

Contents lists available at ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

Sylow *p*-groups of polynomial permutations on the integers mod p^n

Sophie Frisch^{a,*,1}, Daniel Krenn^{b,2}

^a Institut für Mathematik A, Technische Universität Graz, Steyrergasse 30, A-8010 Graz, Austria
^b Institut für Mathematik B, Technische Universität Graz, Steyrergasse 30, A-8010 Graz, Austria

A R T I C L E I N F O

Article history: Received 9 July 2012 Accepted 23 June 2013 Available online 4 September 2013 Communicated by D. Wan

MSC:

primary 20D20 secondary 11T06, 13M10, 11C08, 13F20, 20E18

Keywords: Polynomial permutations Polynomial functions Polynomial mappings p-Groups Pro-p-groups Sylow p-groups Finite rings АВЅТ КАСТ

We enumerate and describe the Sylow *p*-groups of the groups of polynomial permutations of the integers mod p^n for $n \ge 1$ and of the pro-finite group which is the projective limit of these groups.

© 2013 The Authors. Published by Elsevier Inc. Open access under CC BY license.

^{*} Corresponding author.

E-mail addresses: frisch@tugraz.at (S. Frisch), krenn@math.tugraz.at (D. Krenn).

¹ Sophie Frisch is supported by the Austrian Science Fund (FWF), grant P23245-N18.

 $^{^2}$ Daniel Krenn is supported by the Austrian Science Fund (FWF), project W1230 doctoral program "Discrete Mathematics".

1. Introduction

Fix a prime p and let $n \in \mathbb{N}$. Every polynomial $f \in \mathbb{Z}[x]$ defines a function from $\mathbb{Z}_{p^n} = \mathbb{Z}/p^n\mathbb{Z}$ to itself. If this function happens to be bijective, it is called a *polynomial* permutation of \mathbb{Z}_{p^n} . The polynomial permutations of \mathbb{Z}_{p^n} form a group (G_n, \circ) with respect to composition. The order of this group has been known since at least 1921 (Kempner [10]) to be

$$|G_2| = p!(p-1)^p p^p$$
 and $|G_n| = p!(p-1)^p p^p p^{\sum_{k=3}^n \beta(k)}$ for $n \ge 3$.

where $\beta(k)$ is the least *n* such that p^k divides *n*!, but the structure of (G_n, \circ) is elusive. (See, however, Nöbauer [15] for some partial results.) Since the order of G_n is divisible by a high power of (p-1) for large *p*, even the number of Sylow *p*-groups is not obvious.

We will show that there are $(p-1)!(p-1)^{p-2}$ Sylow *p*-groups of G_n and describe these Sylow *p*-groups, see Theorem 5.1 and Corollary 5.2.

Some notation: p is a fixed prime throughout. A function $g: \mathbb{Z}_{p^n} \to \mathbb{Z}_{p^n}$ arising from a polynomial in $\mathbb{Z}_{p^n}[x]$ or, equivalently, from a polynomial in $\mathbb{Z}[x]$, is called a *polynomial* function on \mathbb{Z}_{p^n} . We denote by (F_n, \circ) the monoid with respect to composition of polynomial functions on \mathbb{Z}_{p^n} . By monoid, we mean semigroup with an identity element. Let (G_n, \circ) be the group of units of (F_n, \circ) , which is the group of polynomial permutations of \mathbb{Z}_{p^n} .

Since every function induced by a polynomial preserves congruences modulo ideals, there is a natural epimorphism mapping polynomial functions on $\mathbb{Z}_{p^{n+1}}$ onto polynomial functions on \mathbb{Z}_{p^n} , and we write it as $\pi_n: F_{n+1} \to F_n$. If f is a polynomial in $\mathbb{Z}[x]$ (or in $\mathbb{Z}_{p^m}[x]$ for $m \ge n$) we denote the polynomial function on $\mathbb{Z}_{p^n}[x]$ induced by f by $[f]_{p^n}$.

The order of F_n and that of G_n have been determined by Kempner [10] in a rather complicated manner. His results were cast into a simpler form by Nöbauer [14] and Keller and Olson [9] among others. Since then there have been many generalizations of the order formulas to more general finite rings [16,13,2,6,1,8,7]. Also, polynomial permutations in several variables (permutations of $(\mathbb{Z}_{p^n})^k$ defined by k-tuples of polynomials in k variables) have been looked into [5,4,19,17,18,11].

2. Polynomial functions and permutations

To put things in context, we recall some well-known facts, to be found, among other places, in [10,14,3,9]. The reader familiar with polynomial functions on finite rings is encouraged to skip to Section 3. Note that we do not claim anything in Section 2 as new.

Definition. For p prime and $n \in \mathbb{N}$, let

$$\alpha_p(n) = \sum_{k=1}^{\infty} \left[\frac{n}{p^k} \right]$$
 and $\beta_p(n) = \min\{m \mid \alpha_p(m) \ge n\}$.

If p is fixed, we just write $\alpha(n)$ and $\beta(n)$.

Notation. For $k \in \mathbb{N}$, let $(x)_k = x(x-1) \dots (x-k+1)$ and $(x)_0 = 1$. We denote *p*-adic valuation by v_p .

2.1 Fact.

- (1) $\alpha_p(n) = v_p(n!).$
- (2) For $1 \leq n \leq p$, $\beta_p(n) = np$ and for n > p, $\beta_p(n) < np$.
- (3) For all $n \in \mathbb{Z}$, $v_p((n)_k) \ge \alpha_p(k)$; and $v_p((k)_k) = v_p(k!) = \alpha_p(k)$.

Proof. Easy. \Box

Remark. The sequence $(\beta_p(n))_{n=1}^{\infty}$ is obtained by going through the natural numbers in increasing order and repeating each $k \in \mathbb{N}$ $v_p(k)$ times. For instance, $\beta_2(n)$ for $n \ge 1$ is: 2, 4, 4, 6, 8, 8, 8, 10, 12, 12, 14, 16, 16, 16, 18, 20, 20,

The falling factorials $(x)_0 = 1$, $(x)_k = x(x-1) \dots (x-k+1)$, k > 0, form a basis of the free \mathbb{Z} -module $\mathbb{Z}[x]$, and representation with respect to this basis gives a convenient canonical form for a polynomial representing a given polynomial function on \mathbb{Z}_{p^n} .

2.2 Fact. (Cf. Keller and Olson [9].) A polynomial $f \in \mathbb{Z}[x]$, $f = \sum_k a_k(x)_k$, induces the zero-function mod p^n if and only if $a_k \equiv 0 \mod p^{n-\alpha(k)}$ for all k (or, equivalently, for all $k < \beta(n)$).

Proof. Induction on k using the facts that $(m)_k = 0$ for m < k, that $v_p((n)_k) \ge \alpha_p(k)$ for all $n \in \mathbb{Z}$, and that $v_p((k)_k) = v_p(k!) = \alpha_p(k)$. \Box

2.3 Corollary. (Cf. Keller and Olson [9].) Every polynomial function on \mathbb{Z}_{p^n} is represented by a unique $f \in \mathbb{Z}[x]$ of the form $f = \sum_{k=0}^{\beta(n)-1} a_k(x)_k$, with $0 \leq a_k < p^{n-\alpha(k)}$ for all k.

Comparing the canonical forms of polynomial functions mod p^n with those mod p^{n-1} we see that every polynomial function mod p^{n-1} gives rise to $p^{\beta(n)}$ different polynomial functions mod p^n :

2.4 Corollary. (See cf. Keller and Olson [9].) Let (F_n, \circ) be the monoid of polynomial functions on \mathbb{Z}_{p^n} with respect to composition and $\pi_n: F_{n+1} \to F_n$ the canonical projection.

- (1) For all $n \ge 1$ and for each $f \in F_n$ we have $|\pi_n^{-1}(f)| = p^{\beta(n+1)}$.
- (2) For all $n \ge 1$, the number of polynomial functions on \mathbb{Z}_{p^n} is

$$|F_n| = p^{\sum_{k=1}^n \beta(k)}.$$

Notation. We write $[f]_{p^n}$ for the function defined by $f \in \mathbb{Z}[x]$ on \mathbb{Z}_{p^n} .

2.5 Lemma. Every polynomial $f \in \mathbb{Z}[x]$ is uniquely representable as

$$f(x) = f_0(x) + f_1(x)(x^p - x) + f_2(x)(x^p - x)^2 + \dots + f_m(x)(x^p - x)^m + \dots$$

with $f_m \in \mathbb{Z}[x]$, deg $f_m < p$, for all $m \ge 0$. Now let $f, g \in \mathbb{Z}[x]$.

- (1) If $n \leq p$, then $[f]_{p^n} = [g]_{p^n}$ is equivalent to: $f_k = g_k \mod p^{n-k}\mathbb{Z}[x]$ for $0 \leq k < n$.
- (2) $[f]_{p^2} = [g]_{p^2}$ is equivalent to: $f_0 = g_0 \mod p^2 \mathbb{Z}[x]$ and $f_1 = g_1 \mod p \mathbb{Z}[x]$.
- (3) $[f]_p = [g]_p$ and $[f']_p = [g']_p$ is equivalent to: $f_0 = g_0 \mod p\mathbb{Z}[x]$ and $f_1 = g_1 \mod p\mathbb{Z}[x]$.

Proof. The canonical representation is obtained by repeated division with remainder by $(x^p - x)$, and uniqueness follows from uniqueness of quotient and remainder of polynomial division. Note that $[f]_p = [f_0]_p$ and $[f']_p = [f'_0 - f_1]_p$. This gives (3).

Denote by $f \sim g$ the equivalence relation $f_k = g_k \mod p^{n-k}\mathbb{Z}[x]$ for $0 \leq k < n$. Then $f \sim g$ implies $[f]_{p^n} = [g]_{p^n}$. There are $p^{p+2p+3p+\dots+np}$ equivalence classes of \sim and $p^{\beta(1)+\beta(2)+\beta(3)+\dots+\beta(n)}$ different $[f]_{p^n}$. For $k \leq p$, $\beta(k) = kp$. Therefore the equivalence relations $f \sim g$ and $[f]_{p^n} = [g]_{p^n}$ coincide. This gives (1), and (2) is just the special case n = 2. \Box

We can rephrase this in terms of ideals of $\mathbb{Z}[x]$.

2.6 Corollary. For every $n \in \mathbb{N}$, consider the two ideals of $\mathbb{Z}[x]$

$$I_n = \left\{ f \in \mathbb{Z}[x] \mid f(\mathbb{Z}) \subseteq p^n \mathbb{Z} \right\} \quad and \quad J_n = \left(\left\{ p^{n-k} \left(x^p - x \right)^k \mid 0 \leqslant k \leqslant n \right\} \right).$$

Then $[\mathbb{Z}[x]: I_n] = p^{\beta(1)+\beta(2)+\beta(3)+\cdots+\beta(n)}$ and $[\mathbb{Z}[x]: J_n] = p^{p+2p+3p+\cdots+np}$. Therefore, $J_n = I_n$ for $n \leq p$, whereas for n > p, J_n is properly contained in I_n .

Proof. $J_n \subseteq I_n$. The index of J_n in $\mathbb{Z}[x]$ is $p^{p+2p+3p+\cdots+np}$, because $f \in J_n$ if and only if $f_k = 0 \mod p^{n-k}\mathbb{Z}[x]$ for $0 \leq k < n$ in the canonical representation of Lemma 2.5. The index of I_n in $\mathbb{Z}[x]$ is $p^{\beta(1)+\beta(2)+\beta(3)+\cdots+\beta(n)}$ by Corollary 2.4(2) and $[\mathbb{Z}[x]:I_n] < [\mathbb{Z}[x]:J_n]$ if and only if n > p by Fact 2.1(2). \Box

2.7 Fact. (Cf. McDonald [12].) Let $n \ge 2$. The function on \mathbb{Z}_{p^n} induced by a polynomial $f \in \mathbb{Z}[x]$ is a permutation if and only if

- (1) f induces a permutation of \mathbb{Z}_p , and
- (2) the derivative f' has no zero mod p.

2.8 Lemma. Let $[f]_{p^n}$ and $[f]_p$ be the functions defined by $f \in \mathbb{Z}[x]$ on \mathbb{Z}_{p^n} and \mathbb{Z}_p , respectively, and $[f']_p$ the function defined by the formal derivative of f on \mathbb{Z}_p . Then

- (1) $[f]_{p^2}$ determines not just $[f]_p$, but also $[f']_p$.
- (2) Let $n \ge 2$. Then $[f]_{p^n}$ is a permutation if and only if $[f]_{p^2}$ is a permutation.
- (3) For every pair of functions (α, β) , $\alpha: \mathbb{Z}_p \to \mathbb{Z}_p$, $\beta: \mathbb{Z}_p \to \mathbb{Z}_p$, there are exactly p^p polynomial functions $[f]_{p^2}$ on \mathbb{Z}_{p^2} with $[f]_p = \alpha$ and $[f']_p = \beta$.
- (4) For every pair of functions (α, β) , $\alpha: \mathbb{Z}_p \to \mathbb{Z}_p$ bijective, $\beta: \mathbb{Z}_p \to \mathbb{Z}_p \setminus \{0\}$, there are exactly p^p polynomial permutations $[f]_{p^2}$ on \mathbb{Z}_{p^2} with $[f]_p = \alpha$ and $[f']_p = \beta$.

Proof. (1) and (3) follow immediately from Lemma 2.5 for n = 2 and (2) and (4) then follow from Fact 2.7. \Box

2.9 Remark. Fact 2.7 and Lemma 2.8(2) imply that

- (1) for all $n \ge 1$, the image of G_{n+1} under $\pi_n: F_{n+1} \to F_n$ is contained in G_n , and
- (2) for all $n \ge 2$, the inverse image of G_n under $\pi_n: F_{n+1} \to F_n$ is G_{n+1} .

We denote by $\pi_n: G_{n+1} \to G_n$ the restriction of π_n to G_n . This is the canonical epimorphism from the group of polynomial permutations on $\mathbb{Z}_{p^{n+1}}$ onto the group of polynomial permutations on \mathbb{Z}_{p^n} .

The above remark allows us to draw conclusions on the projective system of groups G_n from the information in Corollary 2.4 concerning the projective system of monoids F_n .

2.10 Corollary. Let $n \ge 2$, and $\pi_n: G_{n+1} \to G_n$ the canonical epimorphism from the group of polynomial permutations on $\mathbb{Z}_{p^{n+1}}$ onto the group of polynomial permutations on \mathbb{Z}_{p^n} . Then

$$\left|\ker(\pi_n)\right| = p^{\beta(n+1)}.$$

2.11 Corollary. (See cf. Kempner [10] and Keller and Olson [9].) The number of polynomial permutations on \mathbb{Z}_{p^2} is

$$|G_2| = p!(p-1)^p p^p,$$

and for $n \ge 3$ the number of polynomial permutations on \mathbb{Z}_{p^2} is

$$|G_n| = p!(p-1)^p p^p p^{\sum_{k=3}^n \beta(k)}$$

Proof. In the canonical representation of $f \in \mathbb{Z}[x]$ in Lemma 2.5, there are $p!(p-1)^p$ choices of coefficients mod p for f_0 and f_1 such that the criteria of Fact 2.7 for a polynomial permutation on \mathbb{Z}_{p^2} are satisfied. And for each such choice there are p^p possibilities for the coefficients of $f_0 \mod p^2$. The coefficients of $f_0 \mod p^2$ and those of $f_1 \mod p$ then determine the polynomial function mod p^2 . So $|G_2| = p!(p-1)^p p^p$. The formula for $|G_n|$ then follows from Corollary 2.10. \Box

This concludes our review of polynomial functions and polynomial permutations on \mathbb{Z}_{p^n} . We will now introduce a homomorphic image of G_2 whose Sylow *p*-groups bijectively correspond to the Sylow *p*-groups of G_n for any $n \ge 2$.

3. A group between G_1 and G_2

Into the projective system of monoids (F_n, \circ) we insert an extra monoid E between F_1 and F_2 by means of monoid-epimorphisms $\theta: F_2 \to E$ and $\psi: E \to F_1$ with $\psi \theta = \pi_1$,

$$F_1 \xleftarrow{\psi} E \xleftarrow{\theta} F_2 \xleftarrow{\pi_2} F_3 \xleftarrow{\pi_3} \cdots$$

The restrictions of θ to G_2 and of ψ to the group of units H of E will be groupepimorphisms, so that we also insert an extra group H between G_1 and G_2 into the projective system of the G_i ,

$$G_1 \xleftarrow{\psi} H \xleftarrow{\theta} G_2 \xleftarrow{\pi_2} G_3 \xleftarrow{\pi_3} \dots$$

In the following definition of E and H, f and f' are just two different names for functions. The connection with polynomials and their formal derivatives suggested by the notation will appear when we define θ and ψ .

Definition. We define the semigroup (E, \circ) by

$$E = \left\{ \left(f, f' \right) \mid f: \mathbb{Z}_p \to \mathbb{Z}_p f': \mathbb{Z}_p \to \mathbb{Z}_p \right\}$$

(where f and f' are just symbols) with law of composition

$$(f, f') \circ (g, g') = (f \circ g, (f' \circ g) \cdot g').$$

Here $(f \circ g)(x) = f(g(x))$ and $((f' \circ g) \cdot g')(x) = f'(g(x)) \cdot g'(x)$. We denote by (H, \circ) the group of units of E.

The following facts are easy to verify:

3.1 Lemma.

- (1) The identity element of E is $(\iota, 1)$, with ι denoting the identity function on \mathbb{Z}_p and 1 the constant function 1.
- (2) The group of units of E has the form

$$H = \left\{ \left(f, f' \right) \mid f: \mathbb{Z}_p \to \mathbb{Z}_p \text{ bijective, } f': \mathbb{Z}_p \to \mathbb{Z}_p \setminus \{0\} \right\}.$$

(3) The inverse of $(g, g') \in H$ is

$$(g,g')^{-1} = \left(g^{-1}, \frac{1}{g' \circ g^{-1}}\right),$$

where g^{-1} is the inverse permutation of the permutation g and 1/a stands for the multiplicative inverse of a non-zero element $a \in \mathbb{Z}_p$, such that

$$\left(\frac{1}{g' \circ g^{-1}}\right)(x) = \frac{1}{g'(g^{-1}(x))}$$

means the multiplicative inverse in $\mathbb{Z}_p \setminus \{0\}$ of $g'(g^{-1}(x))$.

Note that H is a semidirect product of (as the normal subgroup) a direct sum of p copies of the cyclic group of order p-1 and (as the complement acting on it) the symmetric group on p letters, S_p , acting on the direct sum by permuting its components. In combinatorics, one would call this a wreath product (designed to act on the left) of the abstract group C_{p-1} by the permutation group S_p with its standard action on p letters. (Group theorists, however, have a narrower definition of wreath product, which is not applicable here.)

Now for the homomorphisms θ and ψ .

Definition. We define $\psi: E \longrightarrow F_1$ by $\psi(f, f') = f$. As for $\theta: F_2 \to E$, given an element $[g]_{p^2} \in F_2$, set $\theta([g]_{p^2}) = ([g]_p, [g']_p)$. θ is well defined by Lemma 2.8(1).

3.2 Lemma.

- (i) $\theta: F_2 \to E$ is a monoid-epimorphism.
- (ii) The inverse image of H under $\theta: F_2 \to E$ is G_2 .
- (iii) The restriction of θ to G_2 is a group-epimorphism $\theta: G_2 \to H$ with $|\ker(\theta)| = p^p$.
- (iv) $\psi: E \to F_1$ is a monoid-epimorphism and ψ restricted to H is a group-epimorphism $\psi: H \to G_1$.

Proof. (i) follows from Lemma 2.8(3) and (ii) from Fact 2.7. (iii) follows from Lemma 2.8(4). Finally, (iv) holds because every function on \mathbb{Z}_p is a polynomial function and every permutation of \mathbb{Z}_p is a polynomial permutation. \Box

4. Sylow subgroups of H

We will first determine the Sylow *p*-groups of *H*. The Sylow *p*-groups of G_n for $n \ge 2$ are obtained in the next section as the inverse images of the Sylow *p*-groups of *H* under the epimorphism $G_n \to H$.

4194

4.1 Lemma. Let C_0 be the subgroup of S_p generated by the p-cycle $(0 \ 1 \ 2 \dots p - 1)$. Then one Sylow p-subgroup of H is

$$S = \{ (f, f') \in H \mid f \in C_0, \ f' = 1 \},\$$

where f' = 1 means the constant function 1. The normalizer of S in H is

$$N_H(S) = \left\{ (g,g') \mid g \in N_{S_p}(C_0), g' \text{ a non-zero constant} \right\}.$$

Proof. As $|H| = p!(p-1)^p$, and S is a subgroup of H of order p, S is a Sylow p-group of H. Conjugation of $(f, f') \in S$ by $(g, g') \in H$ (using the fact that f' = 1) gives

$$(g,g')^{-1}(f,f')(g,g') = \left(g^{-1}, \frac{1}{g' \circ g^{-1}}\right)(f \circ g,g') = \left(g^{-1} \circ f \circ g, \frac{g'}{g' \circ g^{-1} \circ f \circ g}\right).$$

The first coordinate of $(g, g')^{-1}(f, f')(g, g')$ being in C_0 for all $(f, f') \in S$ is equivalent to $g \in N_{S_p}(C_0)$. The second coordinate of $(g, g')^{-1}(f, f')(g, g')$ being the constant function 1 for all $(f, f') \in S$ is equivalent to

$$\forall x \in \mathbb{Z}_p, \quad g'(x) = g'\big(g^{-1}\big(f\big(g(x)\big)\big)\big),$$

which is equivalent to g' being constant on every cycle of $g^{-1}fg$, which is equivalent to g' being constant on \mathbb{Z}_p , since f can be chosen to be a p-cycle. \Box

4.2 Lemma. Another way of describing the normalizer of S in H is

 $N_H(S) = \{ (g,g') \in H \mid \exists k \neq 0 \ \forall a,b, \ g(a) - g(b) = k(a-b); \ g' \ a \ non-zero \ constant \}.$

Therefore, $|N_H(S)| = p(p-1)^2$ and $[H: N_H(S)] = (p-1)!(p-1)^{p-2}$.

Proof. Let $\sigma = (0 \ 1 \ 2 \dots p - 1)$ and $g \in S_p$ then

 $g\sigma g^{-1} = (g(0) \ g(1) \ g(2) \dots g(p-1)).$

Now $g \in N_{S_p}(C_0)$ if and only if, for some $1 \leq k < p$, $g\sigma g^{-1} = \sigma^k$, i.e.,

$$(g(0) g(1) g(2) \dots g(p-1)) = (0 k 2k \dots (p-1)k)$$

all numbers taken mod p. This is equivalent to g(x + 1) = g(x) + k or

$$g(x+1) - g(x) = k$$

and further equivalent to g(a) - g(b) = k(a-b). Thus k and g(0) determine $g \in N_{S_p}(C_0)$, and there are (p-1) choices for k and p choices for g(0). Together with the (p-1) choices for the non-zero constant g' this makes $p(p-1)^2$ elements of $N_H(S)$. \Box **4.3 Corollary.** There are $(p-1)!(p-1)^{p-2}$ Sylow p-subgroups of H.

4.4 Theorem. The Sylow p-subgroups of H are in bijective correspondence with pairs $(C, \bar{\varphi})$, where C is a cyclic subgroup of order p of S_p , $\varphi: \mathbb{Z}_p \to \mathbb{Z}_p \setminus \{0\}$ is a function and $\bar{\varphi}$ is the class of φ with respect to the equivalence relation of multiplication by a non-zero constant. The subgroup corresponding to $(C, \bar{\varphi})$ is

$$S_{(C,\bar{\varphi})} = \left\{ \left(f, f'\right) \in H \mid f \in C, \ f'(x) = \frac{\varphi(f(x))}{\varphi(x)} \right\}.$$

Proof. Observe that each $S_{(C,\bar{\varphi})}$ is a subgroup of order p of H. Different pairs $(C,\bar{\varphi})$ give rise to different groups: Suppose $S_{(C,\bar{\varphi})} = S_{(D,\bar{\psi})}$. Then C = D and for all $x \in \mathbb{Z}_p$ and for all $f \in C$ we get

$$\frac{\varphi(f(x))}{\varphi(x)} = \frac{\psi(f(x))}{\psi(x)}.$$

As C is transitive on \mathbb{Z}_p the latter condition is equivalent to

$$\forall x, y \in \mathbb{Z}_p \quad \frac{\psi(x)}{\varphi(x)} = \frac{\psi(y)}{\varphi(y)}$$

which means that $\varphi = k\psi$ for a non-zero $k \in \mathbb{Z}_p$.

There are (p-2)! cyclic subgroups of order p of S_p , and $(p-1)^{p-1}$ equivalence classes $\bar{\varphi}$ of functions $\varphi: \mathbb{Z}_p \to \mathbb{Z}_p \setminus \{0\}$. So the number of pairs $(C, \bar{\varphi})$ equals $(p-1)!(p-1)^{p-2}$, which is the number of Sylow p-groups of H, by the preceding corollary. \Box

4.5 Proposition. If p is an odd prime then the intersection of all Sylow p-subgroups of H is trivial, i.e.,

$$\bigcap_{(C,\overline{\varphi})} S_{(C,\overline{\varphi})} = \{(\iota,1)\}.$$

If p = 2 then |H| = 2 and the intersection of all Sylow 2-subgroups of H is H itself.

Proof. Let p be an odd prime, and let $(f, f') \in \bigcap_{(C,\overline{\varphi})} S_{(C,\overline{\varphi})}$. Suppose f is not the identity function and let $k \in \mathbb{Z}_p$ such that $f(k) \neq k$.

Note that φ in $(C, \overline{\varphi})$ is arbitrary, apart from the fact that 0 is not in the image. Therefore, and because $p \ge 3$, among the various φ there occur functions ϑ and η with $\vartheta(k) = \eta(k)$ and $\vartheta(f(k)) \ne \eta(f(k))$. Now $(f, f') \in S_{(D,\overline{\vartheta})} \cap S_{(E,\overline{\eta})}$ for any cyclic subgroups D and E of S_p of order p. Therefore

$$\frac{\vartheta(f(k))}{\vartheta(k)} = f'(k) = \frac{\eta(f(k))}{\eta(k)},$$

and hence $\vartheta(f(k)) = \eta(f(k))$, a contradiction. Thus f is the identity and therefore f' = 1. If p = 2 then |H| = 2 and therefore the one and only Sylow 2-subgroup of H is H. \Box

In the case $p \ge 5$, the lemma above can be proved in a simpler way: There is more than one cyclic group of order p, so for $(f, f') \in \bigcap_{(C,\overline{\varphi})} S_{(C,\overline{\varphi})}$, there are distinct cyclic groups D and E of order p with $f \in D \cap E$. Therefore f has to be the identity.

5. Sylow subgroups of G_n and of the projective limit

Again we consider the projective system of finite groups

$$G_1 \xleftarrow{\psi} H \xleftarrow{\theta} G_2 \xleftarrow{\pi_2} \cdots \xleftarrow{\pi_{n-1}} G_n \xleftarrow{\pi_n}$$

where (G_n, \circ) is the group of polynomial permutations on \mathbb{Z}_{p^n} (with respect to composition of functions) and H is the group defined in section 3. Let $G = \varprojlim G_n$ be the projective limit of this system. Recall that a Sylow *p*-group of a pro-finite group is defined as a maximal group consisting of elements whose order in each of the finite groups in the projective system is a power of *p*.

5.1 Theorem.

- (i) Let (G_n, ◦) be the group of polynomial permutations on Z_{pⁿ} with respect to composition. If n ≥ 2 there are (p-1)!(p-1)^{p-2} Sylow p-groups of G_n. They are the inverse images of the Sylow p-groups of H (described in Theorem 4.4) under the canonical projection π: G_n → H, with π = θπ₂...π_{n-1}.
- (ii) Let $G = \varprojlim G_n$. There are $(p-1)!(p-1)^{p-2}$ Sylow p-groups of G, which are the inverse images of the Sylow p-groups of H (described in Theorem 4.4) under the canonical projection $\pi: G \to H$.

Proof. In the projective system $G_1 \stackrel{\psi}{\longleftarrow} H \stackrel{\theta}{\longleftarrow} G_2 \stackrel{\pi_2}{\longleftarrow} \cdots \stackrel{\pi_{n-1}}{\longleftarrow} G_n$ the kernel of the group-epimorphism $G_n \to H$ is a finite *p*-group for every $n \ge 2$, because for $n \ge 2$ the kernel of $\pi_n: G_{n+1} \to G_n$ is of order $p^{\beta(n+1)}$ by Corollary 2.10 $\theta: G_2 \to H$ is of order p^p by Lemma 3.2(iii). So the Sylow *p*-groups of G_n for $n \ge 2$ are just the inverse images of the Sylow *p*-groups of *H* and, likewise, the Sylow *p*-groups of the projective limit *G* are just the inverse images of the Sylow *p*-groups of *H*, whose number was determined in Corollary 4.3. \Box

If we combine this information with the description of the Sylow *p*-groups of H in Theorem 4.4 we get the following explicit description of the Sylow *p*-groups of G_n . Recall

that $[f]_{p^n}$ denotes the function induced on \mathbb{Z}_{p^n} by the polynomial f in $\mathbb{Z}[x]$ (or in $\mathbb{Z}_{p^m}[x]$ for some $m \ge n$).

5.2 Corollary. Let $n \ge 2$. Let G_n be the group (with respect to composition) of polynomial permutations on \mathbb{Z}_{p^n} . The Sylow p-groups of G_n are in bijective correspondence with pairs $(C, \bar{\varphi})$, where C is a cyclic subgroup of order p of S_p , $\varphi: \mathbb{Z}_p \to \mathbb{Z}_p \setminus \{0\}$ is a function and $\bar{\varphi}$ its class with respect to the equivalence relation of multiplication by a non-zero constant. The subgroup corresponding to $(C, \bar{\varphi})$ is

$$S_{(C,\bar{\varphi})} = \left\{ [f]_{p^n} \in G_n \mid [f]_p \in C, \ \left[f' \right]_p(x) = \frac{\varphi([f]_p(x))}{\varphi(x)} \right\}.$$

Example. A particularly easy to describe Sylow *p*-group of G_n is the one corresponding to (C, φ) where φ is a constant function and C the subgroup of S_p generated by $(0 \ 1 \ 2 \dots p - 1)$. It is the inverse image of S defined in Lemma 4.1 and it consists of the functions on \mathbb{Z}_{p^n} induced by polynomials f such that the formal derivative f' induces the constant function 1 on \mathbb{Z}_p and the function induced by f itself on \mathbb{Z}_p is a power of $(0 \ 1 \ 2 \dots p - 1)$.

Combining Theorem 5.1 with Proposition 4.5 we obtain the following description of the intersection of all Sylow *p*-groups of G_n for odd *p*.

5.3 Corollary. Let p be an odd prime.

- (i) For n≥ 2 the intersection of all Sylow p-groups of G_n is the kernel of the projection π: G → H.
- (ii) Likewise, the intersection of all Sylow p-groups of G is the kernel of the canonical epimorphism of G onto H.
- (iii) The intersection of all Sylow p-groups of G_n $(n \ge 2)$ can also be described as the normal subgroup

$$N = \{ [f]_{p^n} \in G_n \mid [f]_p = \iota, \ [f']_p = 1 \},\$$

where ι denotes the identity function on \mathbb{Z}_p . Its order is $p^p p^{\sum_{k=3}^n \beta(k)}$ and its index in G_n (for $n \ge 2$) is

$$[G_n:N] = p!(p-1)^p.$$

(iv) Likewise, the index of the intersection of all Sylow p-subgroups of G in G is $p!(p-1)^p$.

Proof. (i) and (ii) follow immediately from Theorem 5.1 and Proposition 4.5. To see (iii), let π be the projection from G_n to H (that is $\pi = \theta \pi_2 \dots \pi_{n-1}$). Then N is the inverse

image of $\{(\iota, 1)\}$, the identity element of H, under π , and is therefore the intersection of the Sylow *p*-groups of G_n by (i). As the kernel of a group homomorphism, N is a normal subgroup.

The order of N is the order of the kernel of π , which is the product of p^p (the order of the kernel of θ) and $p^{\beta(k)}$ (the order of the kernel of π_{k-1}) for $3 \leq k \leq n$. Finally, the index of the kernel of the homomorphism of G_n or G onto H is the order of H which is $p!(p-1)^p$. \Box

Acknowledgments

The authors wish to thank W. Herfort for stimulating discussions.

References

- M. Bhargava, P-orderings and polynomial functions on arbitrary subsets of Dedekind rings, J. Reine Angew. Math. 490 (1997) 101–127.
- [2] J.V. Brawley, G.L. Mullen, Functions and polynomials over Galois rings, J. Number Theory 41 (1992) 156–166.
- [3] L. Carlitz, Functions and polynomials (mod p^n), Acta Arith. 9 (1964) 67–78.
- [4] Z. Chen, On polynomial functions from $\mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times \cdots \times \mathbb{Z}_{n_r}$ to \mathbb{Z}_m , Discrete Math. 162 (1996) 67–76.
- [5] S. Frisch, When are weak permutation polynomials strong?, Finite Fields Appl. 1 (1995) 437–439.
- [6] S. Frisch, Polynomial functions on finite commutative rings, in: D.E. Dobbs, et al. (Eds.), Advances in Commutative Ring Theory, in: Lect. Notes Pure Appl. Math., vol. 205, Dekker, New York, 1999, pp. 323–336.
- [7] J. Jiang, A note on polynomial functions over finite commutative rings, Adv. Math. (China) 39 (2010) 555–560.
- [8] J.J. Jiang, G.H. Peng, Q. Sun, Q. Zhang, On polynomial functions over finite commutative rings, Acta Math. Sin. (Engl. Ser.) 22 (2006) 1047–1050.
- [9] G. Keller, F.R. Olson, Counting polynomial functions (mod p^n), Duke Math. J. 35 (1968) 835–838.
- [10] A.J. Kempner, Polynomials and their residue systems, Trans. Amer. Math. Soc. 22 (1921) 240–266, 267–288.
- [11] N.P. Liu, J.J. Jiang, Polynomial functions in n variables over a finite commutative ring, Sichuan Daxue Xuebao 46 (2009) 44–46.
- [12] B.R. McDonald, Finite Rings with Identity, Dekker, 1974.
- [13] A.A. Nechaev, Polynomial transformations of finite commutative local rings of principal ideals, Math. Notes 27 (1980) 425–432, transl. from Mat. Zametki 27 (1980) 885–897, 989.
- [14] W. Nöbauer, Gruppen von Restpolynomidealrestklassen nach Primzahlpotenzen, Monatsh. Math. 59 (1955) 194–202.
- [15] W. Nöbauer, Polynomfunktionen auf primen Restklassen, Arch. Math. (Basel) 39 (1982) 431–435.
- [16] I.G. Rosenberg, Polynomial functions over finite rings, Glasg. Math. 10 (1975) 25–33.
- [17] Q. Wei, Q. Zhang, On strong orthogonal systems and weak permutation polynomials over finite commutative rings, Finite Fields Appl. 13 (2007) 113–120.
- [18] Q.J. Wei, Q.F. Zhang, On permutation polynomials in two variables over Z/p²Z, Acta Math. Sin. (Engl. Ser.) 25 (2009) 1191−1200.
- [19] Q. Zhang, Polynomial functions and permutation polynomials over some finite commutative rings, J. Number Theory 105 (2004) 192–202.