrows}{\lim } G_{n}$ be the projective limit of this system. Recall that a Sylow p-group of a pro-finite group is defined as a maximal group consisting of elements whose order in each of the finite groups in the projective system is a power of p.

5.1 Theorem.

(i) Let $\left(G_{n}, \circ\right)$ be the group of polynomial permutations on $\mathbb{Z}_{p^{n}}$ with respect to composition. If $n \geqslant 2$ there are $(p-1)!(p-1)^{p-2}$ Sylow p-groups of G_{n}. They are the inverse images of the Sylow p-groups of H (described in Theorem 4.4) under the canonical projection $\pi: G_{n} \rightarrow H$, with $\pi=\theta \pi_{2} \ldots \pi_{n-1}$.
(ii) Let $G=\lim G_{n}$. There are $(p-1)!(p-1)^{p-2}$ Sylow p-groups of G, which are the inverse images of the Sylow p-groups of H (described in Theorem 4.4) under the canonical projection $\pi: G \rightarrow H$.

Proof. In the projective system $G_{1} \stackrel{\psi}{\longleftarrow} H \stackrel{\theta}{\longleftarrow} G_{2} \stackrel{\pi_{2}}{\longleftarrow} \cdots \stackrel{\pi_{n-1}}{\longleftarrow} G_{n}$ the kernel of the group-epimorphism $G_{n} \rightarrow H$ is a finite p-group for every $n \geqslant 2$, because for $n \geqslant 2$ the kernel of $\pi_{n}: G_{n+1} \rightarrow G_{n}$ is of order $p^{\beta(n+1)}$ by Corollary $2.10 \theta: G_{2} \rightarrow H$ is of order p^{p} by Lemma 3.2(iii). So the Sylow p-groups of G_{n} for $n \geqslant 2$ are just the inverse images of the Sylow p-groups of H and, likewise, the Sylow p-groups of the projective limit G are just the inverse images of the Sylow p-groups of H, whose number was determined in Corollary 4.3.

If we combine this information with the description of the Sylow p-groups of H in Theorem 4.4 we get the following explicit description of the Sylow p-groups of G_{n}. Recall
that $[f]_{p^{n}}$ denotes the function induced on $\mathbb{Z}_{p^{n}}$ by the polynomial f in $\mathbb{Z}[x]$ (or in $\mathbb{Z}_{p^{m}}[x]$ for some $m \geqslant n$).
5.2 Corollary. Let $n \geqslant 2$. Let G_{n} be the group (with respect to composition) of polynomial permutations on $\mathbb{Z}_{p^{n}}$. The Sylow p-groups of G_{n} are in bijective correspondence with pairs $(C, \bar{\varphi})$, where C is a cyclic subgroup of order p of $S_{p}, \varphi: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p} \backslash\{0\}$ is a function and $\bar{\varphi}$ its class with respect to the equivalence relation of multiplication by a non-zero constant. The subgroup corresponding to $(C, \bar{\varphi})$ is

$$
S_{(C, \bar{\varphi})}=\left\{[f]_{p^{n}} \in G_{n} \mid[f]_{p} \in C,\left[f^{\prime}\right]_{p}(x)=\frac{\varphi\left([f]_{p}(x)\right)}{\varphi(x)}\right\}
$$

Example. A particularly easy to describe Sylow p-group of G_{n} is the one corresponding to (C, φ) where φ is a constant function and C the subgroup of S_{p} generated by $(012 \ldots p-1)$. It is the inverse image of S defined in Lemma 4.1 and it consists of the functions on $\mathbb{Z}_{p^{n}}$ induced by polynomials f such that the formal derivative f^{\prime} induces the constant function 1 on \mathbb{Z}_{p} and the function induced by f itself on \mathbb{Z}_{p} is a power of (0 $12 \ldots p-1$).

Combining Theorem 5.1 with Proposition 4.5 we obtain the following description of the intersection of all Sylow p-groups of G_{n} for odd p.
5.3 Corollary. Let p be an odd prime.
(i) For $n \geqslant 2$ the intersection of all Sylow p-groups of G_{n} is the kernel of the projection $\pi: G \rightarrow H$.
(ii) Likewise, the intersection of all Sylow p-groups of G is the kernel of the canonical epimorphism of G onto H.
(iii) The intersection of all Sylow p-groups of $G_{n}(n \geqslant 2)$ can also be described as the normal subgroup

$$
N=\left\{[f]_{p^{n}} \in G_{n} \mid[f]_{p}=\iota,\left[f^{\prime}\right]_{p}=1\right\}
$$

where ι denotes the identity function on \mathbb{Z}_{p}. Its order is $p^{p} p^{\sum_{k=3}^{n} \beta(k)}$ and its index in $G_{n}($ for $n \geqslant 2)$ is

$$
\left[G_{n}: N\right]=p!(p-1)^{p} .
$$

(iv) Likewise, the index of the intersection of all Sylow p-subgroups of G in G is $p!(p-1)^{p}$.

Proof. (i) and (ii) follow immediately from Theorem 5.1 and Proposition 4.5. To see (iii), let π be the projection from G_{n} to H (that is $\pi=\theta \pi_{2} \ldots \pi_{n-1}$). Then N is the inverse
image of $\{(\iota, 1)\}$, the identity element of H, under π, and is therefore the intersection of the Sylow p-groups of G_{n} by (i). As the kernel of a group homomorphism, N is a normal subgroup.

The order of N is the order of the kernel of π, which is the product of p^{p} (the order of the kernel of θ) and $p^{\beta(k)}$ (the order of the kernel of π_{k-1}) for $3 \leqslant k \leqslant n$. Finally, the index of the kernel of the homomorphism of G_{n} or G onto H is the order of H which is $p!(p-1)^{p}$.

Acknowledgments

The authors wish to thank W. Herfort for stimulating discussions.

References

[1] M. Bhargava, P-orderings and polynomial functions on arbitrary subsets of Dedekind rings, J. Reine Angew. Math. 490 (1997) 101-127.
[2] J.V. Brawley, G.L. Mullen, Functions and polynomials over Galois rings, J. Number Theory 41 (1992) 156-166.
[3] L. Carlitz, Functions and polynomials (mod p^{n}), Acta Arith. 9 (1964) 67-78.
[4] Z. Chen, On polynomial functions from $\mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}} \times \cdots \times \mathbb{Z}_{n_{r}}$ to \mathbb{Z}_{m}, Discrete Math. 162 (1996) 67-76.
[5] S. Frisch, When are weak permutation polynomials strong?, Finite Fields Appl. 1 (1995) 437-439.
[6] S. Frisch, Polynomial functions on finite commutative rings, in: D.E. Dobbs, et al. (Eds.), Advances in Commutative Ring Theory, in: Lect. Notes Pure Appl. Math., vol. 205, Dekker, New York, 1999, pp. 323-336.
[7] J. Jiang, A note on polynomial functions over finite commutative rings, Adv. Math. (China) 39 (2010) 555-560.
[8] J.J. Jiang, G.H. Peng, Q. Sun, Q. Zhang, On polynomial functions over finite commutative rings, Acta Math. Sin. (Engl. Ser.) 22 (2006) 1047-1050.
[9] G. Keller, F.R. Olson, Counting polynomial functions (mod p^{n}), Duke Math. J. 35 (1968) 835-838.
[10] A.J. Kempner, Polynomials and their residue systems, Trans. Amer. Math. Soc. 22 (1921) 240-266, 267-288.
[11] N.P. Liu, J.J. Jiang, Polynomial functions in n variables over a finite commutative ring, Sichuan Daxue Xuebao 46 (2009) 44-46.
[12] B.R. McDonald, Finite Rings with Identity, Dekker, 1974.
[13] A.A. Nechaev, Polynomial transformations of finite commutative local rings of principal ideals, Math. Notes 27 (1980) 425-432, transl. from Mat. Zametki 27 (1980) 885-897, 989.
[14] W. Nöbauer, Gruppen von Restpolynomidealrestklassen nach Primzahlpotenzen, Monatsh. Math. 59 (1955) 194-202.
[15] W. Nöbauer, Polynomfunktionen auf primen Restklassen, Arch. Math. (Basel) 39 (1982) 431-435.
[16] I.G. Rosenberg, Polynomial functions over finite rings, Glasg. Math. 10 (1975) 25-33.
[17] Q. Wei, Q. Zhang, On strong orthogonal systems and weak permutation polynomials over finite commutative rings, Finite Fields Appl. 13 (2007) 113-120.
[18] Q.J. Wei, Q.F. Zhang, On permutation polynomials in two variables over $\mathbb{Z} / p^{2} \mathbb{Z}$, Acta Math. Sin. (Engl. Ser.) 25 (2009) 1191-1200.
[19] Q. Zhang, Polynomial functions and permutation polynomials over some finite commutative rings, J. Number Theory 105 (2004) 192-202.

[^0]: * Corresponding author.

 E-mail addresses: frisch@tugraz.at (S. Frisch), krenn@math.tugraz.at (D. Krenn).
 ${ }^{1}$ Sophie Frisch is supported by the Austrian Science Fund (FWF), grant P23245-N18.
 ${ }^{2}$ Daniel Krenn is supported by the Austrian Science Fund (FWF), project W1230 doctoral program "Discrete Mathematics".

