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1. I N T R O D U C T I O N  

Variational inequality was imtlally studied by Stampacchia [1] m 1964. Since then, it has been 
extensively studied because it plays a crucial role in the study of mechanics, physics, optimization 
and control, eeonomms and transportation equiIibrmm and engmeering sciences, etc. Thanks to 
its wide applications, the classical variational inequality has been well studied and generalized 
in various directions. The reader is referred to [2-8] and the references therein Among these 
generalizations, variational inclusion is of interest and importance. Recent development of the 
variational inequality is to design effMent iterative algorithms to compute approximate solutions 
for variational inequalities and their generalizations. Up to now, many authors have presented 
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implementable and significant numerical methods such as projection method and its variant forms, 
hnear approximation, descent method, Newton's method and the method based on auxiliary 
principle technique. In particular, the method based on the resolvent operator techmque is a 
generalization of projection method and has been widely used to solve variational inclusions; see, 

e.g. ,  [9-18] .  
In 2003, Fang and Huang [19] introduced a new class of monotone operators which were called 

H-monotone operators. For an H-monotone operator, they established the definition and Lip- 

schitz continuity for its resolvent operator. Furthermore, based on the resolvent operator tech- 

nique, they constructed an iterative algorithm for approximating the solution of a class of varl- 

ationat inclusions involving H-monotone operators. Their results improved and extended many 

known results in the hterature. 
In this paper, under the assumption that  H is strongly monotone, continuous and single- 

valued, we first prove that  a multivalued monotone operator is H-monotone if and only if it is 
maximal monotone. Subsequently, we define the resolvent operator associated with a strongly H-  
monotone operator, prove its Lipschltz continuity, and estimate its Lipschitz constant. Further, 
we study the variational inclusion introduced in [19] with strongly H-monotone operators. We 
construct a new algorithm for solving this class of variational inclusions by using the resolvent 
operator technique. Thanks to our estimate of Lipschitz constant of the resolvent operator, our 
convergence criteria for the algorithm are very different from corresponding ones in [19]. 

Throughout this paper, we suppose that  7-/is a real Hilbert space endowed with a norm II U 
and an inner product (., .), respectively. Let 2 ~ denote the family of all the nonempty subsets 

of ~ .  In what follows, we recall some concepts which will be used in the sequel. 

DEFINITION 1.1. Let T, H : 7~ -~ ~ be two single-valued operators. T is said to be 

(i) monotone if  
( T x - T y ,  x - y >  >O, Vx,  yCT-l; 

(il) strictly monotone if T is monotone and 

(Tx - Ty,  x -  y> = 0 ~ x = y; 

(iii) strongly monotone Jf there exists some constant r > O, such that 

<Tx-Ty, x-y> _> r l l x -  yl[ 2, Vx, y 

(iv) strongly monotone with respect to H if there exists some constant ~/> 0, such that 

( T x - Z y ,  H x - H y )  >_71lx-yll 2, Vx,  y c H ;  

(v) Llpschitz continuous if  there exists some constant s > O, such that 

IITx - Tyll  <_  llx - YlI. V x ,  y c 

REMARK 1.1 (See [19].) If T and H are Lipschitz continuous with constants ~- and s, respec- 
tively, and T is strongly monotone with respect to H with constant 7, then ~/_< TS. 

DEFINITION 1.2. A multJvalued operator M ' ~ -~ 2 ~ is said to be 

(i) monotone i f  

( x - y , u - v ) > O ,  Vu, vET-l, x E M u ,  y c M v ;  

(11) strongly monotone if  there exists some constant ~ > O, such that 

<z-y,u-v>>>_vllu-vll 2, Vu, v ~ ,  x C M u ,  y c M v ,  

(iil) maximal monotone i f M  is monotone and (S+aM)(~) = ~ for aii A > 0, where I denotes 

the identity mapping on 7-/; 
(iv) maximal strongly monotone 1t: M is strongly monotone and (I  + AM)(~)  = H for ali 

A > 0 .  
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REMARK 1.2. A multivalued operator M is maximal monotone if and only if M is monotone 

and there is no other monotone operator whose graph properly contains the graph Gr(M) of M 
where Gr(M) = {(u, x) 6 7{ x 7- / :x  E M u } .  

2. S T R O N G L Y  H - M O N O T O N E  O P E R A T O R S  

Recently, Fang and Huang [19] have mtroduced a new class of monotone operators, 1.e., H-  
monotone operators and discussed some propemes  of this class of operators. 

DEFINITION 2.1. (See [19].) Let H : 7-{ ~ ~ be a single-valued operator and M : ~ -~ 2 ~ be a 

mult ivalued operator. M is said to be 

(i) H-monotone if M is monotone and (H + AM)(T/) = 7~ holds for every A > O; 
(i) strongly H-monotone if M is strongly monotone and (H + AM)(~) = • holds for every 

A > O .  

REMARK 2.1. If H = I ,  then the definition o f / - m o n o t o n e  operators reduces to tha t  of maximal 

monotone operators. As a matter  of fact, the class of H-monotone  operators has close relation 
with tha t  of maximal monotone operators 

In order to give a characterization of H-monotone  operators, we need the following propositions 
and lemmas. 

PROPOSITION 2.1. (See [19] ) Le t  H : TL ~ ~ be a single-valued s tr ic t ly  monotone  operator and 
M : 7-t ~ 2 n be an H-mono tone  operator. Then M is max imal  monotone  

Now recall the notion of m-accretive operators. Let X be a real Banaeh space with a norm 
l[ " I], X*  denote the dual space of X and let (x, f> denote the value of f E X* at x E X. For 
k c ( -oo ,  +co) ,  a multivalued operator A : D ( A )  C X ~ 2 x is said to be k-accretive if for each 
x , y  E D ( A )  there exists g(u - v) E Y(u - v), such that  

< x - y , 3 ( u - v D } > k [ l u - v H  2, V x E A u ,  y E A v .  (21) 

Here J : X ~ 2 x* is the normalized duality mapping defined by 

J ( x )  = { f  E X * :  {x,f> = Ilxll 2 = IIftl2}, 

where (., .) denotes the generalized duality par ing.  It  is an immediate consequence of the Hahn- 
Banach theorem tha t  Y(x) is nonempty for each x E X. Moreover, it is known tha t  Y is single- 
valued if and only if X is smooth. For k > 0 in inequality (2.1), we say that  A is strongly accretive 
while for k = 0, A is simply called accretive. In addition, if the range of I +  AA is precisely X for 
all A > 0, where I is the identity mapping on X,  then A is said to be m-accretive. In particular, 
if X = 7-/a real Hilbert space, then the definitions of strong accretiveness, accretiveness and m- 
accretiveness reduce to the ones of strong monotonieity, monotonieity and maximal monotonieity, 
respectively. Recently, Jung and Morales [20] proved the following deep and important  result. 

PROPOSITION 2.2. (See [20].) Le t  X be a smooth  Banach space, A : D ( A )  C X -~ 2 x be 

m-accretive,  and S : D ( S )  c X --* X be continuous and strongly accretive wi th  D ( A )  C D(S ) .  

Then for each z E X ,  the equation z 6 S x  + AAx  has a unique solution x~ for A > 0 

COROLLARY 2.1. Let  7-{ be a real Hilbert  space. Le t  M : 7-{ --~ 2 7~ be a maximal  monotone 

mult lvalued operator and H : 7-{ --~ 7~ be a strongly monotone,  continuous and single-valued 

operator Then for each z 6 7-{ the equation z E H x  + A M x  has a unique solution x~ for A > 0 

REMARK 2.2. If H : 7/ --* 7-{ is a strongly monotone, continuous, single-valued operator and 
M : 7-/ --* 2 4 is a maximal monotone multivalued operator, then from Corollary 2.1 we know 
that  the operator (H + AM) -1 is single-valued. Hence, we can define the resolvent operator 
R H M,X : 7-/--* 7-{ as follows: 

RH,~(u)  = (H + AM)- I (u ) ,  Vu E 7-/. (2.2) 

We are ready to give a characterization for the class of H-monotone  operators. 
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THEOREM 2.1 Let  H ~f --* 1-t be a strongly monotone, continuous and single-valued operator. 
Then a multivalued operator M : ~ --* 2 ~ is H-monotone  if  and only i f  M is maxima/mono tone .  

PROOF. At first, let M 7-I -~ 2 ~ be H-monotone .  Since H : 7{ -~ 7-/is s trongly monotone, H 
is strictly monotone.  Thus, it follows from Proposit ion 2.1 tha t  M is maximal  monotone 

Conversely, suppose tha t  M is maximal  monotone. Then M is monotone.  Note tha t  H is a 
strongly monotone,  eontmuous and single-valued operator.  Hence, it follows from Corollary 2.1 
tha t  for each z E H the equation z E H x  + A M x  has a unique solution x~ for A > 0. This impiies 
tha t  (H  + AM)(7-/) = 7-{ holds for every A > 0. Therefore, M is H-monotone .  I 

COROLLARY 2.2. Let  H : ~ ~ ~ be a strongly monotone, continuous and single-valued operator. 

Then a multivalued operator M : 7-( --* 2 7t is strongly H-monotone  i f  and only f f  M is maxima/  

strongly monotone 

Let H be continuous and strongly monotone and M be maximal  strongly monotone.  Now we 
prove the Lipschitz continuity of the resolvent operator  / {Ha  defined by (2.2) and est imate its 
Lipschitz constant.  

THEOREM 2.2. Let H : ~ ~ 7{ be continuous and strongly monotone with constant 7 Let  
M ' ~ ~ 2 ~ be maximal  strongly monotone with constant r]. Then the resolvent operator 

R H x  : 7-I ~ 7-{ is Lipschitz continuous ruth constant 1/(3' + Ar~), i.e., 

Vu,  v E "H. 

PROOF Let u, v be any given points in 7-(. I t  follows from (2.2) tha t  

RH,),(u) = (H + A M ) - I ( u )  and RH¢,(v)  = (H  + A M ) - I ( v ) .  

This implies that 

1 (u - H (RH) , (u ) ) )  E M (RH,;~(u)) and 1 (v - H (RH,) ,(v)))  E M (RH,x(v))  

Since M is strongly monotone,  we have 

1 (u - g (RH x(u)) -- (v -- H (RH x(v))),RHM,),(U) -- RH;~(v))  , R , (v)ll -< 

= 1 ( u -  v -  (H  (RH,),Cu)) -- H ( R H , x ( v ) ) ) , R H  x ( u ) -  RH,),(v))  
l 

It follows that 

+ a, - 

: + - , 

and hence, 
1 

Vu,  v C'H 

This completes the proof I 
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3. V A R I A T I O N A L  I N C L U S I O N S  

In this section, we consider a class of variatmnal inclusions involving strong H-monotone  op- 

erators in Hilbert spaces. We construct a new iterative algorithm for approximating solutions of 
this class of variational inclusions by using the resolvent operator technique 

Let A, H : ~ -+ 7-/be two single-valued operators and M : %/-+ 2 4 be a multivalued operator. 
Consider the following variational inclusion' find u C ~ ,  such tha t  

0 E A(u) + M(u).  (3.1) 

SPECIAL CASES. 

(I) When M is maximal monotone and A is strongly monotone and Lipschitz continuous, 
problem (3.1) has been studied by Huang [15]. 

(2) If M = a~ where O~ denotes the subdifferential of a proper, convex and lower semi- 

continuous functional ~ : 7-( -~ R U {+oo}, then problem (3.1) reduces to the following 
problem: find u E ~, such that 

( A ( u ) , ~ -  ~) + v(~) - ~(~) > O, v v e ~ ,  (3 2) 

which is called a nonlinear variational inequality and has been studied by many authors; 
see, for example, [2-5,18,21]. 

(3) If M = 06K where 6K is the indicator functlon of a nonempty, closed and convex subset/( 

of ~, then problem (3.1) reduces to the following problem: find u E/(, such that 

{ A ( u ) , v - u }  >_0, V v E K ,  (3.3) 

which is the classical variational inequality; see, e.g., [1,7,22]. 

H From the definition of RM,,X , we have the following result 

LEMMA 3.1. Let  H : ~ --+ ~ be a strongly monotone and continuous operator and M .  ~ -~ 24 
be maximal monotone. Then u E 7-I is a solution of problem (3.1) ff  and only i f  

u : RH,~ [H(u) - AA(u)], 

for some I > 0. 

Based on Lemma 3.1, we construct the following iterative algorithm for solving problem (3.1). 

ALGORITHM 3.1. Let {c~} and {/3~} be two sequences in [0, 1] For any u0 E 7-/, the iterative 
sequence {u~} C 7-/is defined by 

tLn+ 1 = (1 --  Oln)lt n -~ OLnt~,A[H(~/n)  -- A A ( v ~ ) ] ,  

vn  = (1 - / 5 n ) u n  + / 3 ~ R H , a [ H ( u n )  - A A ( u n ) ] ,  n = 0,1, .. 
(3.4) 

W h e n  oL n : 1, /~n = 0, Vn >_ 0, Algorithm 3 1 reduces imme&ately to Algorithm 3 1 in [19]. 
For easy reference, we present it here as follows 

ALGORITHM 3.2. (See [19].) For any uo E ~ ,  the iteratlve sequence fun} c ~ is defined by 

Un+l = ~I:~H A [ H ( u n )  - AA(u,0], n = 0, 1, .. (3.5) 
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THEOREM 3.1 Let  {c~} and {fl~} be employed by Algori thm 3.1 w~th }-~n~=o ~ = oo Let  

H : T{ --. ~ be a strongly monotone and Lipschitz  continuous operator with constants 7 and -c, 

respect ively  Le t  A . T{ --~ 7-I be Lipschitz  continuous and strongIy monotone  with respect  to H 

with constants  s and r~ respectively. Assume  that  M : 7-~ --+ 2 ~ N a s trongly H-mono tone  

operator with constant  77 and that  there exists  some constant  A > O, such that  

22--~ + ~ ,I < ~/(~ + ~ ) 2  _~ _ _ ~2)(~ _ ~ )  , 
(,) 

Then the i terative sequence {un} generated by Algori thm 3 1 converges s trongly to the unique 
solution u* E ~ o f  problem (3.1). Moreover, we have for all n > 0 

9-~0 

where k = ( 1 / ( " / ÷  MI))V7 -2 - 2Ar + A2s 2. In partJcular, i f  we take (~n : [ ( [+ n ) / ( [  + n + 1) 2, 
Vn > 0, where [ = 2/(1 - k), then we have the foIlowing convergence ra te  estimate: 

PROOF. First  note tha t  H is strongly monotone and Lipschitz continuous Since M is strongly 
H-monotone ,  it follows from Corollary 2 2 tha t  M is maximal  strongly monotone.  Thus, from 
Remark  2.2 we know tha t  the resolvent operator  R H = (H + h M )  -1 is well defined. M,.~ 

Next we divide the proof into three steps. 

STEP 1. We claim tha t  problem (3.1) has a unique solution u* ~ 7-{. Indeed, we define the 
mapping  F : 7{ --~ 7{ as follows' 

F(u)  = R~ ,~[H(u)  - hA(u)], Vu E 7-t. 

Then it follows from Theorem 2.2 tha t  for each u, v E H, 

I IF(~)  - F(~) I I  = I [ R ~ , ~ ( H ( ~ )  - hA(u))  - RH,:~(H(v) - hA(v))][ 
/ 1 \ 

< 

By assumptions,  

( 3  6 )  

IhH(u) - H(v) - A(A(u) - A ( v ) ) l ]  2 : l i H ( u )  - H ( v ) l l  2 - 2A(A(u)  - A(v), H(u) - H(v) )  

+ h211A(u) - A(v)ll 2 

<_ (¢2 _ 2h~ + h2s ~) I1~ - ~11 :. 

Combining (3.6) with (3 7) yields 

(3.7) 

] IF(u)  - F (v ) l l  ~ ~11~ - vii, (3.8) 

where k = (1 / (7  + h~))~/~ -2 - 2Ar + A2s 2. 

From ( ,)  and (3.8), we know tha t  0 _< k < 1, and thus, F is a contraction. By the Banach 
Contract ion Principle, we conclude tha t  F has a unique fixed point u* E ~ .  This implies tha t  

u* = F(u*) = R~ ,x[H(u*  ) - hA(u*)], 
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and hence, u* is a unique solution of the equation u = R~4,x[H(u ) -hA(u)]. Therefore, from 
L e m m a  3.1 it follows tha t  u* is the unique solution of problem (3.1). 

STEP 2. We claim tha t  the sequence {u=} converges strongly to the unique solution u* of prob- 
lem (3.1). Indeed from (3.4), L e m m a  3.1 and Theorem 2.2, we obtain 

I 1 ~ + ~  - ~*11 = I1(1 - ~ n ) ( ~  - ¢ )  + ~ ( R ~ , ~ , [ H ( v ~ )  - h A ( v , , ) ]  - u * ) I I  

_< (1 - ~,~)ll~,, - ,,*11 + ~,, - hA( o)] -  '*11 

= ( 1 -  o ~ n ) ] l ~ , , - ~ * 1 1  

II [H(vn)  - -- p~H M,A[ rH/l'Lt II 
_< ( 1 -  ~, , )11, , , , -~*1]  

1 + ~n ((7 -: by))IlH(vn)- H(u*)-  h(A(vn)-  A(u*))ll 
_< (1 - ~ ) l l ~ n  - - u * l l  ÷ ~nkl lv,~ -- ~*11, 

(3 9) 

where k = (1 / (7  + hq))x/~ -2 - 2hr  + h2s 2. 

Furthermore,  observe tha t  

<_ 
II(1 - 9,~)(~,~ - ~*)  + zn ( R ~ , x [ H ( u n )  - . k A ( u ~ ) ]  - u * ) I I  

(1 - ~,d l l~n  - u * l l  + ~,~ I l R ~ , x [ H ( u n )  - AA(u ,~ ) ]  - u *  II 

R H  * 
- -  M,),[H(u )-hA(~*)]II 

_< ( 1 - ~ , , ) l l u n - u * [ l + ~ n  (7-~h~) l]g(un)-g(u*) 

-,~(A(un) - A(u*))[[ 

= (1 - (1 - k )~ , , ) l l ~ ,~  -~*11 

-< I1~ , , -  u* l l .  

( 3 .1o )  

Hence, it follows from (3.9) and (3.10) tha t  

I1~,~+~ - ~ * 1 t  ~ (1 - ~n ) l l~n  --~*11 ÷ ~ , ~ k l l ~  --~*11 

= (1 - (1 - k )~ ,d l l ~n  -~*11 

_< (1 - (1 - k ) , % , ) . . .  (1 - (1 - k)O~o)l l~o - ~ * 1 1  
n 

= E ( 1  - (1 - k ) o g )  I1~o - ~*11, 
3=0 

(3 .11)  

S i n c e O _ < k < l  and ~ n = o  c~n = 0% we have 

n 

E ( 1  - (1 - k)C~n) = limoo E ( 1  - (1 - k)cb) = 0, 
n = 0  3 = 0  

which, hence, implies tha t  {un} converges strongly to u*. 

STEP 3. We claim tha t  there holds the convergence rate es t imate  ]lum - u*lt = O(1/m) for 
o~n = [([+ n)/([+ n + 1) 2, Vn _> 0, where l = 2/(1 - k). Indeed, by making use of (3 11), we 
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derive for all n > 0 

-  *11 (1 - ( 1  - k)  )llun - u*ll 

([-~n7 1)2/ II~n- ~*li 

and hence, 

[ +  n + 1) 2 

Summing this inequality from n = 0 to m - 1 (m _> 1), we obtain 

Thus, 

from which it follows that  

This completes the proof. 
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