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Abstract—This paper establishes necessary and suffcient conditions for operators to be H-
monotone Based on these conditions, we introduce a new iterative algorithm for solving a class
of vanational mclusions Strong convergence of this algorithm 1s established under appropriate as-
sumptions on the parameters Estimate of 1ts convergence rate 1s also provided © 2005 Elsevier
Ltd All nghts reserved
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1. INTRODUCTION

Variational inequality was initially studied by Stampacchia [1] m 1964. Since then, it has been
extensively studied because it plays a crucial role in the study of mechanics, physics, optimization
and control, economics and transportation equilibrium and engineering sciences, etc. Thanks to
its wide applications, the classical variational inequality has been well studied and generalized
in various directions. The reader is referred to [2-8] and the references therein Among these
generalizations, variational inclusion is of interest and importance. Recent development of the
variational inequality is to design eflicient iterative algorithms to compute approximate solutions
for variational inequalities and their generalizations. Up to now, many authors have presented
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implementable and significant numerical methods such as projection method and its variant forms,
linear approximation, descent method, Newton’s method and the method based on auxiliary
principle technique. In particular, the method based on the resolvent operator techrique 1s a
generalization of projection method and has been widely used to solve variational inclusions; see,
e.g., [9-18].

In 2003, Fang and Huang [19] introduced a new class of monotone operators which were called
H-monotone operators. For an H-monotone operator, they established the definition and Lip-
schitz continuity for its resolvent operator. Furthermore, based on the resolvent operator tech-
nique, they constructed an iterative algorithm for approximating the solution of a class of vari-
ational inclusions involving H-monotone operators. Their results improved and extended many
known results in the literature.

In this paper, under the assumption that H 1s strongly monotone, continuous and single-
valued, we first prove that a multivalued monotone operator is H-monotone if and only if it is
maximal monotone. Subsequently, we define the resolvent operator associated with a strongly H-
monotone operator, prove its Lipschitz continuity, and estimate its Lipschitz constant. Further,
we study the variational inclusion introduced in [19] with strongly H-monotone operators. We
construct a new algorithm for solving this class of variational inclusions by using the resolvent
operator technique. Thanks to our estimate of Lipschitz constant of the resolvent operator, our
convergence criteria for the algorithm are very different from corresponding ones in [19].

Throughout this paper, we suppose that H is a real Hilbert space endowed with a norm | ||
and an inner product (-, -}, respectively. Let 2" Jenote the family of all the nonempty subsets
of H. In what follows, we recall some concepts which will be used in the sequel.

DEFINITION 1.1. Let T, H : H — H be two single-valued operators. T is said to be

(i) monotone if
(Tz—Ty,z—y) 20, Vz,y € H;

(1) strictly monotone if T' is monotone and
(T ~Ty,z—y)y=0&x=y
(iii) strongly monotone 1if there exists some constant r > 0, such that
(Tz -~ Ty,z —y) > 7|z —y|, Vix,y € H;
(iv) strongly monotone with respect to H if there exists some constant vy > 0, such that
(Te—Ty,Hz — Hy) 2 v|e — 9,  VayeH;
(v) Lipschitz continuous if there exists some constant s > 0, such that

Tz —Ty|| <sllz—yl. Vz,yeH.

REMARK 1.1 (See [19].) If T and H are Lipschitz continuous with constants 7 and s, respec-
tively, and T 1s strongly monotone with respect to H with constant v, then v < 7s.

DEFINITION 1.2. A multivalued operator M - H — 2™ is said to be
(i) monotone if
(x —y,u—v) >0, Yu,veH, z&Mu ye My
(n) strongly monotone 1if there exists some constant n > 0, such that
(z —y,u—v) >nlu—v|? Yu,veH, x&Mu yeMoy,

(i) maximal monotone if M 1s monotone and (I 4+ M)(H) = H for all A > 0, where I denotes
the identity mapping on 'H;

(iv) maximal strongly monotone if M 1s strongly monotone and (I + AM)(H) = H for all
A>0.
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REMARK 1.2. A multivalued operator M is maximal monotone if and only if M is monotone
and there is no other monotone operator whose graph properly contains the graph Gr(M) of M
where Gr(M) = {(u,z) e Hx H :z € Mu}.

2. STRONGLY H-MONOTONE OPERATORS

Recently, Fang and Huang {19] have introduced a new class of monotone operators, 1.e., H-
monotone operators and discussed some properties of this class of operators.

DEFINITION 2.1. (See [19].) Let H : H — H be a single-valued operator and M : H — 2" be a
multivalued operator. M is said to be

(i) H-monotone if M is monotone and (H + AM)(H) = H holds for every A > 0;
(i) strongly H-monotone if M is strongly monotone and (H + AM)(H) = H holds for every
A>0.

REMARK 2.1. If H = I, then the definition of I-monotone operators reduces to that of maximal
monotone operators. As a matter of fact, the class of H-monotone operators has close relation
with that of maximal monotone operators

In order to give a characterization of H-monotone operators, we need the following propositions
and lemmas.

PROPOSITION 2.1. (See [19] ) Let H : H — 'H be a single-valued strictly monotone operator and
M :'H — 2" be an H-monotone operator. Then M is maximal monotone

Now recall the notion of m-accretive operators. Let X be a real Banach space with a norm
Il - Il, X* denote the dual space of X and let {z, f) denote the value of f € X* at x € X. For
k € (—o0, +0), a multivalued operator A : D(A) C X — 2% is said to be k-accretive if for each
z,y € D(A) there exists 7(u — v) € J(u — v), such that
(x —y,2(u—v)) > klu—v|? Vz e Au, yc Av (21)
Here J : X — 2X" is the normalized duality mapping defined by
J(@)={f € X" (z,f) = ||=|* = IfI*},
where (-,-) denotes the generalized duality paring. It is an immediate consequence of the Hahn-
Banach theorem that J(z) is nonempty for each z € X. Moreover, 1t is known that J 1s single-
valued if and only if X is smooth. For k > 0 in inequality (2.1), we say that 4 is strongly accretive
while for k =0, A is simply called accretive. In addition, if the range of I + AA is precisely X for
all A > 0, where [ is the identity mapping on X, then A is said to be m-accretive. In particular,
if X = H a real Hilbert space, then the definitions of strong accretiveness, accretiveness and m-

accretiveness reduce to the ones of strong monotonicity, monotonicity and maximal monotonicity,
respectively. Recently, Jung and Morales [20] proved the following deep and important result.

ProprosITION 2.2. (See [20].) Let X be a smooth Banach space, A : D(A) ¢ X — 2% be
m-accretive, and S : D(S) C X — X be continuous and strongly accretive with D(A) C D(S).
Then for each z € X, the equation z € Sz + AAzx has a unique solution z, for A >0

COROLLARY 2.1. Let ‘H be a real Hilbert space. Let M : H — 2" be a maximal monotone
multivalued operator and H : H — 'H be a strongly monotone, continuous and single-valued
operator Then for each z € H the equation z € Hx + AMz has a unique solution =, for A > 0
REMARK 2.2. If H : H — H is a strongly monotone, continuous, single-valued operator and
M : 'H — 2" is a maximal monotone multivalued operator, then from Corollary 2.1 we know

that the operator (H + AM)™! is single-valued. Hence, we can define the resolvent operator
RY \ : H — H as follows:

RE () = (H+AM)'(u), VueH. (2.2)

We are ready to give a characterization for the class of H-monotone operators.
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THEOREM 2.1 Let H H — H be a strongly monotone, continuous and single-valued operator.
Then a multivalued operator M : H — 2™ is H-monotone if and only if M is maximal monotone.
ProOF. At first, let M H — 2* be H-monotone. Since H : H — H is strongly monotone, H
is strictly monotone. Thus, it follows from Proposition 2.1 that M is maximal monotone
Conversely, suppose that M 1s maximal monotone. Then M 1s monotone. Note that H is a
strongly monotone, continuous and single-valued operator. Hence, it follows from Corollary 2.1
that for each z € H the equation z € Hz + AMz has a unique solution x) for A > 0. This implies
that (H + AM)}(H) = H holds for every A > 0. Therefore, M is H-monotone. 1

COROLLARY 2.2. Let H : H — H be a strongly monotone, continuous and single-valued operator.
Then a multivalued operator M : H — 2™ is strongly H-monotone if and only if M is maximal
strongly monotone

Let H be continuous and strongly monotone and M be maximal strongly monotone. Now we
prove the Lipschitz continuity of the resolvent operator R]I\{/L , defined by (2.2) and estimate its
Lipschitz constant.

THEOREM 2.2. Let H : H — H be continuous and strongly monotone with constant v Let
M - H — 2" be maximal strongly monotone with constant 1. Then the resolvent operator
RY, | : H — M is Lipschitz continuous with constant 1/(7y + An), i.e.,

||R RM,\ )| < ( 7_{_)\’7)) lu = v, Yu,v € H.

ProOOF Let u,v be any given points in H. It follows from (2.2) that
R (W)= (H+IM)'w) and  Ri\(v)=(H+AM)" ().

This implies that

LB (REAw) e MBEA@)  and 30— H (REA0) € M (REA0)

Since M is strongly monotone, we have

n “RJI\{L,\(U) RM A U)H < % < -H (Rﬁ,)\(u)) - (U -H (Rfd,x(v))) ,Rﬂ‘)\(u) - R}Ii[/l,)\(v»
= X fu—v— (H (B () — H (R 0))) , REf () — Rir(0)
It follows that
“”—UH'“fof,,\( M,\ U)H > (u—v,Riy ,\(u)—Rzl\{/[,A(U»
> (H (RE; \(u)) — H (R} 5(v)) , R A(w) — RE \(v))
+ 2 ||RE, A(u RE )|’
> v || BRI A (w) - v)|| + || REA(w) ~ RE @)
={v+An) “RM,)\ u) — Ry (v ” )
and hence,
“R RM)\ ”_ ( ’Y+)\77)>“u_UH7 Vu,veH

This completes the proof 1
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3. VARIATIONAL INCLUSIONS

In this section, we consider a class of variational inclusions involving strong H-monotone op-
erators in Hilbert spaces. We construct a new iterative algorithm for approximating solutions of
this class of variational inclusions by using the resolvent operator technique

Let A, H : H — H be two single-valued operators and M : H — 2™ be a multivalued operator.
Consider the following variational inclusion® find v € H, such that

0 € Aw) + M(u). (3.1)

SpECIAL CASES.

(1) When M is maximal monotone and A is strongly monotone and Lipschitz continuous,
problem (3.1) has been studied by Huang [15].

(2) If M = d¢ where J¢p denotes the subdifferential of a proper, convex and lower semu-
contmuous functional ¢ : H — RU {+oc0}, then problem (3.1) reduces to the following
problem: find u € H, such that

(A(u),v — u) + o(v) — plu) >0, Vv eH, 32)

which is called a nonlinear varational inequality and has been studied by many authors;
see, for example, [2-5,18,21].

(3) If M = 85k where 6k is the indicator function of a nonempty, closed and convex subset X
of H, then problem (3.1) reduces to the following problem: find v € K, such that

{Aluw),v —u) >0, Vv e K, (3.3)

which is the classical variational inequality; see, e.g., {1,7,22].
From the definition of Rﬁ, 5> We have the following result

LeEMmMA 3.1. Let H : H — H be a strongly monotone and continuous operator and M . H — 2%
be maximal monotone. Then v € H 1s a solution of problem (3.1) if and only if

w=RE\[H(w) - M(u)],

for some A > 0.
Based on Lemma 3.1, we construct the following iterative algorithm for solving problem (3.1).

AvrGoriTHM 3.1. Let {a,} and {8.} be two sequences in [0,1] For any ug € H, the iterative
sequence {u,} C H 1s defined by

Unt1 = (1 - an)un + aan/I,)\[H(Un) - )\A(Un)],

Un = (1= Bn)tn + BuRE A [H(un) — M(un)],  n=0,1, 34

When o, = 1, 8, =0, ¥n > 0, Algonthm 3 1 reduces immediately to Algorithm 3 1 in [19].
For easy reference, we present it here as follows

ALGORITHM 3.2. (See [19].) For any ug € H, the iterative sequence {u,} C ‘H 1s defined by

Uni1 = R\ [H(un) = M(us)],  n=0,1, .. (3.5)
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THEOREM 3.1 Let {a,} and {B.} be employed by Algorithm 3.1 with Zf:o o, = oo Let
H : H — H be a strongly monotone and Lipschitz continuous operator with constants v and T,
respectively Let A.H — H be Lipschitz continuous and strongly monotone with respect to H
with constants s and r, respectively. Assume that M : H — 2™ is a strongly H-monotone
operator with constant n and that there exists some constant A > 0, such that

VA = (=)~
32 _772

k)

T+
’)‘—82__772

(%)
(r+m)* > (s* —n?) (2 —~%), s> 1.

Then the 1terative sequence {u,} generated by Algorithm 3 1 converges strongly to the unique
solution w* € 'H of problem (3.1). Moreover, we have for all n > 0

n

lungr =l < TT (@ = (0 = K)ay) flug — w7,
2=0

where k = (1/(y + An))v/72 — 2Ar + A2s%. In particular, if we take o, = (I + n)/([+n+1)2

Vn >0, where [ = 2/(1 — k), then we have the following convergence rate estimate:

fom w1 =0 (1)

ProoF. First note that H 1s strongly monotone and Lipschitz continuous Since M is strongly
H-monotone, it follows from Corollary 2 2 that M is maximal strongly monotone. Thus, from
Remark 2.2 we know that the resolvent operator Rﬁ! x = (H+ M)~ is well defined.

Next we divide the proof into three steps.

STEP 1. We claim that problem (3.1) has a unique solution u* € H. Indeed, we define the
mapping F : H — H as follows

F(u) = R \[H(u) = M(u)], Vue™H.
Then it follows from Theorem 2.2 that for each u,v € H,
1F(w) = Fo) = [ Ri o (H (w) ~ MA(uw)) — R 5 (H(v) - AA@))||
1
< () 1706 — HO) - M(A(0) — 4@
By assumptions,
1 () = H(v) = M(A(w) — A@))|* = | H(u) — H@©)||* - 2X(A(w) — A(v), H(u) — H(v))
+ A A) — A)|]? 3.7)
< (72 =227 4+ A%8?) [|u — v
Combining (3.6) with (3 7) yields
[£(u) = F)ll < kflw — vl (3.8)

where k = (1/(v + An))v/72 — 22r + A2s2.
From (*) and (3.8), we know that 0 < k < 1, and thus, F is a contraction. By the Banach
Contraction Principle, we conclude that F' has a unique fixed point «* € H. This implies that

u” = F(u") = Rij \[H(u") = AA(u)],



Characterization of H-Monotone Operators 335

and hence, u* is a unique solution of the equation u = RII\{M [H(u) — AA(u)]. Therefore, from
Lemma 3.1 it follows that u* is the unique solution of problem (3.1).

STEP 2. We claim that the sequence {u,} converges strongly to the unique solution u* of prob-
lem (3.1). Indeed from (3.4), Lemma 3.1 and Theorem 2.2, we obtain

Jtnss =l = [[(1 = @)1t = ") + ctn (B A[H (v) = A ()] - ) |
< (1 an) fun — |+ an || RE A [H () = AM(wa)] — o
= (1~ ) un ~ ]

o+ an | RE AH () = AA(wn)] — REE A [H(u") = AA(u")]

Y
< (1= an)lun — 7]
1 x *
+0n (s ) M (0n) = H) ~ M) = A
< (1~ an)l[un — || + anklvn — ]|
where k = (1/(v -+ An))VT2 — 221 + X242,
Furthermore, observe that
om =0l = | (2 = Ba)(ttn = 6) + B (RE A[H () — AA(un)] — )]
< (1= Ba)llun — w*|| + B “RIP\[/I,A[H(UTL) — AA(un)] —u*
= (1= Bu)llun — u*|| + Bp | R A[H (un) — AA(uy)]
—REpA[H(w") = A(u*)]|
_ o o _ Hw 3.10
< (=B~ + 8 (ot ) W) = HOW) (310
—~MA(un) — Au"))|
< (1 = Bo)llun = u[| + Brkllun — u”|
=1 -1 =E)Ba)fjun — v
< lun — o7
Hence, it follows from (3.9) and (3.10) that
s = < (1= @) n — 0" + @nfo — 7|
< (1 = an)fun = ]| + ikl — o7
= (1= (1 =kan)|lun —u*| 311
< (1= (1= k)an) - (1= (1 — Kao) o — u”] (3.11)
=[Ia-a-kay) fuo—wu.
7=0
Since 0 < k <1 and } " o, = 00, we have
[10 - =Ban) = lm [0~ -Kay) =0,
n=0 1=0
which, hence, implies that {u,} converges strongly to u*.
STEP 3. We claim that there holds the convergence rate estimate ||u, — u*|| = O(1/m) for

an =il +n)/(l+n+1)2 Vn >0, where [ = 2/(1 — k). Indeed, by making use of (3 11), we
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derive for alln > 0

[unts —w*l < (1 = (1= K)an)un — 7]

i
-
!

and hence,

N 2 N 2
(F4n+1) funar =) = (T47) Jun — '] < fun — ).
1

Summing this inequality from n =0 to m — 1 (;m > 1), we obtain

N 2
(im) fum = u*ll = Plluo — || < mifuo 7]l

Thus,

m-{—lA2

lum — 'l < ——=luo — 7],

(m+1)?

from which it follows that

fim =l =0 (5.
m

This completes the proof. 1
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