

Contents lists available at ScienceDirect

Fungal Genetics and Biology

journal homepage: www.elsevier.com/locate/yfgbi

Regular Articles

Diversity and movement of indoor *Alternaria alternata* across the mainland USA

J.H.C. Woudenberg a,b,*, N.A. van der Merwe^c, Ž. Jurjević^d, J.Z. Groenewald a, P.W. Crous a,b,c

- ^a CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- ^b WUR, Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- ^c Department of Genetics, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa
- ^d EMSL Analytical, Inc., 200 Route 130 North, Cinnaminson, NJ, USA

ARTICLE INFO

Article history: Received 14 February 2015 Revised 21 April 2015 Accepted 7 May 2015 Available online 21 May 2015

Keywords: Microsatellites Population genetics Phylogeographic study Recombination

ABSTRACT

Alternaria spp. from sect. Alternaria are frequently associated with hypersensitivity pneumonitis, asthma and allergic fungal rhinitis and sinusitis. Since Alternaria is omnipresent in the outdoor environment, it is thought that the indoor spore concentration is mainly influenced by the outdoor spore concentration. However, few studies have investigated indoor Alternaria isolates, or attempted a phylogeographic or population genetic approach to investigate their movement. Therefore, the aim of the current study was to investigate the molecular diversity of indoor Alternaria isolates in the USA, and to test for recombination, using these approaches. Alternaria isolates collected throughout the USA were identified using ITS, gapdh and endoPG gene sequencing. This was followed by genotyping and population genetic inference of isolates belonging to Alternaria sect. Alternaria together with 37 reference isolates, using five microsatellite markers. Phylogenetic analyses revealed that species of Alternaria sect. Alternaria represented 98% (153 isolates) of the indoor isolates collected throughout the USA, of which 137 isolates could be assigned to A. alternata, 15 to the A. arborescens species complex and a single isolate to A. burnsii. The remaining 2% (3 isolates) represented sect. Infectoriae (single isolate) and sect. Pseudoulocladium (2 isolates). Population assignment analyses of the 137 A. alternata isolates suggested that subpopulations did not exist within the sample. The A. alternata isolates were thus divided into four artificial subpopulations to represent four quadrants of the USA. Forty-four isolates representing the south-western quadrant displayed the highest level of uniqueness based on private alleles, while the highest level of gene flow was detected between the south-eastern (32 isolates) and south-western quadrants. Genotypic diversity was high for all quadrants, and a test for linkage disequilibrium suggested that A. alternata has a cryptic sexual cycle. These statistics could be correlated with environmental factors, suggesting that indoor A. alternata isolates, although extremely diverse, have a continental distribution and high levels of gene flow over the continent.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Although environmental *Alternaria* spp. are not considered as pathogens, their omnipresence is frequently associated with hypersensitivity pneumonitis, asthma and allergic fungal rhinitis and sinusitis in humans (Pastor and Guarro, 2008). Allergic rhinitis is the most common form of noninfectious rhinitis (Randriamanantany et al., 2010), while allergic (extrinsic) asthma is the most common form of asthma, affecting over 50% of 20 million asthma sufferers (Salo et al., 2006).

E-mail address: j.woudenberg@cbs.knaw.nl (J.H.C. Woudenberg).

The primary dispersal method of species of *Alternaria* is by the release of conidia (asexual spores) into the air. It has been suggested that changes in temperature and relative air humidity can trigger spore release from plant material (Timmer et al., 1998). The concentration of allergenic airborne spores can thus be linked to the release of spores from infected plants during dry/wet cycles. Additionally, it is possible that the environment contributes to the genetic diversity of populations of airborne *Alternaria*. For example, areas with large fluctuations in humidity and temperature, and where agricultural activities are prevalent, may be conducive to the generation of diversity that can counteract the selective pressures imposed by the environment. Since *Alternaria* is omnipresent in the outdoor environment, it is thought that the indoor spore concentration is mainly influenced by the outdoor spore

^{*} Corresponding author at: CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht. The Netherlands.

concentration. However, the indoor level of fungal spores in the air is influenced by the activity in the room, fluctuations in temperature and relative humidity, and the ventilation rate (Samson et al., 2010).

Alternaria alternata (belongs to Alternaria sect. Alternaria) (cf. Lawrence et al., 2013; Woudenberg et al., 2013) is thought to be the main airborne allergen of the genus Alternaria (Horner et al., 1995; Kuna et al., 2011; Pulimood et al., 2007). Alternaria sect. Alternaria consists of more than 50 pathogenic non-pathogenic morpho-species (Woudenberg et al., 2013). These morpho-species display very low levels of DNA sequence variation, and are therefore difficult to distinguish at the sequence level (Andrew et al., 2009; Peever et al., 2004). A recent study based on whole-genome sequencing supplemented with transcriptome profiling and multi-gene sequencing only recognized 11 phylogenetic species and one species complex in sect. Alternaria (Woudenberg et al., unpublished results). As a result, 35 morpho-species were placed in synonymy with A. alternata. Alternaria alternata is also associated with diseases of citrus, and like other airborne fungi, it displays a worldwide distribution (Stewart et al., 2014). Nonetheless, several studies (e.g., Peever et al., 2004, 2005; Stewart et al., 2014) were able to delineate geographically or host-restricted lineages of Alternaria, indicating the potential for phylogeographic studies. In contrast to plant pathogenic fungi, or fungi that have restricted geographic and host ranges, airborne fungi have been neglected as subjects for phylogeographic and population genetic studies (Slippers et al., 2005). It is generally believed that such fungi would display a lack of population subdivision due to their ease of spread, and that diversity levels would be extremely high due to high migration rates. Thus, the lack of data on the population genetics of non-pathogenic airborne fungi can be ascribed to these untested assumptions.

Few studies have investigated indoor Alternaria isolates specifically, although multiple studies mention the detection of Alternaria in the indoor environment (de Ana et al., 2006; Li and Kendrick, 1995; Solomon, 1975). One large study of dust-borne A. alternata allergens in USA homes assessed the concentration of Alternaria allergens in dust with a polyclonal anti-alternaria antibody assay (Salo et al., 2005). That study revealed that exposure to A. alternata allergens is common, and that residential characteristics such as smoking, mold and moisture problems, and cleaning frequencies influence the indoor antigen levels in house dust. Nonetheless, no reports exist on the genotypic or allelic composition of indoor Alternaria isolates from the USA. In addition to the few studies on indoor Alternaria species, more studies were performed on Aspergillus and Penicillium species. These two genera are poorly represented in outdoor air, but they are frequently isolated indoors (Araujo et al., 2010; Henk et al., 2011; Scott et al., 2004, 2007). A study on the genotypic variation in ca. 200 Penicillium chrysogenum strains from Canadian homes showed no evidence of recombination, indicating a strictly clonal population (Scott et al., 2004). Additionally, a study on the genotypic variation of the Penicillium brevicompactum group in house dust in Canada revealed that the two predominant taxa, P. brevicompactum and P. bialowiezense, also showed a predominantly clonal mode of reproduction (Scott et al., 2007).

Sexual reproduction in filamentous fungi is controlled by the mating-type (or *MAT*) locus (Coppin et al., 1997; Turgeon, 1998). These mating-type loci have been identified from several asexual fungi based on PCR and whole genome sequencing (e.g. Goodwin et al., 2003; Groenewald et al., 2006; Paoletti et al., 2005; Pöggeler, 2002; Sharon et al., 1996; Woo et al., 2006). The discovery of cryptic sexual cycles is important in understanding the evolution of fungal diversity. *Alternaria* is considered to be an asexual fungal genus; however, the connection to a sexual morph, formerly

called *Lewia*, is known for some species (Simmons, 1986, 2007). With the recent division of the genus into sections, these sexual connections seem to be restricted to specific sections (Lawrence et al., 2013; Woudenberg et al., 2013). However, the mating-type loci have also been identified from several *Alternaria* spp. which are supposedly asexual (Arie et al., 2000; Berbee et al., 2003; Linde et al., 2010; Stewart et al., 2011).

The first aim of the current study was to identify which *Alternaria* species are present in the indoor environment in the USA, by sequencing two protein-coding genes and one non-translated locus. Secondly, we wanted to investigate the molecular diversity of indoor *Alternaria* isolates in the USA, by genotyping and population genetic inference of the sect. *Alternaria* isolates, using five microsatellite markers (Tran-Dinh and Hocking, 2006). A third aim was to investigate whether alleles at these five microsatellite loci are randomly associated, *i.e.* to test for recombination.

2. Materials and methods

2.1. Isolates and DNA extraction

Isolates were collected throughout the USA over a period of 6 months from December 2011 to May 2012 (Table 1). Most of the samples (137/156) were collected as malt extract agar (MEA) settle plates by homeowners from their own homes. The MEA plates were purchased by homeowners from hardware stores and sent to EMSL Analytical, Inc. for identification after exposure to indoor air. Ten air samples were collected with a single stage bio-aerosol impaction sampler (EMSL VP-400 Microbial Sampler), three were swab samples and four were dust samples (Table 1). The media used for fungal isolation was MEA. No further information is available on the individual homes. For the microsatellite typing experiment, 37 reference isolates were included (Table 1). For DNA isolation, the isolates were grown on potato-carrot agar (Crous et al., 2009) for 7 d at ambient temperature (\sim 22 °C). Total genomic DNA was extracted using the UltraClean Microbial DNA Isolation Kit (MO BIO Laboratories, Carlsbad, CA, USA) according to the manufacturer's instructions.

2.2. PCR, sequencing and sequence analyses

The internal transcribed spacers (ITS) of the ribosomal DNA operon, including the 5.8S rDNA gene, and a section of the glyceraldehyde-3-phosphate dehydrogenase (gapdh) gene region were amplified from genomic DNA as described by Woudenberg et al. (2013) with the primers V9G (De Hoog and Gerrits van den Ende, 1998) and ITS4 (White et al., 1990) for the ITS region, and gpd1 and gpd2 (Berbee et al., 1999) for the gapdh region. A section of the endopolygalacturonase (endoPG) gene was amplified with the primers PG3 and PG2b (Andrew et al., 2009). The PCR mixture consisted of 1 μ l genomic DNA (ca. 50 ng), 1 \times PCR reaction buffer (Bioline, Luckenwalde, Germany), 2 mM MgCl₂, 20 µM of each dNTP, 0.2 μM of each primer, and 0.5 U Taq DNA polymerase (Bioline). The PCR program consisted of an initial denaturation step of 5 min at 94 °C followed by 40 cycles of 30 s at 94 °C, 30 s at 50 °C and 30 s at 72 °C and a final elongation step of 7 min at 72 °C. The PCR reactions were performed in a 2720 Thermal Cycler (Applied Biosystems, Foster City, California), in a total volume of 12.5 μl. PCR amplicons were sequenced in both directions using the PCR primers and the BigDye Terminator version 3.1 Cycle Sequencing Kit (Applied Biosystems, Foster City, CA, USA) according to the manufacturer's instructions, and analysed using an ABI Prism 3730xl DNA Analyzer (Applied Biosystems). Consensus sequences were assembled from forward and reverse sequences using the

 Table 1

 Isolates used in this study with the substrate, locality and date they were collected, and their sequence type (ST) and eBURST group based on microsatellite data.

Isolate# ^a	Substrate	Locality	Date	Name	ST ^c	eBURST group ^c
CPC 22417	Air ^b , bedroom 2nd floor	USA, NJ	Dec. 2012	A. arborescens SC	12	Singleton
CPC 22418	Dust, carpet	USA, PA	Dec. 2012	A. alternata	39	Singleton
CPC 22419	Air, bedroom	USA, CA	Jan. 2013	A. alternata	79	Singleton
CPC 22420	Air, bedroom	USA, MD	Jan. 2013	A. alternata	44	1
CPC 22421	Air, bethroom	USA, TX	Jan. 2013	A. alternata	18	1
	,					
CPC 22422	Air, recreational vehicle	USA, CA	Jan. 2013	sect. Infectoriae	na	na
CPC 22423	Air, bedroom	USA, NJ	Dec. 2012	A. arborescens SC	106	Singleton
CPC 22424	Air, living room	USA, KS	Dec. 2012	A. alternata	167	Singleton
CPC 22425	Air, office	USA, NJ	Dec. 2012	A. alternata	118	19
CPC 22426	Air, office	USA, MI	Dec. 2012	A. alternata	44	1
CPC 22427	Air, kitchen	USA, MD	Dec. 2012	A. alternata	158	Singleton
CPC 22428	Air, bedroom	USA, WI	Dec. 2012	A. alternata	86	3
CPC 22429	Air, living room	USA, NJ	Jan. 2013	A. alternata	134	2
CPC 22430	Air, class room	USA, TX	Jan. 2013	A. alternata	105	1
CPC 22431	Air, office	USA, CO	Dec. 2012	A. alternata	91	1
CPC 22432	Air, bedroom	USA, IL	Dec. 2012	A. alternata	59	1
CPC 22433	Air, basement	USA, NJ	Dec. 2012	A. alternata	52	1
CPC 22434	Air, 2nd floor	USA, NJ	Jan. 2013	A. alternata	133	2
CPC 22435	Air ^b , office	USA, NY	Jan. 2013	A. alternata	61	1
CPC 22436	Air, bathroom	USA, MD	Jan. 2013	A. alternata	47	1
CPC 22437	Swab, store	USA, NY	Jan. 2013	A. alternata	157	Singleton
CPC 22438	Air, basement	USA, CT	Jan. 2013	A. alternata	145	Singleton
			•			
CPC 22439	Air, living room	USA, NJ	Jan. 2013	A. alternata	111	1
CPC 22440	Air, bedroom	USA, WA	Jan. 2013	sect. Pseudoulocladium	na	na
CPC 22441	Dust, rug	USA, PA	Jan. 2013	A. alternata	82	Singleton
CPC 22970	Dust, rug	USA, PA	Jan. 2013	A. alternata	67	Singleton
CPC 22971	Air, class room	USA, NY	Jan. 2013	A. alternata	68	1
CPC 22972	Air, hallway	USA, CA	Jan. 2013	A. alternata	71	1
CPC 22973	Air, hallway	USA, CA	Jan. 2013	A. alternata	23	10
CPC 22974	Air, kitchen	USA, GA	Jan. 2013	A. alternata	141	15
CPC 22975			•		32	Singleton
	Air, kitchen	USA, SD	Jan. 2013	A. alternata		
CPC 22976	Air, basement	USA, OH	Jan. 2013	A. alternata	49	Singleton
CPC 22977	Air, living room	USA, PA	Jan. 2013	A. alternata	46	1
CPC 22978	Air, living room	USA, MD	Jan. 2013	A. arborescens SC	98	Singleton
CPC 22979	Air, bedroom	USA, OK	Jan. 2013	A. alternata	174	1
CPC 22980	Air, living room	USA, CA	Jan. 2013	A. alternata	74	Singleton
CPC 22981	Air, living room	USA, OH	Jan. 2013	A. alternata	159	Singleton
CPC 22982	Air, living room	USA, CA	Jan. 2013	A. alternata	62	1
			•		62	1
CPC 22983	Air, bedroom	USA, IL	Jan. 2013	A. alternata		
CPC 22984	Air, basement	USA, NY	Jan. 2013	A. alternata	80	Singleton
CPC 22985	Air, office	USA, AZ	Jan. 2013	A. alternata	125	1
CPC 22986	Swab, bedroom	USA, TX	Jan. 2013	A. alternata	166	1
CPC 22987	Air ^b , outside	USA, DE	Feb. 2013	A. alternata	89	1
CPC 22988	Air ^b , office	USA, DE	Feb. 2013	A. alternata	85	3
CPC 22989	Air ^b , warehouse	USA, DE	Feb. 2013	A. alternata	41	9
CPC 22990	Air ^b , office	USA, AZ	Feb. 2013	A. alternata	127	Singleton
CPC 22991						
	Air ^b , elevator	USA, MO	Feb. 2013	A. alternata	171	Singleton
CPC 22992	Air, living room	USA, IL	Feb. 2013	A. alternata	64	7
CPC 22993	Dust, carpet	USA, MD	Feb. 2013	A. arborescens SC	146	14
CPC 22994	Air, office	USA, GA	Feb. 2013	A. alternata	128	Singleton
CPC 22995	Air, office	USA, TX	Feb. 2013	A. alternata	125	1
CPC 22996	Air, garage	USA, TX	Feb. 2013	A. alternata	153	Singleton
CPC 22997	Air, bedroom	USA, CO	Feb. 2013	A. alternata	115	Singleton
CPC 22998	Air, bedroom	USA, TX	Feb. 2013	A. arborescens SC	172	12
CPC 22999	Air, bedroom	USA, FL	Feb. 2013	A. alternata	47	1
CPC 23000	Air, living room	USA, WA	Feb. 2013	A. arborescens SC	104	Singleton
CPC 23001	Air, bedroom	USA, OR	Feb. 2013	A. alternata	19	1
CPC 23002	Air, bedroom	USA, IL	Feb. 2013	A. alternata	90	1
CPC 23003	Air, outside	USA, OK	Feb. 2013	A. alternata	101	Singleton
CPC 23004	Air, living room	USA, TX	Feb. 2013	A. alternata	138	1
CPC 23005	Air, bedroom	USA, IL	Feb. 2013	A. alternata	148	Singleton
CPC 23006	Air, bedroom	USA, PA	Feb. 2013	A. alternata	122	17
CPC 23006 CPC 23007	Air, bedroom		Feb. 2013 Feb. 2013	A. alternata	100	Singleton
		USA, CA				
CPC 23008	Air, bathroom	USA, TX	Feb. 2013	A. alternata	161	Singleton
CPC 23009	Air, storage room	USA, MD	Feb. 2013	A. alternata	16	Singleton
CPC 23010	Air, kitchen	USA, TX	Feb. 2013	A. arborescens SC	151	14
CPC 23011	Air, bedroom	USA, MO	Feb. 2013	A. alternata	50	1
CPC 23012	Air, bedroom	USA, FL	Feb. 2013	A. alternata	58	1
CPC 23013	Air, bedroom	USA, FL	Feb. 2013	A. alternata	47	1
						1
CPC 23014	Air, living room	USA, GA	Feb. 2013	A. alternata	96	
CPC 23015	Air, dining room	USA, NJ	Feb. 2013	A. arborescens SC	112	Singleton
CPC 23016	Air, bedroom	USA, GA	Feb. 2013	A. alternata	117	19
CDC 22017	Air, office	USA, MS	Feb. 2013	A. alternata	123	17
CPC 23017	All, Office	03/1, 1413	100. 2015	A. unernata	123	17

solate# ^a	Substrate	Locality	Date	Name	ST ^c	eBURST gro
CPC 23019	Air, living room	USA, ME	Feb. 2013	A. alternata	71	1
CPC 23020	Air, bedroom	USA, IL	Feb. 2013	A. alternata	69	1
PC 23021	Air, bathroom	USA, PA	Feb. 2013	A. alternata	135	Singleton
PC 23022	Air, office	USA, CA	Feb. 2013	A. alternata	26	Singleton
PC 23023	Air, bedroom	USA, TX	Mar. 2013	A. alternata	27	1
PC 23024	Air, bathroom	USA, CA	Mar. 2013	A. arborescens SC	15	12
CPC 23025	Air, bathroom	USA, MA	Mar. 2013	A. alternata	59	1
	•					
PC 23026	Air, bedroom	USA, CO	Mar. 2013	A. arborescens SC	8	16
PC 23027	Air, hallway	USA, MI	Mar. 2013	A. alternata	126	1
PC 23028	Air, living room	USA, TX	Mar. 2013	A. alternata	136	Singleton
PC 23029	Air, bedroom	USA, IN	Mar. 2013	A. alternata	114	Singleton
PC 23030	Air, bedroom	USA, LA	Mar. 2013	A. alternata	162	8
PC 23031	Air, bedroom	USA, NJ	Mar. 2013	A. alternata	170	13
PC 23032	Air, break room	USA, TX	Mar. 2013	A. alternata	88	1
PC 23033	Air, family room	USA, GA	Mar. 2013	A. alternata	20	1
PC 23034	Air, bedroom	USA, CA	Mar. 2013	A. alternata	65	7
	•					
PC 23035	Air, bathroom	USA, TX	Mar. 2013	A. alternata	129	1
PC 23036	Air, bedroom	USA, PA	Mar. 2013	A. alternata	140	1
PC 23037	Air ^b , office	USA, AZ	Mar. 2013	A. alternata	40	9
PC 23038	Air, garage	USA, NJ	Mar. 2013	A. alternata	48	1
PC 23039	Air, kitchen	USA, TX	Mar. 2013	A. alternata	95	Singleton
CPC 23040	Air, outside	USA, CA	Mar. 2013	A. arborescens SC	11	18
PC 23041	Air, bathroom	USA, TX	Mar. 2013	A. alternata	150	2
	,	,				
PC 23042	Air, living room	USA, PA	Mar. 2013	A. alternata	56	1
PC 23043	Air, living room	USA, CA	Mar. 2013	A. arborescens SC	9	Singleton
PC 23044	Air, office	USA, NE	Mar. 2013	A. alternata	45	1
PC 23045	Air, living room	USA, GA	Mar. 2013	A. alternata	142	15
PC 23046	Air, office	USA, IL	Mar. 2013	A. alternata	139	1
PC 23047	Air, bedroom	USA, KY	Mar. 2013	A. alternata	144	Singleton
PC 23048	Air, bathroom	USA, SC	Mar. 2013	A. alternata	87	3
	•					
PC 23049	Air, dining room	USA, NM	Mar. 2013	A. alternata	77	Singleton
PC 23050	Air, class room	USA, MO	Mar. 2013	A. alternata	78	1
PC 23051	Air, bedroom	USA, TX	Mar. 2013	A. alternata	107	1
PC 23052	Air, office	USA, FL	Mar. 2013	A. alternata	149	2
PC 23053	Air ^b , bathroom	USA, NJ	Mar. 2013	sect. Pseudoulocladium	na	na
PC 23054	Air, outside	USA, MD	Mar. 2013	A. alternata	160	Singleton
PC 23055	Air, bedroom	USA, TN	Apr. 2013	A. alternata	113	13
PC 23056	Air, living room	USA, CT	Apr. 2013	A. alternata	70	1
			•			16
PC 23057	Air, outside	USA, CA	Apr. 2013	A. arborescens SC	7	
PC 23058	Air, bedroom	USA, AL	Apr. 2013	A. alternata	53	1
PC 23059	Air, outside	USA, GA	Apr. 2013	A. alternata	132	2
PC 23060	Air, bathroom closet	USA, NJ	Apr. 2013	A. alternata	34	4
PC 23061	Air, bedroom	USA, TX	Apr. 2013	A. alternata	169	Singleton
PC 23062	Air. bedroom	USA, TX	Apr. 2013	A. alternata	147	Singleton
PC 23063	Air, bedroom	USA, FL	Apr. 2013	A. burnsii	5	5
	Air, office		•	A. alternata	60	1
PC 23064	•	USA, FL	Apr. 2013			
PC 23065	Air, bedroom	USA, NY	Apr. 2013	A. alternata	109	Singleton
PC 23066	Air, bedroom	USA, CA	Apr. 2013	A. alternata	81	Singleton
PC 23067	Air, class room	USA, NC	Apr. 2013	A. alternata	31	Singleton
PC 23068	Air, living room	USA, NJ	Apr. 2013	A. alternata	37	4
PC 23069	Air, family room	USA, CA	Apr. 2013	A. alternata	75	11
PC 23070	Air, utility room	USA, MS	Apr. 2013	A. alternata	55	1
PC 23071	Air, living room	USA, CA	Apr. 2013	A. alternata	102	6
			-			
PC 23072	Air, basement	USA, PA	Apr. 2013	A. alternata	49	Singleton
PC 23073	Air, living room	USA, MO	Apr. 2013	A. alternata	72	1
PC 23074	Air, bedroom	USA, MO	Apr. 2013	A. alternata	168	1
PC 23075	Air, dining room	USA, TX	Apr. 2013	A. alternata	102	6
PC 23076	Air, bedroom	USA, FL	Apr. 2013	A. alternata	84	3
PC 23077	Air, kitchen	USA, IL	Apr. 2013	A. alternata	116	1
PC 23078	Air, living room	USA, NY	Apr. 2013	A. alternata	137	Singleton
PC 23079	Air, bathroom	USA, FL	Apr. 2013 Apr. 2013	A. alternata	43	1
PC 23080	Air, bedroom	USA, MI	Apr. 2013	A. alternata	173	Singleton
PC 23081	Air, bedroom	USA, AZ	Apr. 2013	A. alternata	76	11
PC 23082	Swab, wine barrel	USA, PA	Apr. 2013	A. alternata	22	1
PC 23083	Air, living room	USA, GA	May 2013	A. alternata	30	2
PC 23084	Air, bathroom	USA, IL	May 2013	A. alternata	163	Singleton
PC 23085	Air ^b , warehouse	USA, DE	May 2013	A. alternata	41	9
PC 23086	Air, bathroom	USA, CA	May 2013	A. alternata	93	Singleton
			•			-
PC 23087	Air, basement	USA, PA	May 2013	A. alternata	36	4
PC 23088	Air, bedroom	USA, FL	May 2013	A. alternata	143	Singleton
PC 23089	Air, bedroom	USA, CA	May 2013	A. arborescens SC	10	18
PC 23090	Air, kitchen	USA, AZ	May 2013	A. alternata	165	Singleton
PC 23091	Air, bedroom	USA, IA	May 2013	A. alternata	35	4
PC 23092	Air, bedroom	USA, RI	May 2013	A. alternata	164	Singleton
		UJA, IVI	IVIAY ZUIJ	71. uncinud	104	SHIRICIOH

(continued on next page)

Table 1 (continued)

Isolate# ^a	Substrate	Locality	Date	Name	ST ^c	eBURST group ^c
CPC 23094	Air, bathroom	USA, CA	May 2013	A. alternata	25	10
CPC 23095	Air, bathroom	USA, VA	May 2013	A. arborescens SC	152	Singleton
CPC 23096	Air, office	USA, TX	May 2013	A. alternata	130	1
CPC 23097	Air, office	USA, OK	May 2013	A. alternata	155	Singleton
CPC 23098	Air, basement	USA, MA	May 2013	A. alternata	131	2
CPC 23099	Leaf, green house	USA, NC	May 2013	A. alternata	102	6
CPC 23100	Leaf, green house	USA, NC	May 2013	A. alternata	110	6
CBS 101.13	Unknown	Unknown	<jan. 1913<="" td=""><td>A. arborescens SC</td><td>8</td><td>16</td></jan.>	A. arborescens SC	8	16
CBS 103.33	Soil	Egypt	<jan. 1933<="" td=""><td>A. alternata</td><td>24</td><td>10</td></jan.>	A. alternata	24	10
CBS 107.38	Cuminum cyminum	Unknown	<dec. 1938<="" td=""><td>A. burnsii</td><td>3</td><td>5</td></dec.>	A. burnsii	3	5
CBS 117.44	Godetia sp.	Denmark	Jul. 1942	A. alternata	28	Singleton
CBS 194.86	Quercus sp.	USA	1953	A. alternata	33	Singleton
CBS 195.86	Euphorbia esula	Canada	1982	A. alternata	103	6
CBS 479.90	Citrus unshiu	Japan	1968	A. alternata	42	9
CBS 632.93	Pyrus pyrifolia	Japan	Jul. 1990	A. gaisen	14	8
CBS 540.94	Nicotiana tabacum	USA	<nov. 1971<="" td=""><td>A. longipes</td><td>97</td><td>Singleton</td></nov.>	A. longipes	97	Singleton
CBS 916.96	Arachis hypogaea	India	Dec. 1980	A. alternata	99	Singleton
CBS 918.96	Dianthus chinensis	UK	Feb. 1981	A. alternata	21	1
CBS 102595	Citrus jambhiri	USA	<jul. 1997<="" td=""><td>A. alternata</td><td>54</td><td>1</td></jul.>	A. alternata	54	1
CBS 102596	Citrus jambhiri	USA	<jul. 1997<="" td=""><td>A. alternata</td><td>92</td><td>1</td></jul.>	A. alternata	92	1
CBS 102597	Minneola tangelo	USA	<aug. 1997<="" td=""><td>A. gossypina</td><td>17</td><td>Singleton</td></aug.>	A. gossypina	17	Singleton
CBS 102598	Minneola tangelo	USA	<feb. 1998<="" td=""><td>A. alternata</td><td>175</td><td>1</td></feb.>	A. alternata	175	1
CBS 102599	Minneola tangelo	Turkey	May 1996	A. alternata	51	1
CBS 102600	Citrus reticulata	USA	Jun. 1975	A. alternata	57	1
CBS 102601	Minneola tangelo	Colombia	<nov. 1996<="" td=""><td>A. gossypina</td><td>17</td><td>Singleton</td></nov.>	A. gossypina	17	Singleton
CBS 102602	Minneola tangelo	Turkey	May 1996	A. alternata	51	1
CBS 102604	Minneola tangelo	Israel	<nov. 1996<="" td=""><td>A. alternata</td><td>66</td><td>Singleton</td></nov.>	A. alternata	66	Singleton
CBS 102605	Solanum lycopersicum	USA	Apr. 1990	A. arborescens SC	8	16
CBS 118404	Iris sp.	New Zealand	Jan. 2001	A. iridiaustralis	6	Singleton
CBS 118488	Pyrus pyrifolia	Japan	Jul. 1990	A. gaisen	13	8
CBS 118809	Alstroemeria sp.	Australia	Jul. 2005	A. alstroemeriae	119	Singleton
CBS 118810	Beta vulgaris var. cicla	Kenya	2001	A. betae-kenyensis	1	Singleton
CBS 118811	Brassica oleracea	USA	Apr. 1982	A. alternata	94	Singleton
CBS 118812	Daucus carota	USA	Jan. 1984	A. alternata	83	3
CBS 118814	Solanum lycopersicum	USA	Jun. 1996	A. alternata	156	3
CBS 118814	Rhizophora mucronata	India	Oct. 1995	A. burnsii	2	5
CBS 118817	Tinospora cordifolia	India	Sep. 1987	A. burnsii	4	5
CBS 118817	Vaccinium sp.	USA	Oct. 1973	A. alternata	108	1
CBS 119399	Minneola tangelo	USA	Dec. 1980	A. alternata	121	Singleton
CBS 119408	Euphorbia esula	USA	Nov. 1992	A. alternata	38	4
CBS 119408 CBS 119543	Citrus paradisi	USA	Nov. 1992 Iun. 1947	A. alternata	38 63	7
			3			
CBS 121454	Cuscuta sp.	USA	Aug. 1997	A. alternata	154 29	Singleton
CBS 121455	Broussonetia papyrifera	China	Sep. 1996	A. alternata		2
CBS 124392	Solanum melongena	China	Unknown	A. alternantherae	120	Singleton

^a CBS: Culture collection of the Centraalbureau voor Schimmelcultures, Fungal Biodiversity Centre, Utrecht, The Netherlands; CPC: Personal collection of P.W. Crous, Utrecht, The Netherlands.

BioNumerics version 4.61 software package (Applied Maths, St-Martens-Latem, Belgium).

Sequence alignments were generated with MAFFT version 7 (Katoh and Standley, 2013), and manually adjusted where necessary. A Bayesian inference analysis was conducted with MrBayes version 3.2.1 (Huelsenbeck and Ronquist, 2001; Ronquist and Huelsenbeck, 2003) on the individual datasets. The K80 model with gamma distribution was used for the ITS region, and the GTR-model with gamma distribution for the gapdh and endoPG regions, as suggested by the on-line tool FindModel (http://www. hiv.lanl.gov/content/sequence/findmodel/findmodel.html). two Markov Chain Monte Carlo (MCMC) analyses used four chains and started from a random tree topology. The analysis ran with the sample frequency set at 1000 and the temperature value of the heated chain at 0.05 and stopped when the average standard deviation of split frequencies fell below 0.01. Burn-in was set to 25%, after which the likelihood values were stationary. The convergence of chains was verified with Tracer version 1.5.0 (Rambaut and Drummond, 2009), and TreeView version 1.6.6 (Page, 1996) was used to visualise the phylogenetic tree. Both the sequence alignments and phylogenetic trees were deposited in TreeBASE (http://www.treebase.org).

2.3. Microsatellite typing

Five primer pairs previously designed for A. alternata (Tran-Dinh and Hocking, 2006; Table 2) were used to characterize the indoor Alternaria sect. Alternaria population from the USA, together with 37 reference isolates (Table 1). By performing a genomic search of the primer sequences against a draft A. alternata genome (Woudenberg et al., unpublished results), the relative positions of the microsatellites on the genome were located. From each primer pair, one primer was labelled with the Fluorobrite oligo FAM (loci AEM3 and AEM5), SOL (locus AEM6) or ZEL (loci AEM9 and AEM13) (Biolegio BV, Nijmegen, the Netherlands; Table 2). Loci AEM3/AEM5 and AEM9/AEM13 were amplified in a multiplex PCR. The PCR mixture consisted of 1 µl DNA (ca. 50 ng), $1 \times PCR$ buffer (Bioline), $40 \mu M$ of each dNTP, 1.6 mM MgCl₂, 0.2 µM of each primer, and 0.25 U Taq polymerase (Bioline) in a total volume of 12.5 µl. The amplification was performed on a 2720 Thermal Cycler (Applied Biosystems) and consisted of a 5 min initial denaturation step (94 °C) followed by 35 cycles of 30 s at 94 °C, 55 °C and 72 °C, and a final 7 min elongation step (72 °C). For fragment analysis, the PCR products were diluted 1:1000 and combined per biological sample, which resulted in one

^b Collected with a single stage bio-aerosol impaction sampler.

c na: not analysed.

Table 2PCR primer sequences, repeat motifs, number of alleles and allele distribution observed for microsatellite markers in *Alternaria* sect. *Alternaria* based on 153 isolates.

Locus	Primer sequence (5'-3') ^a	Repeat motif	No. of alleles	Allele distribution
AEM3	F: TGA TCC CAC GTC ACA GAA AG R: ^F GGT TGT CCA AGT ACC CCA TAG A	(AAG) ₉	39	Uneven
AEM5	F: ^F TAC AGA CGG AGG GAG GAC AC R: CAC AGC TCG TCA TCC GAG TA	(GAA) ₁₀	13	Even
AEM6	F: TGA CGA GCT GTG AGG AGT GT R: ^S CGT GTG TAG GGT CTT CGT CTC	$(CA)_5(CT)_5$	15	Uneven
AEM9	F: GAA GCC CAT TCC ACT CAC A R: ^Z GCT CCA TCT CCC ACA GTA ACA	$(CAA)_{12}$	11	Uneven
AEM13	F: TGC GAA ACC GTG GAT ACT G R: ^z TCG GAA ATG GCT GCA ATA GT	$(GAC)_7(GAA)_{38}$	47	Even

 $^{^{\}rm a}$ $^{\rm F}$, $^{\rm S}$ or $^{\rm Z}$ indicates the use of respectively FAM, SOL or ZEL as fluorescent label.

well per isolate for the fragment analysis. MCLAB's Orange Size Standard (Nimagen, Nijmegen, the Netherlands) was used as internal marker. Samples were electrophoresed using an ABI Prism 3730xl DNA Analyzer (Applied Biosystems), and analysed with the freeware Peak Scanner version 1.0 (Applied Biosystems). Individual alleles at each locus were assigned using fragment lengths (Table S1).

2.4. Population genetic analyses

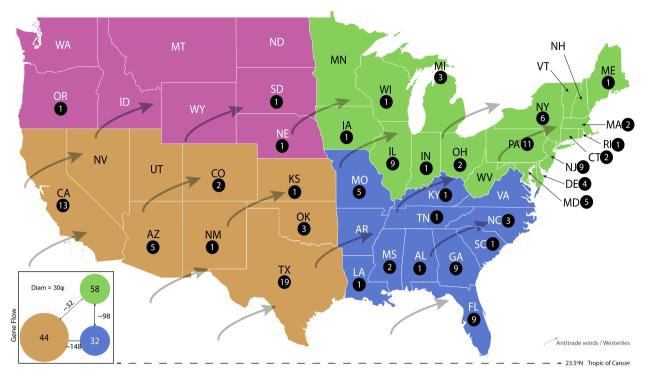
The online program eBURST version 3 (http://eburst.mlst.net/v3; Feil et al., 2004) was used to identify clusters of closely related genotypes. The allelic profiles were assigned to sequence types (STs; Table S1), and eBURST identified groups of STs that only differed at one locus (known as single locus variants).

For subsequent population genetic analyses, the A. alternata isolates were divided into four artificial subpopulations representing four quadrants of the USA. Isolates from NE-USA were excluded due to small sample size. The program MultiLocus version 1.3 (Agapow and Burt, 2001) was used to simulate genotypic diversity against the number of loci (1000 randomizations per locus combination), in order to test whether sampling was sufficient for population genetic analyses. The same software was used to calculate the genotypic diversity and linkage disequilibrium in sub-populations of isolates (10,000 data randomizations). For this analysis, locus AEM6 was excluded due to the fact that it was physically linked to locus AEM5 and was also less polymorphic than that locus. The Index of Association (I_A) between alleles at different loci was normalized as \bar{r}_d as an indication of random association between loci. The null hypothesis for this test was that alleles are randomly associated, and deviation from random association is measured as a confidence interval. The θ -values of population differentiation between pairwise combinations of subpopulations, i.e. SW-USA, NE-USA, and SE-USA (Fig. 1), were used to estimate the pairwise number of migrants per generation (Slatkin, 1995), which equates to gene flow (\widehat{M}) .

The Stoddart and Taylor (1988) genotypic diversity was manually calculated for isolates from each included quadrant of the USA, and the genotypic diversity of each subpopulation was normalized with sample size to yield \hat{G} (the percentage of maximum genotypic diversity), which can be used to make inter-sample comparisons. The significance of differences between \hat{G} values was assessed using a two-tailed t-test at a significance level of 99% (P = 0.01) with N_1 + N_2 – 2 degrees of freedom, where N is the sample size.

In order to assess diversity that is independent of genotypes, the allelic (gene) diversity (Nei, 1973) was calculated. This statistic provides an indication of heterozygosity, or the probability of obtaining two different alleles at a locus when two individuals are randomly sampled from a haploid population. $H \rightarrow 1$ for diverse populations, while $H \rightarrow 0$ for populations that display

allelic homogeneity. Additionally, the level of uniqueness (φ) (Van der Merwe et al., 2012) for each subpopulation was calculated. This statistic estimates the probability of sampling a unique (private) allele belonging to a subpopulation, when a random individual is drawn from the total population. In other words, φ is an indication of allelic segregation in a subpopulation.


3. Results

3.1. Phylogeny

From the 193 included isolates we were not able to amplify the endoPG sequences from five isolates (CPC 22422, CPC 22440, CPC 23053, CPC 23063 and A. alternantherae CBS 124392). The sequences of the ITS (554 characters), gapdh (580 characters) and endoPG (448 characters) gene regions consisted of respectively 58, 88 and 47 unique site patterns. After discarding the burn-in, the Bayesian analysis resulted in respectively 4308, 5200 and 4218 trees from both runs. Based on their ITS, gapdh and endoPG sequences, 153 of the 156 isolates (i.e., 98%) belonged to sect. Alternaria, while two isolates belonged to sect. Pseudoulocladium (CPC 22440, CPC 23053), and one belonged to sect. Infectoriae (CPC 22422) (Table 1). From the 153 isolates that belonged to sect. Alternaria, CPC 23063 could be assigned to A. burnsii and 15 other isolates could be assigned to the A. arborescens species complex (AASC). The remaining 137 isolates were identified as A. alternata. Both the gapdh and ITS phylogeny could distinguish the sect. Alternantherae, sect. Pseudoulocladium and sect. Infectoriae isolates from the sect. Alternaria isolates. The endoPG locus from the isolates outside sect. Alternaria could not be amplified. Within sect. Alternaria the ITS phylogeny could only distinguish A. betae-kenyensis, A. burnsii, A. iridiaustralis and A. longipes. The other five included Alternaria species, A. alstroemeriae, A. alternata, A. gaisen, A. gossypina, and the AASC, all clustered together based on their ITS sequences. The gapdh and endoPG phylogenies separated all included species in sect. Alternaria except AASC/A. alternata and A. gossypina/A. longipes, respectively. The clustering of the A. alternata isolates with respect to the other recognized species in sect. Alternaria was not consistent throughout the three sequenced genes, as inconsistent sub-clusters were formed.

3.2. Microsatellite typing

Comparisons of microsatellite loci to a draft genome sequence revealed that three of the loci, namely AEM3, AEM9 and AEM13 each resided on a different genomic scaffold. Loci AEM5 and AEM6 resided on a single scaffold, and the AEM5-R and AEM6-F primers overlapped with 12 nt. We found 142 allelic profiles (or sequence types, ST) from the 153 collected isolates (Table 1). When the 37 reference isolates were included, 175 allelic profiles

Fig. 1. Map of the mainland USA (Mercator projection) indicating the four artificially defined quadrants using different colors, and the general north-easterly direction of the antitrade winds over the subcontinent (grey arrows). Numbers in black filled circles are the numbers of isolates from each state. The boxed insert depicts gene flow estimations between the south-west, south-east and north-east quadrants. Diameters of the circles are proportionate to the level of uniqueness (φ) of each of the subpopulations. The north-west quadrant was excluded from these analyses due to lack of a sufficient number of isolates.

were observed. Loci AEM3 and AEM13 showed the largest number of alleles (Table 2). However, within AEM3 there was an uneven distribution of the different alleles, with allele 257 being observed in 58 of 153 isolates (\sim 35%). For loci AEM6 and AEM9 the distribution across the different alleles was more unbalanced. At these loci, alleles 161 and 278 were observed in \sim 70% of the isolates. For loci AEM5 and AEM13 there was an even distribution among the different alleles. The locus AEM13, which displayed the highest number of alleles and an even distribution of these alleles, contributed most to the genotypic variation, followed by AEM3 with a high number of alleles but with an uneven distribution. Loci AEM6 and AEM9 were the least informative loci, with a low number of alleles and an uneven distribution.

3.3. Population genetic analyses

An eBURST analysis of 190 isolates (153 sect. Alternaria isolates and 37 reference isolates), representing 175 STs, resulted in 19 groups and 65 singletons (Fig. 2, Table 1). Group 1 was the largest, and included 62 isolates representing 54 STs (including eight reference isolates forming seven STs). Group 2 contained eight isolates representing eight STs (including 1 reference isolate) while group 3 contained six isolates and six STs (including 2 reference isolates). The remaining groups, namely 4–19, included five or less isolates. The isolates assigned to the A. arborescens complex based on their endoPG sequence formed groups 12, 14, 16, and 18, while six isolates were singletons. The assignment of CPC 23063 to A. burnsii based on the gapdh sequence is supported by the microsatellite data, since all A. burnsii isolates clustered in eBURST group 5. No correlation was found between the location and place of isolation and the eBURST groups assigned to the isolates based on their allelic profiles. Almost all eBURST groups contained isolates from different states in the USA and different places of isolation, e.g. bathroom, bedroom, kitchen, etc. The only exceptions were group 13, which consists of two bedroom isolates, but isolated in two different states, and groups 15 and 18, which both consisted of two isolates from the same state, respectively Georgia and California, but from different places of isolation.

When the microsatellite alleles for the A. alternata (137) isolates were combined into multilocus genotypes (haplotypes), 126 distinct genotypes could be recovered. While most of these genotypes were observed only once, the most frequent genotype was observed three times. Modelling of the genotypic diversity vs. the number of loci revealed that both microsatellite loci and genotypes were adequately sampled to continue with population genetic analyses (Fig. 3). Index of Association values for three quadrants of the USA, namely the south-west, north-east, and south-east quadrants (SW-USA, NE-USA, SE-USA) indicated that alleles were randomly associated for all three subpopulations, as well as for the metapopulation (Fig. 4, Table 3). Additionally, alleles of the two physically linked loci, namely AEM5 and AEM6, were in linkage disequilibrium (P < 0.0001), while all other loci were in pairwise equilibrium with each other and with AEM5. Population differentiation (θ ; Table 4) was very low when pair-wise combinations of these three subpopulations were analysed. Subsequently, the estimated numbers of migrants per generation (\widehat{M}) were high between all three pair-wise combinations of subpopulations (Table 4). However, the migration rate between SE-USA and SW-USA ($\widehat{M} = 147.5$) was much higher than the other two combinations, and the migration rate between SW-USA and NE-USA $(\hat{M} \cong 32)$ was the smallest.

The maximum likelihood estimator of genotypic diversity (\widehat{G}) revealed that all subpopulations consisted of an extremely large diversity of genotypes (Table 3). No significant differences between the estimated \widehat{G} -values could be detected using a two-tailed t-test. Gene diversity (\overline{H}) values were 0.952, 0.923, and 0.916 for SW-USA, SE-USA, and NE-USA, respectively. Thus, alleles were most unevenly distributed in the SW-USA subpopulation (N = 58). An estimation of the level of uniqueness (φ) of each subpopulation

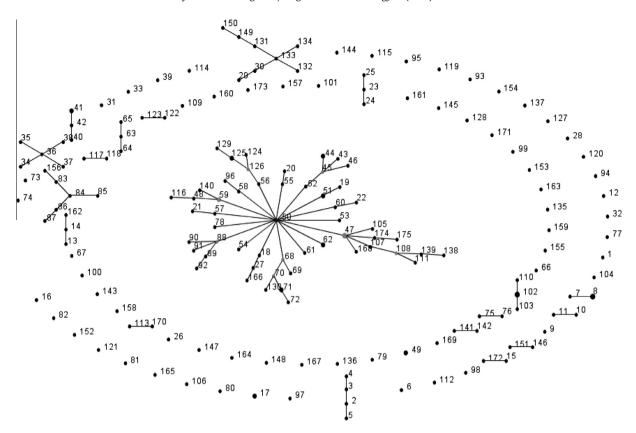
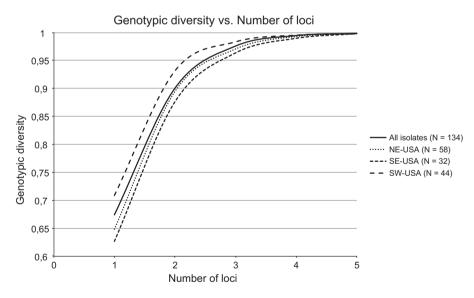
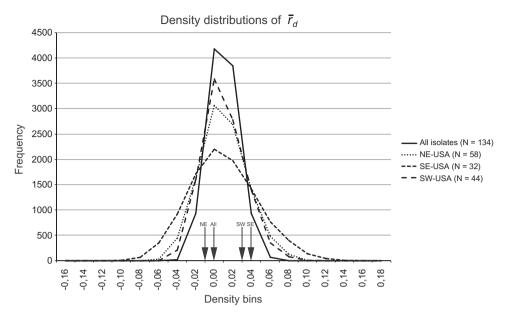



Fig. 2. eBURST diagram of 190 Alternaria isolates. The numbers correspond to sequence type numbers, the size of the dot correlates to the number of isolates.


Fig. 3. Results from modeling genotypic diversity against the number of loci. Each locus-combination was repeated 1000 times, resulting in a mean genotypic diversity for that combination. The graph reaches a plateau at four microsatellite loci, indicating that both the number of isolates and the number of loci were sufficient for population genetic analyses.

indicated that the SW-USA subpopulation was most unique (φ = 0.915), while the SE-USA and NE-USA subpopulations were equally unique (φ = 0.564 and φ = 0.568, respectively).

4. Discussion

Alternaria species from sect. *Infectoriae*, the *A. arborescens* group and *A. tenuissima* (both sect. *Alternaria*) are described as common species from food and the indoor environment (Samson et al., 2010). Three species from the former genus *Ulocladium*, recently

synonymized under *Alternaria* (Woudenberg et al., 2013), are also common in food and the indoor environment (Samson et al., 2010); *A. cucurbitae*, *A. atra* (both sect. *Ulocladioides*) and *A. alternariae* (sect. *Ulocladium*). Our results largely support these observations for the indoor samples, although the species from sect. *Alternaria* were by far the most prevalent in the US homes included in this study. We only found one isolate from sect. *Infectoriae* and two isolates from sect. *Pseudoulocladium*, that resembles sect. *Ulocladioides* and *Ulocladium* based on morphology.

Fig. 4. Graph of linkage disequilibrium estimation densities (\bar{r}_d values, which are normalized Index of Association values) resulting from 10,000 randomizations of each of the artificially-defined subpopulations, as well as for these three subpopulations combined. The observed linkage disequilibrium values are indicated using arrows, and these are inside the 95% confidence intervals of the distributions. Thus, the null hypothesis of random mating in these populations cannot be rejected.

 Table 3

 Summary statistics for indoor Alternaria alternata isolates from the USA.

Statistic	All isolates ^a	South-West USA	North-East USA	South-East USA
Number of isolates, N	134	44	58	32
Number of genotypes	122	42	54	31
Genotypic diversity ^b , \widehat{G}	81.71%	91.67%	87.88%	94.12%
Number of alleles (all loci)	104	72	66	52
Gene diversity, \overline{H}	0.968	0.952	0.916	0.923
Private alleles (all loci)	_	27	15	14
Uniqueness, φ	-	0.915 [€]	0.568	0.564
Gametic equilibrium ^d	Yes $(P = 0.448)$	Yes $(P = 0.086)$	Yes $(P = 0.695)$	Yes $(P = 0.135)$

- ^a Excludes three A. alternata isolates from the NW quadrant of the USA.
- ^b None of the maximum likelihood estimators of genotypic diversity were significantly different in any of the pair-wise combinations.
- ^c A uniqueness of 0.915 implies that there is a 91.5% chance that an isolate containing a unique allele, relative to the meta-population, can be drawn from this sub-population.

Table 4 Population differentiation (θ) and estimated number of allelic migrants per generation (\widehat{M}) between the three artificial sub-populations of *Alternaria alternata* from the south-west, south-east, and north-east quadrants of the USA.

Comparison	θ	\widehat{M}
NE-USA vs. SE-USA	0.00506	98.33
NE-USA vs. SW-USA	0.01537	32.04
SE-USA vs. SW-USA	0.00338	147.50

No correlation was found between the location and place of isolation and the eBURST groups assigned to the isolates based on their allelic profiles. Since most groups contained indoor isolates as well as reference isolates, there did not seem to be a specific indoor cluster. However, there was subjective correlation between the eBURST groups and phylogeny; Alternaria gaisen, A. gossypina and A. burnsii isolates clustered together in both analyses. The other species that could be distinguished based on phylogeny, namely A. alstroemeriae, A. alternantherae, A. betae-kenyensis, A. iridiaustralis and A. longipes, were also separated using eBURST. The A. arborescens isolates did not form a single group based on

their allelic profiles, but the isolates did cluster together in several eBURST groups (12, 14, 16 and 18) or remained as singletons (6). Furthermore, 15 out of the 17 isolates from the *A. arborescens* species-complex had allele 125 at locus AEM5 and allele 281 at locus AEM9. The two remaining isolates had one of the mentioned alleles but differed at the other locus. Although the *A. iridiaustralis* isolate also had these alleles, these loci have some potential as markers for species in the *A. arborescens* complex.

Surprisingly, analyses to test for random association of alleles in isolates of *A. alternata* showed that the allele associations between microsatellite loci were not significantly different from what can be expected in a randomly mating population. Nonetheless, alleles of AEM5 and AEM6, which were on the same locus, were in linkage disequilibrium. The last mentioned observation can be explained by the improbability of cross-over events between the two adjacent stretches of DNA. For these reasons, the less polymorphic of these two loci, *i.e.* AEM6, was excluded when disequilibrium was tested between loci.

Two possible explanations can be proposed for gametic equilibrium and, thus, outcrossing. The first is that cryptic sexual recombination could account for the lack of allelic associations. Evidence

d P-values indicate the probabilities of rejecting the null hypothesis of random association of alleles. A P-value of less than 0.05 is regarded as significant.

is accumulating for the occurrence of cryptic sex in filamentous fungi that are thought to be asexual (Kück and Pöggeler, 2009). For example, another study of an A. alternata population causing citrus brown spot in Florida revealed three subpopulations of which two were clonal and one showed the ability to recombine through a cryptic sexual cycle or parasexual cycle, based on six fast evolving loci and the presence of both mating-types (Stewart et al., 2013). A second explanation for random association of alleles in A. alternata can be arrived at when we consider the nature of microsatellites. These loci change via birth-and-death evolution (Buschiazzo and Gemmell, 2006) such that they are highly polymorphic. It is possible that over long periods of asexual reproduction a microsatellite locus can become hyper-mutated in very large populations such as A. alternata. If this process acts equally on all microsatellites, such a situation could account for the random association of independently evolving alleles that were detected in this study. Thus, this explanation accounts for two possibilities: either the lack of allele association was due to experimental error (the inability of the available microsatellites to discriminate between randomly and non-randomly associated alleles), or A. alternata has been asexual for so long that the loci are hyper-mutated. A simulation of the observed data showed that sampling was adequate in both dimensions (i.e., number of isolates and number of loci). Additionally, due to size limitations on microsatellite loci (e.g., Buschiazzo and Gemmell, 2006) there is a very high probability of size homoplasy, confounding the detection of hyper-mutation. Therefore, recombination is the most parsimonious explanation for the data.

High levels of diversity can be caused only by a limited set of evolutionary processes. The most important of these are mutation, recombination, and migration (Ayala, 1982; Halliburton, 2004; Hartl and Clark, 2007; Hedrick, 2000; Nielsen and Slatkin, 2013). Our data indicated that recombination is a contributor, but that hyper-mutation is not a viable explanation for the diversity of *A. alternata*. Although no sub-populations could be statistically identified, the levels of uniqueness provided important information regarding the movement of the fungus across the mainland USA. Since the SW-USA sub-population was most unique, we can hypothesize that either this sub-population results directly from sexual reproduction, or the alleles have an alternate origin but are concentrated in this region.

The SW-USA and SE-USA sub-populations appear to exchange a very high number of inter-population allelic migrants, and this pattern correlates with the anti-trade winds. *Alternaria* spores are known as dry air spores that are dispersed by wind (Andersen et al., 2012). Long-distance dispersal in the air can only occur if there is a susceptible host in the target area (Brown and Hovmøller, 2002). Since *A. alternata* has been described from more than 100 host plants (Rotem, 1994), it is possible that these genotypes move through the air in a west-to-east direction across the southern USA. This is then possibly followed by south-to-north movement out of the SE-USA sub-population towards to NE-USA. This long-distance movement of fungal spores from the southern USA to the northern USA has already been reported for the air-borne plant pathogens *Puccinia graminis* and *Phakopsora pachyrhizi* (Andersen et al., 2012).

The high genotypic diversity within the *A. alternata* isolates was also visible with our gene sequencing, as inconsistent sub-clusters existed within the three single-gene phylogenies. In a more extensive phylogenetic study on sect. *Alternaria*, where eleven individual gene regions were sequenced, the incongruent clustering within the *A. alternata* isolates was demonstrated even more clearly (Woudenberg et al., unpublished results). We hypothesize that this high genotypic diversity derives from Mexico/Central America, where many agricultural crops have evolved. From here the fungi moved through the USA via the antitrade winds.

5. Conclusions

This study showed that the most prevalent species in the indoor environment in USA homes is *A. alternata*, with a high genotypic diversity. The SW-USA subpopulation displayed the highest level of uniqueness and the highest amount of gene flow, between SW-USA and SE-USA, coincided with prevailing winds over the subcontinent. Lastly, *A. alternata* in the continental USA displays random mating. This is the first report of such an observation in indoor samples of this fungus from homes in the USA.

Acknowledgments

We thank Prof. A.A. Myburg (FABI) for valuable discussions regarding gametic/linkage equilibrium and Dr. A.D. van Diepeningen (CBS-KNAW) for her comments on a draft version of the manuscript. This research was supported by the Dutch Ministry of Education, Culture and Science through an endowment of the FES programme "Making the tree of life work".

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.fgb.2015.05.003.

References

- Agapow, P.-M., Burt, A., 2001. Indices of multilocus linkage disequilibrium. Mol. Ecol. Notes 1, 101–102.
- Andersen, G.L., Frisch, A.S., Kellogg, C.A., Levetin, E., Ligthart, B., Paterno, D., 2012. Aeromicrobiology. In: Schmidt, T.M., Schaechter, M. (Eds.), Topics in Ecological and Environmental Microbiology. Academic Press, San Diego, California, USA, pp. 115–132.
- Andrew, M., Peever, T.L., Pryor, B.M., 2009. An expanded multilocus phylogeny does not resolve morphological species within the small-spored *Alternaria* species complex. Mycologia 101, 95–109.
- Araujo, R., Amorim, A., Gusmão, L., 2010. Genetic diversity of *Aspergillus fumigatus* in indoor hospital environments. Med. Mycol. 48, 832–838.
- Arie, T., Kaneko, I., Yoshida, T., Noguchi, M., Nomura, Y., Yamaguchi, I., 2000. Mating-type genes from asexual phytopathogenic ascomycetes Fusarium oxysporum and Alternaria alternata. Mol. Plant-Microbe Interact. 13, 1330–1339.
- Atternaria diternata. Mol. Plant-Microbe Interact. 15, 1330–1339. Ayala, F.J., 1982. Population and Evolutionary Genetics: A Primer. The Benjamin/ Cummings Publishing Company, Menlo Park, California, USA.
- Berbee, M.L., Pirseyedi, M., Hubbard, S., 1999. Cochliobolus phylogenetics and the origin of known, highly virulent pathogens, inferred from ITS and glyceraldehyde-3-phosphate dehydrogenase gene sequences. Mycologia 91, 964-977.
- Berbee, M.L., Payne, B.P., Zhang, G., Roberts, R.G., Turgeon, B.G., 2003. Shared ITS DNA substitutions in isolates of opposite mating type reveal a recombining history for three presumed asexual species in the filamentous ascomycete genus *Alternaria*. Mycol. Res. 107, 169–182.
- Brown, J.K.M., Hovmøller, M.S., 2002. Aerial dispersal of pathogens on the global and continental scales and its impact on the plant disease. Science 297, 537–541
- Buschiazzo, E., Gemmell, N.J., 2006. The rise, fall and renaissance of microsatellites in eukaryotic genomes. Bioessays 28, 1040–1050.
- Coppin, E., Debuchy, R., Arnaise, S., Picard, M., 1997. Mating types and sexual development in filamentous ascomycetes. Microbiol. Mol. Biol. Rev. 61, 411– 428.
- Crous, P.W., Verkley, G.J.M., Groenewald, J.Z., Samson, R.A. (Eds.), 2009. Fungal Biodiversity. CBS Laboratory Manual Series 1. CBS-KNAW Fungal Biodiversity Centre, The Netherlands.
- de Ana, S.G., Torres-Rodrígues, J.M., Ramírez, E.A., García, S.M., Belmonte-Soler, J., 2006. Seasonal distribution of *Alternaria*, *Aspergillus*, *Cladosporium* and *Penicillium* species isolated in homes of fungal allergic patients. J. Investing. Allergol. Clin. Immunol. 16, 357–363.
- de Hoog, G.S., Gerrits van den Ende, A.H.G., 1998. Molecular diagnostics of clinical strains of filamentous Basidiomycetes. Mycoses 41, 183–189.
- Feil, E.J., Li, B., Aanensen, D.M., Hanage, W.P., Spratt, B.G., 2004. EBURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. J. Bacteriol. 186, 1518–1530.
- Goodwin, S.B., Waalwijk, C., Kema, G.H., Cavaletto, J.R., Zhang, G., 2003. Cloning and analysis of the mating-type idiomorphs from the barley pathogen *Septoria passerinii*. Mol. Genet. Genomics 269, 1–12.

- Groenewald, M., Groenewald, J.Z., Harrington, T.C., Abeln, E.C.A., Crous, P.W., 2006. Mating type analysis in apparently asexual Cercospora species is suggestive of cryptic sex. Fungal Genet. Biol. 43, 813-825.
- Halliburton, R., 2004. Introduction to Population Genetics. Pearson Prentice Hall,
- Upper Saddle River, New Jersey, USA. Hartl, D.L., Clark, A.G., 2007. Principles of Population Genetics, fourth ed. Sinauer Associates, Sunderland, Massachussetts, USA.
- Hedrick, P.W., 2000. Genetics of Populations, second ed. Jones and Bartlett Publishers, Missisauga, Canada.
- Henk, D.A., Eagle, C.E., Brown, K., van den Berg, M.A., Dyer, P.S., Peterson, S.W., Fisher, M.C., 2011. Speciation despite globally overlapping distributions in Penicillium chrysogenum: the population genetics of Alexander Fleming's lucky fungus. Mol. Ecol. 20, 4288-4301.
- Horner, W.E., Helbling, A., Salvaggio, J.E., Lehrer, S.B., 1995. Fungal allergens. Clin. Microbiol. Rev. 8, 161-179.
- Huelsenbeck, J.P., Ronquist, F., 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754-755
- Katoh, K., Standley, A.M., 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772-780. http://dx.doi.org/10.1093/molbev/mst010.
- Kück, U., Pöggeler, S., 2009. Cryptic sex in fungi. Fungal Biol. Rev. 23, 86-90.
- Kuna, P., Kaczmarek, J., Kupczyk, M., 2011. Efficacy and safety of immunotherapy for allergies to Alternaria alternata in children. J. Allergy Clin. Immunol. 127, 502-
- Lawrence, D.P., Gannibal, P.B., Peever, T.L., Pryor, B.M., 2013. The sections of Alternaria: formalizing species-group concepts. Mycologia 105, 530-546.
- Li, D.-W., Kendrick, B., 1995. A year-round comparison of fungal spores in indoor and outdoor air. Mycologia 87, 190-195.
- Linde, C.C., Liles, J.A., Thrall, P.H., 2010. Expansion of genetic diversity in randomly mating founder populations of Alternaria brassicicola infecting Cakile maritima in Australia. Appl. Environ. Microbiol. 76, 1946-1954.
- Nei, M., 1973. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. 70, 3321-3323.
- Nielsen, R., Slatkin, M., 2013. An Introduction to Population Genetics: Theory and Applications. Sinauer Associates, Sunderland, Massachussetts, USA.
- Page, R.D.M., 1996. TreeView: an application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 12, 357-358.
- Paoletti, M., Rydholm, C., Schwier, E.U., Anderson, M.J., Szakacs, G., Lutzoni, F., Debeaupuis, J.P., Latgé, J.P., Denning, D.W., Dyer, P.S., 2005. Evidence for sexuality in the opportunistic fungal pathogen Aspergillus fumigatus. Curr. Biol. 15, 1242-1248,
- Pastor, F.J., Guarro, J., 2008. Alternaria infections: laboratory diagnosis and relevant clinical features. Clin. Microbiol. Infect. 14, 734-746.
- Peever, T.L., Su, G., Carpenter-Boggs, L., Timmer, L.W., 2004. Molecular systematics of citrus-associated Alternaria species. Mycologia 96, 119–134.
- Peever, T.L., Carpenter-Boggs, L., Timmer, L.W., Carris, L.M., Bhatia, A., 2005. Citrus black rot is caused by phylogenetically distinct lineages of Alternaria alternata. Phytopathology 95, 512-518.
- Pöggeler, S., 2002. Genomic evidence for mating abilities in the asexual pathogen Aspergillus fumigatus. Curr. Genet. 42, 153–160.
- Pulimood, T.B., Corden, J.M., Bryden, C., Sharples, L., Nasser, S.M., 2007. Epidemic asthma and the role of the fungal mold Alternaria alternata. J. Allergy Clin. Immunol. 120, 610-617.
- Rambaut, A., Drummond, A.J., 2009. Tracer v 1.5, http://tree.bio.ed.ac. uk/software/tracer/>.
- Randriamanantany, Z.A., Annesi-Maesano, I., Moreau, D., Raherison, C., Charpin, D., Kopferschmitt, C., Lavaud, F., Taytard, A., De Blay, F., Caillaud, D., 2010. Alternaria sensitization and allergic rhinitis with or without asthma in the French Six Cities study. Allergy 65, 368-375.
- Ronquist, F., Huelsenbeck, J.P., 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.
- Rotem, J., 1994. The genus Alternaria. Biol. Epidemiol. Pathogenicity. APS Press, St. Paul, Minnesota, USA.
- Salo, P.M., Yin, M., Arbes, S.J., Cohn, R.D., Sever, M., Muilenberg, M., Burge, H.A., London, S.J., Zeldin, D.C., 2005. Dustborne Alternaria alternata antigens in U.S. homes: results from the national survey of lead and allergens in housing. J. Allergy Clin, Immunol, 116, 623-629.

- Salo, P.M., Arbes, S.J., Sever, M., Jaramillo, R., Cohn, R.D., London, S.J., Zeldin, D.C., 2006. Exposure to Alternaria alternata in US homes is associated with asthma symptoms. J. Allergy Clin. Immunol. 118, 892-898.
- Samson, R.A., Houbraken, J., Thrane, U., Frisvad, J.C., Andersen, B., 2010. Food and Indoor Fungi. CBS laboratory Manual Series 2. CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands.
- Scott, J.A., Untereiner, W.A., Wong, B., Straus, N.A., Malloch, D., 2004. Genotypic variation in Penicillium chrysogenum from indoor environments. Mycologia 96, 1095-1105.
- Scott, J.A., Wong, B., Summerbell, R.C., Untereiner, W.A., 2007. A survey of Penicillium brevicompactum and P. bialowiezense from indoor environments, with commentary on the taxonomy of the P. brevicompactum group. Botany 86, 732-741.
- Sharon, A., Yamaguchi, K., Christiansen, S., Horwitz, B.A., Yoder, O.C., Turgeon, B.G., 1996. An asexual fungus has the potential for sexual development. Mol. Gen. Genet. 251, 60-68.
- Simmons, E.G., 1986. Alternaria themes and variations (22-26). Mycotaxon 25, 287-
- Simmons, E.G., 2007. Alternaria. An identification Manual. CBS Biodiversity Series 6. CBS Fungal Biodiversity Centre, The Netherlands.
- Slatkin, M., 1995. A measure of population subdivision based on microsatellite allele frequencies. Genetics 139, 457-462.
- Slippers, B., Stenlid, J., Wingfield, M.J., 2005. Emerging pathogens: fungal host jumps following anthropogenic introduction. Trends Ecol. Evol. 20, 420-421.
- Solomon, W.R., 1975. Assessing fungus prevalence in domestic interiors. J. Allergy Clin. Immunol. 56, 235-242.
- Stewart, J.E., Kawabe, M., Abdo, Z., Arie, T., Peever, T.L., 2011. Contrasting codon usage patterns and purifying selection at the mating locus in putatively asexual Alternaria fungal species. PLoS ONE 6, e20083. http://dx.doi.org/10.1371/ journal.pone.0020083.
- Stewart, J.E., Thomas, K.A., Lawrence, C.B., Dang, H., Pryor, B.M., Timmer, L.M., Peever, T.L., 2013. Signatures of recombination in clonal lineages of the citrus brown spot pathogen, Alternaria alternata sensu lato. Phytopathology 103, 741-
- Stewart, J.E., Timmer, L.W., Lawrence, C.B., Pryor, B.M., Peever, T.L., 2014. Discord between morphological and phylogenetic species boundaries: incomplete lineage sorting and recombination results in fuzzy species boundaries in an asexual fungal pathogen. BMC Evol. Biol. 14, 38.
- Stoddart, J.A., Taylor, J.F., 1988. Genotypic diversity: estimation and prediction in samples. Genetics 118, 705-711.
- Timmer, L.W., Solel, Z., Gottwald, T.R., Ibanez, A.M., Zitko, S.E., 1998. Environmental factors affecting production, release, and field populations of conidia of Alternaria alternata, the cause of brown spot of citrus. Phytopathology 88, 1218-1223.
- Tran-Dinh, N., Hocking, A., 2006. Isolation and characterization of polymorphic microsatellite markers for Alternaria alternata. Mol. Ecol. Notes 6, 405-407.
- Turgeon, B.G., 1998. Application of mating type gene technology to problems in fungal biology. Annu. Rev. Phytopathol. 36, 115–137.
- Van der Merwe, N.A., Steenkamp, E.T., Rodas, C., Wingfield, B.D., Wingfield, M.I., 2012. Host switching between native and non-native trees in a population of the canker pathogen Chrysoporthe cubensis from Colombia, Plant Pathol, 62,
- White, T.J., Bruns, T., Lee, S., Taylor, J., 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J. (Eds.), PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, California, USA, pp. 315-322.
- Woo, P.C.Y., Chong, K.T.K., Tse, H., Cai, J.J., Lau, C.C.Y., Zhou, A.C., Lau, S.K.P., Yuen, K.Y., 2006. Genomic and experimental evidence for a potential sexual cycle in the pathogenic thermal dimorphic fungus *Penicillium marneffei*, FFRS Lett, 580. 3409-3416.
- Woudenberg, J.H.C., Groenewald, J.Z., Binder, M., Crous, P.W., 2013. Alternaria redefined. Stud. Mycol. 75, 171–212. Woudenberg, J.H.C., Seidl, M.F., Groenewald, J.Z., de Vries, M., Stielow, J.B., Thomma,
- B.P.H.J., Crous, P.W., unpublished results. Alternaria section Alternaria: species, formae speciales or pathotypes.