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a coupling between two parts of Hodge's decomposition of the

velocity vector field, and additional regularity is required in
order to carry out the Friedrichs’ regularization and compactness
arguments.
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1. Introduction

The nonlinear shallow water equation is used to model the motion of a shallow layer of homoge-
neous incompressible fluid in a three-dimensional rotating sub-domain and, in particular, to simulate
the vertical average dynamics of the fluid in terms of the horizontal velocity and depth variation.
In general, it is modeled by the three-dimensional incompressible Navier-Stokes—Coriolis system in
a rotating sub-domain of R? together with a (nonlinear) free moving surface boundary condition for
which the stress tension is evolved at the air-fluid interface from above and the Navier boundary
condition of wall-law type holds at the bottom. Under a large-scale assumption and hydrostatic ap-
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proximation, the nonlinear shallow water equation has been derived recently in [14,19]. Usually, the
nonlinear shallow water equations take the following form of compressible Navier-Stokes equations

he + div(hu) =0,
(hu); + div(hu ® w) + ghVh + f(huw)* = div(2§ (h) D (w)) + V(x(h) divu), (1)
h(0) =ho, u(0) =uo,

where h(t, x) is the height of the fluid surface, u(t, x) = (u'(t, x), u®(t,x))" is the horizontal velocity
field, ut(t,x) = (—u?(t, %), u' (£, %)), x= (x1,x) € R%, D(w) = 1 (Vu+ (Vu)"), g > 0 is the gravita-
tional acceleration, f > 0 is the Coriolis frequency, & > 0 and A are the dynamical viscosities satisfying
r+&2>0.

For the shallow water system (1), there is a mount of work to deal with the global well-posedness
of strong solutions subject to some small initial perturbation of a constant state or the global exis-
tence of weak solutions for large initial data. When the viscosities satisfy £(h) =h and A =0, and
the effect of the Coriolis force and/or third-order surface tension term is omitted (f =0, 8 =0), the
local existence and uniqueness of classical solutions to the Cauchy-Dirichlet problem for the shallow
water equations with initial data in €2t was studied in [4] using Lagrangian coordinates and Holder
space estimates. Kloeden and Sundbye [17,23] proved the global existence and uniqueness of classi-
cal solutions to the Cauchy-Dirichlet problem using Sobolev space estimates by following the energy
method of Matsumura and Nishida [20]. Sundbye [24] proved also the existence and uniqueness of
classical solutions to the Cauchy problem using the method of [20]. Wang and Xu, in [25], obtained
local solutions for any initial data and global solutions for small initial data hg — hg, ug € Ht5(R?)
with s > 0. The result was improved by Haspot to get global existence in time for small initial data
ho —ho € B) | N BJ | and up € BY | as a special case in [16], and by Chen, Miao and Zhang in [8] to
prove the local existence in time for general initial data and the global existence in time for small
initial data where hg — hg € 3(2),1 N B;’l and ug € ng with additional conditions that h > hy and

ho is a strictly positive constant. Cheng and Tadmor discussed the long time existence of approxi-
mate periodic solutions for the rapidly rotating shallow water for initial data (hg, ug) € H™(T?) with
m > 5 where the viscous terms are absent (i.e. £ = A =0) in [9]. The global existence of weak so-
lutions for arbitrarily large initial data is established in one dimension [18], where the vanishing
of vacuum states in finite time is shown, and in multi-dimensional bounded domain with spherical
symmetry [15] with the help of the Bresch-Desjardins entropy [2] and the L!-stability compactness
argument [21]. The global existence of weak solutions for arbitrarily large initial data is shown by
Bresch and Desjardins [3] where additional drag friction and capillary terms are involved to con-
struct a global approximate solutions. The related systems with a third-order term stemming from
the capillary tensor also have been considered by Danchin-Desjardins for a compressible fluid model
of Korteweg type [13] with constant viscosity coefficients, and the global existence of strong solution
is shown.

In the present paper, we consider the global existence of the Cauchy problem for the 2D viscous
shallow water equations

h; + div(hu) =0,
(hu); + div(hu ® u) + ghVh + f(hu)* = 2pu div(hD(w)) + 2V (hdivu) + phVAh,  (2)
h(0) =ho, wu(0) =uy,

which corresponds to (1) for the case 2&(h) = A(h) = 2uh with w > 0 a constant, and is derived
recently in [19] with a third-order surface tension term involved by considering second-order approx-
imation and parabolic correction where 8 > 0 is the capillary coefficient. Although there are many
mathematical results about the shallow water equations (1), there is no analysis about Eq. (2). It
also should be mentioned that the global existence of weak solutions does not apply here since the
Bresch-Desjardins entropy [2] is not satisfied for Eq. (2). In addition, the classical theory does not
cover the case with Coriolis force and capillarity term involved.
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We investigate the global existence of strong solution in some Besov space. Although we also
make use of the Hodge’s decomposition to separate the velocity field into a compressible part and an
incompressible part, unlike [10,11] we finally obtain a coupled system due to the rotating effect of the
Coriolis force. In fact, it cannot be decoupled into a system involving only the compressible part and
a heat equation containing only the incompressible part because of the appearance of the Coriolis
frequency, which leads to a strong coupling between the gradient vector field part and divergence
free part of the fluid velocity in terms of the Hodge’s decomposition. Thus, we have to investigate
the whole system of the height, the compressible velocity field part and the incompressible velocity
field part. With the help of the Littlewood-Paley analysis and hybrid Besov spaces, we obtain the
a priori estimates in Chemin-Lerner type time-spatial spaces which are necessary in order to use
the interpolation theory of time-spatial spaces involving hybrid Besov spaces. Then we use a classical
Friedrichs’ regularization method to construct approximate solutions and prove the existence of a
solution by compactness arguments. For the uniqueness of solutions, due to the contribution of the
third-order surface tension term, we can prove it in a larger space than that for the existence and we
do not need more regularity on the spaces.

For the convenience of the statement of main results, we note that B
defined in the next section, the space E® is defined by

51,52 . .
21 is a hybrid Besov space

ES = {(h,w) € C([0, c0); B;j’s) N LY(0, oo; B;Tf’s“) x (C(10. 00); B5 ) N L1(0, 00 B;ﬁf))z},

and €([0, c0); B}'?) is the subset of functions of the Chemin-Lerner type space L¥°(B3';?) defined

in the next section which are continuous on [0, co) with values in B; ’152.

For the initial data hg, we suppose that it is a small perturbation of some positive constant hg. The
main theorem of this paper reads as follows.

Theorem 1.1. Let £ € (0, 1), hg — hg € E(z)‘}“: and ug € Bg’ﬁ, Then, there exist two positive constants o small
enough and M such that if

lho — FlOHBO,Hs + ||llo||go,g <a,
2,1 2,1
then (2) yields a unique global solution (h, u) in (ho, 0) 4+ (E' N E'*¢) which satisfies
“ (h— F‘O’ u) HElﬂEl+€ < M(llho - HOHE%H + ||l.lo||gg_i),

where M is independent of the initial data.

The paper is organized as follows. We recall some Littlewood-Paley theories for homogeneous
Besov spaces and give the definitions and some properties of hybrid Besov spaces and Chemin-Lerner
type spaces in the second section. In Section 3, we are dedicated into proving of the a priori estimates.
In Section 4, we prove the global existence and uniqueness of solution for small initial data by using
a classical Friedrichs’ regularization method and compactness arguments.

2. Littlewood-Paley theory and Besov spaces
Let ¢ : R?2 — [0, 1] be a radial smooth cut-off function valued in [0, 1] such that

1, &1 < 3/4,
V(&) = | smooth, 3/4 <|&| <4/3,
0, &1 > 4/3.
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Let ¢ (&) be the function

&) :=9(/2) =¥ ().

Thus, ¥ is supported in the ball {¢ e R?: |&| <4/3}, and ¢ is also a smooth cut-off function valued
in [0, 1] and supported in the annulus {£: 3/4 < |&] < 8/3}. By construction, we have

Y276 =1. vs#o0.
keZ

One can define the dyadic blocks as follows. For k € Z, let

Mf=F l9(276) F f.

The formal decomposition

F=> Af (3)

keZ

is called homogeneous Littlewood-Paley decomposition. Actually, this decomposition works for just
about any locally integrable function which yields some decay at infinity, and one usually has all the
convergence properties of the summation that one needs. Thus, the r.h.s. of (3) does not necessar-
ily converge in .’ (R?). Even if it does, the equality is not always true in .%”’(R?). For instance,
if f =1, then all the projections Apf vanish. Nevertheless, (3) is true modulo polynomials, in
other words (cf. [12,22]), if f € .%/(R?), then Y ez Ak f converges modulo Z[R?] and (3) holds
in . (R?)/ 2[R?].

Definition 2.1. let se R, 1 < p,q < o0. For f € &' (R?), we write

Ifllgs, =D 2N Ak N 2.

keZ

A difficulty comes from the choice of homogeneous spaces at this point. Indeed, || - || B, cannot
be a norm on {f € .7'(R?): “f”Bs < oo} because ||f||Bs =0 means that f is a polynomial. This
enforces us to adopt the following deﬁmtlon for homogeneous Besov spaces (cf. [11]).

Definition 2.2. Let s € R and m = —[2 — s]. If m < 0, then we define B;l(Rz) as
BS = {f e S (R?): Ifllg5, <ooand f = > Avfin y’(RZ)}.
keZ

If m > 0, we denote by &, the set of two variables polynomials of degree less than or equal to m
and define

21_{fe§’(R2)/9/”m Ifllg;, <ocoand f= ZAkfmy(Rz)/me}

keZ

For the composition of functions, we have the following estimates.
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Lemma 2.3. (See [11, Lemma 2.7].) Let s > 0 and u € B; 1 NL™.

(i) Let F € Wl[;g”’oo(Rz) such that F(0) = 0. Then F(u) € 33’1. Moreover, there exists a function of one
variable Cqy depending only on s and F, and such that

[F@l gy, < Collull=)luls

(ii) Ifu,v e 35’1, v—u)e 32 Jforans e (—1,11and G € Wloc (R?) satisfies G'(0) = 0, then G(v) —
G(u) e Bi’l and there exists a function of two variables C depending only on s and G, and such that

[6) =G5 < Cllull. IVle) (lullgy, + vy JIv—ullgs -

We also need hybrid Besov spaces for which regularity assumptions are different in low frequen-
cies and high frequencies [11]. We are going to recall the definition of these new spaces and some of
their main properties.

Definition 2.4. Let s, t € R. We define

ase =Y 28)A 2K A )
1y, = D 2N Af N2+ 2 A f 2

k<0 k>0

Let m = —[2 — s], we then define

By (R?) ={f e ' (R?): 1f s < oo}, ifm <0,
By (R?) = {f € &' (R*)/ P 1 f s < oo}, ifm>0
Lemma 2.5. We have the following inclusions.

(i) We have B3 = B ;.

(ii) If s <t, then 821 _B§ 1 N BY . Otherwise, B, = BS | + B ;.
(iii) The space B comczdes with the usual inhomogeneous Besov space B
(iv) Ifs1 < s2 and t1 > ty, then le ey Bs2 2

Let us now recall some useful estimates for the product in hybrid Besov spaces.

Lemma 2.6. (See [11, Proposition 2.10].) Let s1, 5, > 0 and f,g € L® N le 2 Then fg e le 2 and

IIfgllgsl 2 S flleee ||g||[;51 s+ ||f||,§51 5211 &llzee.

Let sy, S2,t1, ty < 1suchthat min(s; +s3,t1 +t3) >0, f € le Mandg e BSZ 2 Then fg e B/ S2~ 10+l
2.1

and

||fg||BS1+Sz*11t1+t271 < ||f||1§51«f1 ||g||352-f2-
2.1 2.1 21
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In the context of this paper, we also need to use the interpolation spaces of hybrid Besov spaces
together with a time space such as LP(0, T; Bs’t ). Thus, we have to introduce the Chemin-Lerner type

space (cf. [5]) which is a refinement of the space LP(0, T; 32 ])

Definition 2.7. Let p € [1,00], T € (0, 0o] and s1, s € R. Then we define

k k
11z sty = D 2N AS po 72y + D 2N Ak o o.7en2)-

k<0 k>0

Noting that Minkowski’s inequality yields ||f||L_lp_(Bst ||f||Lp(Bs[), we define spaces LP(B2 1) as
follows

L7 (B;ﬁ) ={fe L?(E;’fl): ”f”Z‘T’(B;fl) < oo}.

If T = oo, then we omit the subscript T from the notation L} (B3"), that is, LP(B3") for simplicity.
We will denote by ¢(o,TJ; B;t]) the subset of functions of i%o(ég_tl) which are continuous on [0, T]
with values in B;tl

Let us observe that LL(B5') = L1(B3"), but the embedding L} (B} c LE(B})) is strict if p > 1.
We will use the followmg mterpolatlon property which can be verlﬁed ea51ly (cf [1D).

Lemma 2.8. Let s, t, 1, t1,S2,t2 € Rand p, p1, p2 € [1, oo]. We have

115 sty < 1 W s 11

2B 23342y

where % = ;—1 + % s=0s1 4+ (1—0)sy and t =0t + (1 — )ty

Now, we define the following work space.
Definition 2.9. For T > 0 and s € R, we denote

~ ~e_ ~s13 542 ~ .o . 2
= {(h.w) € C([0. T]; B5 ") N L' (0. T; B5**%) x (C(10. T1: BS;") n L' (0. T: BSH1))7)
and
[h ) g = e sty + Nl gseay + By pssaosa, + Tl st

We use the notation E¥ if T = +o0, changing [0, T] into [0, +00) in the definition above.

3. A priori estimates

Noticing that divD(u) = 3V divu +  Au and substituting h by h + ho in (2), we have

h; +u- Vh+ hodivu = —hdivu,
VhD Vhdi
u +u-Vu— pAu—3uVdiva+ fut +gvh — BVAh=2u (l;l) +I_1 1vu’ (4)
+ no

h(0) =ho —ho, u(0) =
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For all s € R, we denote ASf =.Z1(|&|°f). Let c= A~'divu and d = A~ div u where diviu=
VL .uand V+ = (=8, 8;). Then, it is easy to check that

u=—-A"1ve—A"lvid
Now, we can rewrite the system (4) in terms of these notations as the following:

h; +u-Vh+hgAc=F,

ct+u-Vc—4uAc —fd—gAh— BAPh =G,

de — pAd + fc= A1 divt H, (5)
u=—-A"1ve— A71vig,

h(0) =ho —ho, u(0) =up,

where

F = —hdivu,

G=u-Vc+ A" 'divH,
VhD(u) 4+ Vhdivu

H=—-u-Vu+2u =
h+hg

For these equations, we study the following system:

h[-i-V'Vh-i-i_loAC:F,
Ct+V-Vc—4uAc—fd—gAh — BAPh =G, (6)
di — pAd+fo=P,

where v is a vector function and we will precise its regularity in the following proposition.

Proposition 3.1. Let (h, ¢, d) be a solution of (6)on [0, T), T > 0,0 <s<2and V(t) = f(; [lv(t) ||B§ : dt. The
following estimate holds on [0, T): ‘

t
Il gee ey + NN gze sy + 1l s + /(||h(r)||33§3.s+z + ||c(r)||32+]1 + ||d(r)||33ﬁ1)dz
0
CV(t) 5 . .
<e (100 + @l + [0,

t
[l + ool + Pl )ae )
0

where C depends only on s, hg and coefficients , f, g and .

Proof. Let (h, c,d) be a solution of (6) and we set

(h,e,d,F,G,P)=eVO(h,c,d, F,G, P).
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Thus, (6) can be transformed into

hi +Vv-Vh+hgAC=F — KV'(t)h,
E+V-VE—4uAE—fd—gAh — BASh =G — KV'(t)¢, (7)
di — pAd+fe =P — KV'(t)d.

_ Applying the operator Ay to the system (7), we obtain the following system by noting
(hk, Ck, dk, Fy, Gi, Pr) = (Agh, ArC, Ard, AgF, AyG, Ay P):

dchy + Ap(v- Vh) + ho A&, = Fr — KV (t)hy,
3k + Ap(V- VT) — 4 AGy — fdy — g Ay — BAR, = G — KV (£)E, (8)
ddy — Ady + 6, = Py — KV (t)dy.

To begin with, we consider the case where v=0, K =0 and F = G = P = 0 which implies that (8)
takes the form

8tflk + HoAE‘k =0,
3G — AU ATy — fdy — g ARy — pAR =0, 9)
Btak - //LAak + fcy =0.

3.1. The case of high frequencies

Taking the L? scalar product of the first equation of (9) with Ry, of the second equation with ¢y,
and the third one with di, we get the following three identities:

1d - -
5 g IkllZz + ho (A, ) =0,

1d . - ~ . ~ ~ -

5 g 1kl E2 + 4RI AGIE, — f(di, &) — 8(Ahy, &) — (A%he, AT) =0, (10)

1d - - o
ﬁndknﬁz + pll AdlI?; + £(G, d) =0.

Now we want to get an_equality involving Aflk. To achieve it, we take L? scalar product of the first
equation of (9) with A2hy and AGy respectively, then take the L? scalar product of the second equa-
tion with Ahy and sum with both last two equalities. This yields

1d
2dt
d - . - - - -2 L e

o (A €0 + holl A%, — f(dx, Ahy) — gl Ahk||?, — B A%hi| > + 4 (ASk, A%hi) =0.

| AhilIZ, + ho (A2, Ahy) =0,
(11)

Let K; > 0 be a constant to be chosen later and denote for k > 0

B

g - ~ ~ ~ =
of = Enhkufz + %nAhkniz + 18kl F2 + Idiclif2 — 2K1 (Ahy, &).

By a linear combination of (10) and (11), we can get
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2
-—a
2dt K
+ 1l AdglI}> — 4K (A, A%hy) + Ko (dy, A) =0.

Using Schwartz’ inequality, Young’s inequality and Bernstein’s inequality

~ 4 ., .
el 2 < 52 kIl Adyll 2,

we find, for any positive numbers M1, M, M3, that

I -
(A, A%e)| < S 1AGI% + 5| 4%

L|
2M4
- 8My ~ o, 1 o
| @ AR < ZG= 1A, + 51 ARl

P Ms =2 T -2
|(Ahy, 80| < == AR + oy 1l

Thus, we need to determine the values of K1, M1, My and M3 such that

ap— oKy —apki M 0, gy L
- — — > - > - — >
122 oK1 122,81 5 , 2M; , g 2M, ,
8fK1 M K
o SEMe o B Mss0. 1-Kiog
9 ho M3

One can verify that the above inequalities will hold if one has

4
0<K1<min<i,% _ﬁ,gﬁ)
hoB +5u2 3\ hy 4f

5 f 9 2
_ oK Mo — M M B

M; =25, - , .
1728 2= 3¢ 1 161K, T3\ i

Hence, we obtain

2 T2 o2 ~ 12 =2 2
cro < llhell?, + 1 ARkl + 1612 + lldi I, < coof.
Therefore, there exists a constant ¢ > 0 such that

1d .
Eaa,f + c22kaf <0.

c ~ z Zo2
+ (4 — hoKD)IIAGNT, + gKqll Ahil|2, + BK: || ARy |1

(12)

(13)

In the general case where F, G, P, K and v are not zero, we have, with the help of Lemma 6.2

in [11], that
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42y (€2 + KV')oi
d k k
.- . L B o~ - . L
; (Fi, hi) + (G, €) + (P, Ci) + }—T(AFk, Ahy) — K1(AFy, ¢x) — K1(Gy, Ahy)
0 0
g s . B
— = (Ap(v-Vh), b)) — (Ap(v- VE), &) — —
ho hO
+ K1 (AAk(V - Vh), &) + K1 (A (v - VE), Ahy)

(AA(v-Vh), Ahy)

Sak(IFellz + 101Gkl + I1Pill 2 + 1 AFl 2

+ 12 TV Il + 12 VIV 18 s

+ 12TVl WRlgs |+ vilvilgg 27TV I g + 27 VRl ),
where >, ¥ <1 and s € (0, 2].
3.2. The case of low frequencies

We replace the second equation of (11) by the following equation

d, oae o L i
7 (APh, &) + ho | 4% | 12 — f(Ady, A%hy) — g A% |72
— B A% |2, + 41 (A%, AR) = 0. (14)

Let K5 > 0 be a constant to be chosen later and denote for k <0

B

g ~ ~ - ~ fnd ~
af = Enhknfz + %nAhkufz + 11Ckl1%, + lldill?, — 2Ka (AR, E).

A linear combination of (10), the first equation of (11) and (14) yields

1d - - -2 ~ 12
5 g% HARIAGIT — hoKo | A%E [} + gKa | A%hi|
- - . - ~ -
+ BIG | APhi|| > + 1l A3, — 41K (A%Ck, A%hie) + Ko (Adk, A%Ri) =0 (15)
Using Schwartz’ inequality, Young’s inequality and Bernstein’s inequality

- 8 -
I Al < 52 il 2,

we find, for any positive numbers M4, M5, Mg, that
- 8’M 1 -
2= 43 A a2 3712
|(4%8 A%hi)| < 57 114G T | A%h |7

~ = Ms -~ 1 ~ 2
|(Adk, A%hy)| < TIIAdeIfz + IMs | AR 7.

8*Mg
2.34

~ 1 .
A2, + = (1312

(43R, E)| < M
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Thus, we need to determine the values of K, M4, M5 and Mg such that

2 2

My f
4 — =hoKy —4uKy——— >0, —— >0, —— >0,
= 3zhoks = 4pi 5—3 > B 2M4 g 2M5>
fKo,M 4 K
_faMs o, P KaMg >0, 1——2=>0.
2 ho 2 2.34 Me
One can verify that the above inequalities will hold if one chooses
32.4 4
oty mn( 20 2[5 sug)
82(hoB + 5/,L2) 8 f2
5 f 32
Me=22  Ms=—+ L mg=2, Ly
28 4g  fKy 8-\ hg
Hence, we obtain
csaf < hll%, + 1 AR, + 18l%, + lldil%, < cao. (16)

Therefore, there exists a constant ¢ > 0 such that

1d 4k 2
3 dta" + 2% aj <0.

In the general case where F, G, P, K and v are not zero, we have, with the help of Lemma 6.2
in [11], that

1d ak
Ed_ +(@2% + KV )of
< I—%(Fk,hk) + (G &) + (Pr, €) + E(AFk, Ahy) — K (A3F, &) — K1(Gy, A3f1k)
- EE(A,((V- Vh), b)) — (Ak(v - VE), &) — EE(AAk(V- Vh), Ahy)
0 0

+ K1 (A3 Ag(v- VR, &) + K1 (Ak(v - VE), A3]y)

Sonc(IFell2 + 1Gelliz + I1Pilliz + 727 Vil gz 1Rl + 12 C Vvl el s
—k(s—1) . P . —k(s=1) % . —k(s=1) |71 .
+ 12OV Rl |+ vVl 7TV g + 27 VR s ),

where Y, % <1 and s € (0, 3].
Thus, combining two cases of high and low frequencies, we obtain for any k € Z

2 4 (¢2%min(1,2%) + KV')a?

N =
N B~

(1Pl + G2 + I1Paliz + I AFell 2 + m2 OOV (1O ggrs ). (D)

where we choose ¢ = min(¢, ¢) and V (t) = fot ||v\|331.

We are now going to show that the inequality (17) implies a decay for h, ¢ and d.
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3.3. The damping effect for h

Dividing (17) by oy, we get

%ak(t) + (€2% min(1,2%) + KV')o

Sl + 1Gellz + 1Peliz + I-AFel 2 + 1127 7PV ©) | gs-s st (18)

Integrating over [0, t], we have

t
ay(t) +€2% min(1, 2%) / a(v)dt
0
t

S (0) + f (| Fe |2 + |Gk 2 + | P | ;2 + | AFr(D)] 12) dT

0
t
/ —k(s=1) || (7, =
+ / V@@ V[ 8| grors gy — Kow(®]de. (19)
0
By the definition of &7, we have
2K Doy~ 2 max (1, 27%) 1Byl 2 + 2KV &l 2 + 2567V dyll 2, Yk € Z. (20)

Thus, we have, by taking K large enough, that

2 @O gsrs, o = K2C V()] <.
keZ ’ ’

Changing the functions (h,¢,d, F, G, P) into the original ones (h,c,d, F, G, P) and multiplying both
sides of (19) by 2¢¢—D_ According to the last inequality, and due to (19) and (20), we conclude after
summation on k in Z, that

t
Il 5s-nsy + €l ety + 1l oe s, + c/ [h(o)| g2 AT
0

t t
+ ¢ Z / 2k($+1) mm(l , 22]() ||Ck(f) ||L2 dr + ¢ Z / 2k($+1) mm(l , 22]() ||dk(f) ”LZ dt

keZ keZ

<O (h(0), c(0), d(0))

I By x (BST)?

t
4 eCV® /e—cvm”(p, G, P)(r)||§§]1,sx(3331)2 dr. (21)
0



3246 C. Hao et al. / ]. Differential Equations 247 (2009) 3234-3257

3.4. The smoothing effects of c and d

Once the damping effect for h is established, it is easy to get the smoothing effect on ¢ and d.
Since (21) implies the desired estimate for high frequencies, it suffices to prove it for low frequencies
only. We therefore suppose in this subsection that k < 0. B

Taking the L? scalar product of the last two equations of (8) with ¢, and d respectively, we have

1d - o S - -

ﬁnhkufz + ho(Cx, Ahy) = (Fi, b)) — KV' (O |ell?, — (Ax(v - Vi), Ry,

1d - o <2 e = P 3p =

—— 4l A —f(d —g(Ah — B(A°h

2dt||ck||L2+ W ACKN 2, — fdi. €) — g(Ahy, &) — B(A hy, ) (22)

= Gk, &) — KV O8I — (Ak(v- VE), &),

|

ldk %, + pll Adiel 2, + f(dy, E) = (Pi di) — KV (©) [1di ||,

N =
Q.

t

Define 62 = Eﬁnflk”fz + 1IEkl2, + ||c~1k||f2. By using Lemma 6.2 in [11], (22) yields, for a constant
0
¢ >0, that

1d - - -
Sl t 2202 <o (|| A%he]| 2 + Gkl 2 + 11 Pill 2)

+ OkV/(t)(CykZ’k(s’l)(||6||352711 + ||E||B;711) — K6).
Dividing by 6, and integrating over [0, t], we infer

t t
O(t) +C / 2%0,(v) dv < 6,(0) + C f [ICk@ ]2 + [ Pr(®)] 2] dT
0 0
t
+C/V’(t)yk(r)Z’k(s’l)(HE(I)
0

gt 162

)dr.

ps—1
BZJ

Therefore, changing the functions (h, ¢, d, F, G, P) into the original ones, we get

22TV e 2y + D02V ek® [ 12
k<0 k<0

t

t
_}_sz(sfl)Hdk(t)Hioo(Lz)_’_C/22k(5+1)”Ck(.L.)HL2 d‘L’—i—Cf 2k(s+1)||dk(-[)”L2 dt
k<0 r 0 k<0 o k<O

t
eV O (101,000, d0) gy 1o g + [ €V VNC PO g7
0]

+ ecv(t)(llcllzgo(gszjll) + ||h(f)||ig°(éi]l's))'
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Using (21), we eventually conclude that

t t

c / 32K (1) | o dT + € / 32 de(o)])p dr

0 k<0 0 k<0

t
SeCV(t)<” (h(O),C(O),d(O)) ||B;_’11’3><(f3§’1])2 +/e*CV(I)” (F(‘L’), G(1), p(-[)) HBSZT’SX(B;_]I)? d‘L’).
0

Combining the last inequality with (21), we complete the proof. O

4. Existence and uniqueness

This section is devoted to the proof of Theorem 1.1. The principle of the proof is a very classical
one. We shall use the classical Friedrichs’ regularization method, which was used in [6-8,16] for ex-
amples, to construct the approximate solutions (h", u"),cn to (4), and then we will use Proposition 3.1
to get some uniform bounds on (h", u"),en.

4.1. Construction of the approximate sequence

To this end, let us define the sequence of operators (Jp)ney by
Inf=F Mya O F S,
and consider the following approximate system:

he + Jn(Jnu" - V Joh") + ho A Jnc" = F",

¢t 4 Jn(Jnt" - V Jnc") — 4 A Juc" — £]pd" — gA Joh" — A% Jyh" = G",

dl — WA Jnd" 4 fJnc" = Jp A~ divE H, (23)
u'=—-A"v — ATV,

(h", ", d")(0) = (hn, A~ divuy, A" divuy),

where

hn = Jn(ho —ho).  y= Jauo,

F" = — Ju(Jah" div Jpu"),

G" = Ja(Jnu" - V Juc") + JnA divH",

V Joh"D(Jpu™) 4+ V Jph" div Jou”

H'=—J,u" - V]Ju"+2u -
! ! ¢(Juh" + hg)

’

with ¢ a smooth function satisfying

ho/4, Is| < ho/4,

ho/2 < Is| < 3ho/2,
Tho/4,  |s| >7ho/4,
smooth, otherwise.

{(s) =
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We want to show that (23) is only an ordinary differential equation in L? x L? x L2. We can observe

easily that all the source term in (23) turn out to be continuous in L? x L? x L2. For example, we
n di n

consider the term J,A~!div %%%”;'. By Plancherel’s theorem, Hausdorff-Young’s inequality and
n 0

Holder's inequality, we have

. V]J,h"div J,u® _ V Jph"div J,u®
I Tl TR SRCACL
¢(Jnh™ +ho) |12 n ¢(Jnh" +ho) 12
V J,h™ di n 1
g”M < |V gk div ] | ————
¢(Jnh™ +ho) 12 Z(Jnh™ + ho) |l oo

4 4
S A PN T PR s PP P T
0 0 "

4n3
< I e
0

Thus, the usual Cauchy-Lipschitz theorem implies the existence of a strictly positive maximal time T,
such that a unique solution exists which is continuous in time with value in L x L? x L2. However,
as ],% = Jn, we claim that J,(h", c",d") is also a solution, so uniqueness implies that J,(h",c",d") =
(h™, c",d"). So (h",c",d™) is also a solution of the following system:

ht + Ja(u" - VA") + ho A" = FY,

¢+ Jn(U"- VC") — 4 AC" — fd" — gAR® — BAPK" = GT,

d' — uAd" +fc" = A7V divt HT, (24)
u'=—-A"v — ATV,

(h", ", d")(0) = (hn, A~ " divu,, A" divtuy),

with

hn = Jn(ho —ho),  uy= Jauo,

Fi = —Ja(h" divu"),

Gl = Ja(u" - V") + JnA divH],

Vh"D(u") 4+ Vh" diva"
¢(h" + ho) '

Hi=—-u"-Vu"+2u
The system (24) appears to be an ordinary differential equation in the space

2= {a € L?(R?): supp Fa C B(%n)}

Due to the Cauchy-Lipschitz theorem again, a unique maximal solution exists on an interval [0, T,;)
which is continuous in time with value in L2 x L2 x L2.
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4.2. Uniform bounds

In this subsection, we prove uniform estimates independent of T < T, in E} n Elﬁs for (h",u™).
We shall show that T,y = +oco by the Cauchy-Lipschitz theorem. Denote

E(0) := |lho — }_10||§(2)7}+6 + lluolzo..
Ethu.6):= [(how g + | (o w] s,
Tn:=sup{t e [0,T}): E(h",u",t) <ACE(0)},

where C corresponds to_the constant in Proposition 3.1 and A > max(2, C~1) is a constant. Thus, by
the continuity we have T, > 0.

We are going to prove that T, =T, for all n € N and we will conclude that T; = +oo for any
neN.

According to Proposition 3.1 and the definition of (h;, u,), the following inequality holds

. Clu"],1 -
” (hn’un)”E} < Ce u HLlﬂB%n)(Hho —h0||’§g,} + ||u0||igg1

+ H Fi HL}(BS:}) + ”“n -V HL‘T(BQJ) + H Hi HL}(BQJ))'

Therefore, it is only a matter to prove appropriate estimates for F}, H] and u" - Vc". The estimate
of F} is straightforward. From Lemma 2.6, we have

IFT iy oy < IR oqaon, 19"l iz ) < CEZ (0", W™, 7). (25)

With the help of Lemma 2.6 and interpolation arguments, we have
2
”un -V HL}(BQ‘]) < C”un H 12(B) ) ” ve! ”L%(BgJ) < C““n ”L%(B;])

<l I ) < CE2 (1w 7). (26)

In the same way, we can get

[u" - vu"| 1 g ) < CE*(h".u".T). (27)

(B3
To estimate other terms of HYf, we make the following assumption on E(0):
2C1ACE(0) < ho,

where C; is the continuity modulus of B;l CL® If T < Ty, it implies

- 1-
1] < ol gy < €l 501 < CLACE©) <

Thus, we have

1-
Hh" ”LOO([O,T]X]RZ) < iho’
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which yields
n h 1- 3~ n h n h
h" +hg e Eho, 5’10 and ((h +ho) =h" + hg.

From Lemmas 2.6 and 2.3, and interpolation arguments, we have

h"Vh" - Vu"

_ | VA" . V"
hoH Vh" . vu© <IvR Vel )+ |

f_lo-i-hn

Ly (BY ) Ly (BY )
h"Vh"

H ho 4 h"
hn

i_'l() + h"

+
(@)

<cvi| [Vl

vuly

)| CERY @) CERY

L;O(B;11)>

< CIN" e qagry 0™ iy oz (U 10 ey )

< CE*(h",u", T)(1+ E(h", u", T)). (28)

<l 1Ly 1+

Similarly, we can get

i H Vh™. D(u")
f_lo + h"

< CE*(h",u", T)(1+ E(h", u", T)). (29)
LL(BY )
TV72.1

Hence, from (26)-(28), we gather

Ju™ Ve ag )+ IHT g, < €1 +4phy (1 +E(h",u", T)))E*(h",u", T).  (30)

(BS
Similarly, according to Proposition 3.1 and the definition of (h,, u,), the following inequality holds
~ Clu™lg .
[ o) gree < Ce R (lho — ol 1+ + oll g
+ ” F? ”L}(B;}“) + ”“n V" ”L}(B?l) + HH’; ”L}(B;]))'
The estimate of F} is straightforward. From Lemma 2.6, we have
|Fy “L}(E;:}”) <Cn" ”L‘;"(B;:}“) [u” ”L]T(B%]) < CE*(h",u™,T). (31)

With the help of Lemma 2.6 and interpolation arguments, we have

Hun -vc" ”L}(B;l) < CHu" ”LZT*S(B;.]) ”VC“ ”LT%%(BQQ
<Cfu" ”L?-O(B%]) u” “L}(B%qu) <CE*(h"u™,T). (32)
In the same way, we can get
|u" - vu" ||L1T(B;1) < CE*(h",u", T). (33)
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From Lemmas 2.6 and 2.3, and interpolation arguments, we have

= | vh*. vVu" n n h"Vh" . vu®
hol| —=———| | SIVA VO )
0+ LL(BS ) - o+ L} (BS,1)
n 1 h"Vh" n
T L e e N7
hﬂ

<Pl gy 9y (14

L?(B%ﬁ)

e L P T PP R T PR

Eo%—hn

<CE2(h",u", T)(1+ E(h",u", T)). (34)
Similarly, we can get

- H Vh" - D(u")
h() —
ho + h"

<CE*(W",u", T)(1+E(h", u", T)). (35)
LY(BS y)

Hence, from (32)-(35), we gather
Ju" Ve s+ IHT s, < €01 +4phy ' (1+ E(h",u", T)))E*(h", 0™, T).  (36)
From (25), (30), (31) and (36), it follows

(B 0") | gy e < CeACEO[1 4 CAPE2 (1 4+ 4k (1+ ACE()) EO)]E(Q).

So we can choose E(0) so small that

2

272 =1 ~
14 CA*C*(144phy' (14 ACE(0)))E(0) < L

= A+1 e h
eACZE(O) g % and 2C1ACE(O) g hOv (37)

which yields [|(h", u")]g < 452 ACE(0) for any T < Ty. It follows that T, = T};. In fact, if T, < T;;, we

have seen that E(h",u", T,) < 453 ACE(0). So by continuity, for a sufficiently small constant o > 0

we can obtain E(h", u", T, + o) < ACE(0). This yields a contradiction with the definition of T.

Now, if Ty = T} < oo, then we have obtained F(h",u", Ty) < ACE(0). As |l _go1+, < oo and
P21

n s n . .
|u “Lm(fsgﬁ) < o0, it implies that |h ||LT;;(L%) < o0 and |u ”LT;;(Lﬁ) < 00. Thus, we may continue the
solution beyond T, by the Cauchy-Lipschitz theorem. This contradicts the definition of T,;. Therefore,
the approximate solution (h", u"),c is global in time.
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4.3. Existence of a solution

In this subsection, we shall show that, up to an extraction, the sequence (h", u")cy converges in
2' (Rt x R?) to a solution (h, u) of (4) which has the desired regularity properties. The proof lies on
compactness arguments. To start with, we show that the time first derivative of (h", u") is uniformly
bounded in appropriate spaces. This enables us to apply Ascoli’s theorem and get the existence of a
limit (h,u) for a subsequence. Now, the uniform bounds of the previous subsection provide us with
additional regularity and convergence properties so that we may pass to the limit in the system.

It is convenient to split (h", u") into the solution of a linear system with initial data (hp,u,) and
the discrepancy to that solution. More precisely, we denote by (h},u}) the solution to the linear
system

och} +divu] =0,
oru} — pAu] — 3V divuf + f(uf) "+ gVh} — BVAR] =0, G8)
( ?7 uiz)[:() = (hm un),

and (h",0") = (h" — hi,u® —uf).
Obviously, the definition of (h,, u,) entails

hy, — ho —hg in Bg’}+€, u, —> up in Bg’f, asn — +oo.

Proposition 3.1 insures us that

(h,u}) — (hy,u) inE'NE'™, (39)
where (hy,u;) is the solution of the linear system

othy +divay =0,
du, — wAu —3uVdivuy + fuj +gVh, — BVAh, =0, (40)

(hp,up)e—o = (ho — ho, up).

Now, we have to prove the convergence of (h", a"). This is of course a trifle more difficult and requires
compactness results. Let us first state the following lemma.

Lemma 4.1. (A", &"))nen is uniformly bounded in C2 (R*: BY ) x (C 3+ (R BY )2

Proof. Throughout the proof, we will note u.b. for uniformly bounded. We first prove that ach" is wb.
in L2(R*, Bg‘l), which yields the desired result for h. Let us observe that h" verifies the following
equation

dh" = — Jn(h" divu") — Jp(u" - VA") — ho divu" + ho divu].

According to the previous subsection, (i")npen is wb. in (B} ;) and (W")ey is ub. in L*(B} ) in
view of interpolation arguments. Thus, — J,(h" divu") — J,(u" - Vh") — divu" is u.b. in Zz(Bg_l). The
definition of u} obviously provides us with uniform bounds for divu} in i2(38.1), so we can conclude
that :h" is w.b. in LZ(BgJ).
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Denote ¢} = A~ divu}, " = A~ diva", d} = A~ div-u} and d" = A" div* &". Let us prove now
that 3" is wb. in (L3° + L>®)(BY,) and that 3d" is wb. in B+ L*°)(BY ;) which gives the
required result for @" by using the relation u” = — A~V — A-1vLign,

Let us recall that

H" =ApuA (" — ) +f(d" — d7) + gA(h" — h}) + BA3(h" —h})
Vh"D(u") + Vh" diva" )
hn -I-f_lo '

— JaA7] div(u” VUt =2

dd" = pA(d" —d}) — f(c" — c})

n n nAdi n
—JnA71d1Vl<unVun—2ﬂVh D(u )+Vh divu >

h"-i—f_lo

Results of the previous subsection and an interpolation argument yield uniform bounds for u" in
~ £ . ~ 2+¢ . ~ . ~ £ o
= (BS ) NLz+ (B%]E). Since h" is u.b. in L*(B} ), ¢ and c" are wb. in 5 (Bg’]), we easily verify
that A(c" —c) and JoA~!div(u" - Vu" — ZMW) are wb. in L5 (BY ,). Obviously, we
5 ,
have d"*1 and dj*! wb. in I>°(BY ). Because h" and h{ are ub. in L°°(B] ,), we have A(h"*1 —h}™™)

ub. in L°(B ;). We also have h" and h} are u.b. in (L3 + i%)(égﬁl) in view of Lemma 2.8. Thus,
A3h" is wb. in (L3 + L%)(Bg,l). So we finally get 8" ub. in (L5 + L*)(BY ). The case of 3,d"
goes along the same lines. As the terms corresponding to A3(h" — h}) do not appear, we simply get
ded" wb. in (L3 +L%)(BY ). O

Now, we can turn to the proof of the existence of a solution and use Ascoli’s theorem to get strong
convergence. We need to localize the spatial space because we have some results of compactness for
the local Sobolev spaces. Let (xp)pen be a sequence of Cg°(R2) cut-off functions supported in the
ball B(0, p +1) of R? and equal to 1 in a neighborhood of B(0, p).

For any p € N, Lemma 4.1 tells us that ((xph", xpu"))nen is uniformly equicontinuous in
C(R*: (B9 )'?) and bounded in E'*¢.

Let us observe that the application f > x,f is compact from Eg:} into B(Z)Y], and from ng
into Bg:?. After we apply Ascoli’s theorem to the family ((prl”,xpﬁ”))neN on the time interval
[0, p], we use Cantor’s diagonal process. This finally provides us with a di_stribution (h, @) belong-
ing to C(R™; B(Z),l X (Bi:?)z) and a subsequence (which we still denote by (h", u"),en) such that, for
all p e N, we have

(xph™, xpu") — (xph, xp@) asn— -+oo,

1
Coming back to the uniform estimates of the previous subsection, we moreover get that (h, u)
belongs to

in C([0, p]; BY | x (Egjo)z). This obviously infers that (h", @") tends to (h, @) in 2’ (Rt x R?).

[o(R* BT x (BY5)?) N LI (R*: (B N B3HF2TF) x (B317)) (41)

and to C'/2(R*; BY ) x (C7 (R*; B ;)
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Let us now prove that (h,u) := (hy,u;) + (h, @) solves (4). We first observe that, according to (23),

R+ Jo(u" - VA") + ho Ac" = — J (" divu®),
w4 [ (U Vu') — pAd" — 3V dive® + f(u") " + gVA" — BV AR
Vh"D(u") + Vh" dlvu
h + ho

=2/ Jn

The only problem is to pass to the limit in 2’(R* x R?) in the nonlinear terms. This can be done by
using the convergence results stemming from the uniform estimates and the convergence results (39)
and (41).

As it is jllSt a matter of doing tedious verifications, we show, as an example, the case of the

term % Denote L(z) = z/(z + ho). Let 6 € CO(RT x R?) and p € N be such that supp6 C
0

[0, p] x B(0, p). We consider the decomposition
ho6 Vh" divu®  ho6Vhdivu
ho + h" ho+h
= Ja[0(1 = L(h")) xp Vh" xp div(u] —uy) +6(1 — L(h")) xp VA" xp div(x, (0" — @))
+6(1—L(h")) xpV(xp(h" — h)) divu+6Vhy, diva(L(xph) — L(xph"))]
ho6Vhdivu
ho +h

+Un—=D

The last term tends to zero as n — +oo due to the property of J,. As QL.(h”) and h" are ub. in
L>°(B} ;) and u] tends to u; in L'(B3,), the first term tends to 0 in L'(BJ ). According to (41),

xp(@" — @) tends to zero in L'([0, p]; 35,1) so that the second term tends to 0 in L!([0, p]; Bgl).
Clearly, xph" — xph in L°°(B;1.) and L(xph™) — L(xph) in L®(L® N B%,l)' so that the third and the
last terms also tend to O in Ll(B0 1)- The other nonlinear terms can be treated in the same way.

We still have to prove that h is continuous in BO’H'S and that u belongs to C(R*; (B2 1) ). The
continuity of u is straightforward. Indeed, u satisfies

VhD(u) 4+ Vhdivu
h + ho

du=—u-Vu+ puAu+3uVdiva — fut —gVh+ SVAh+2u

and the rh.s. belongs to (L' + L*)(BY ) by noting that we also have h € L(B} ;)N (L3 + YB3 )
in view of the interpolation argument: In a similar argument, one can obtain u e C(RT; (35,1)2). We
have already got that h € C(R™; 3(2),1)- Indeed, hg — hg € B(Z),l' uel?RT; B;l), h e L®(R*; B%,l) and
then 9:h € L2(RT; BO 1) from the equation d:h = —hgdivu — div(hu). Thus, there remains to prove the

continuity of h in B”g.
Let us apply the operator Ay to the first equation of (4) to get

3t Ah = —Ar(u- Vh) — hoArdiva — Ag(hdivu). (42)

Obviously, for fixed k the r.h.s. belongs to L}Oc(Rﬂ L?) so that each Aih is continuous in time with
values in L2
Now, we apply an energy method to (42) to obtain, with the help of Lemma 6.2 in [11], that

1d _ . .
5 g 1Ak < Cll Akl (n2™ T il g+ 1Ak divulz + [ Axhdive][ ),
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where 3", oy < 1. Integrating in time and multiplying 2€(+%), we get

t
2T A0 2 < 2 Atho — ho) | 2 + € / (o [n () [y [ g3
0

+2KCH9 | Apa(D)| o + 240F9 | A (hdivay (D) ) de

Since h € L“(B”‘S) uel! (B2 2+*3) and hdivu e L! (B”g) we can get

Zsupz’“”‘” | Ah© 2 < ho —holl gy + (14 IRl oo grse) ) I3 g2zse) + IR AIVE] 3 rsey
ezt ' ' '

< 00.
Thus, 3 <y Akh converges uniformly in L®(RT; BHF) and we can conclude that h e CR*; BHS)
4.4. Uniqueness

Let (h1,ur) and (hy,up) be solutions of (4) in E} N Ex*® with the same data (ho — ho,ug) con-

structed in the previous subsections on the time interval [0, T]. Denote (8h, §u) = (hy — hy, uy — uy).
From (4), we can get

88h 4y - V8h + hodivéu = F,,
ddu+uy - Véu — Asu — 3V divéu + f(Su)t + gVsh — BYASh = G, (43)
(8h, 6u) = (0,0),

where

Fy =—6u- Vh] —8h diVll2 — h1 diVSll,

Véhdivuy Vh; divéu 1 1 .
Go=—8u-Vuy + 2 ————2 42— —"= 42 - — Vh, divu;
ho + hy ho + hy ho+hy ho+hy
V§hD (u VhiD($u 1
g YohDw) , YmDOw ( — = )Vh1D(u1).
ho + ha ho + hy ho+hy  ho+hy

Similar to (4), we can get

Clluzll, 1 52
e LrB30)

| sh, Su) ||E} <C (IIlelL}(gg:}) + G2 ”Llr(Bg.ﬂ)'
Noticing that h; € L‘;O(Bg:}) N L}(Bgﬁ) and u; € Llr(B%]). we can get
||F2||L1 (30 )~ T2 ||5u||L°0(30 )”hl ”[_2(32 ) + ||5h||L°°(BU )||u2||L1 (32 ) + ||h1 ”LOO(BO )||5“||L1 (32 )

Moreover, from hy € L3(B3 ;) N L3°(B} |) by Lemma 2.8, we have

”FZHL;(B;J) S ”8u”L%(B;J)”h1 ”L%(B%J) + ”8h”L7°.O(B;_])”uZHLlT(B%J) + ”hl ||L7°_0([g;ll)||8u||]_}(3§1)-
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Noting that hq, hy € L%O(BEJ), up,u e L]T(BgJ), and

1.
11l g0, 11xR2) < Eho, Ih2ll o o, 1)xR2) < Eho,

by the construction of solutions, we have

IIGzllLlT(Bgyl) < II(S“IIL?O(BgJ)IIlll ”L1r<3§,1> +4u(1+ IIhzllL;o([;;]))|I5h||L(;o(;g;.1)IIUzllLlT(gg’l)
+4n(1+ ||hz||L?o(B;1))||h1 IIL;o(B;J)IISUIILlT(g%J)
+4M”8h”L?°(B;1)”h1”L%O(B%_l)”ul”LlT(B%J)

X (1 + ”hl ”LC;C(B}J) + ||h2||L%°(j3%'1) + ”hl ”L?C(B%,])||h2||L%0(j3%'1))-

Thus, we obtain

Clluzll, 1,4 -
[ah, 60| 5, < Ce (14 T8 + aphg (14 02l o))

Sl gory + Z(D | @GR, sw g

where limsupr_, o+ Z(T) =0.

Supposing that "}:(:152 (A+1CE®0) < }‘ besides (37) for E(0) and taking 0 < T < 1 small enough
such that CHUZHL}(B%l) <In2 and Z(T) < % we obtain |\(6h,5u)||E1T = 0. Hence, (h1,u7) = (hy, uy)
on [0, T]. ‘

Let T, (supposedly finite) be the largest time such that the two solutions coincide on [0, Ty, ]. If
we denote

(hi(©), 0;(D) := (hi(t + Tm), it + Trp)), i=1,2,

we can use the above arguments and the fact that

. 1. s _
||hi||L°C(R+><R2) < zhO and ”hi”Lo"(R*;ngﬂB;]) < ACE(0)

to prove that (ﬁ1, ) = (ﬁz, uy) on the interval [0, T;;] with the same Ty, as in the above. Therefore,
we complete the proofs.
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