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It has been widely accepted that expert systems must reason from multiple
sources of information that is to some degree evidential—uncertain, imprecise, and
occasionally inaccurate—called evidential information. Evidence theory {Dempster/
Shafer theory) provides one of the most general frameworks for representing
evidential information compared to its alternatives such as Bayesian theory or fuzzy
set theory. Many expert system applications require evidence to be specified in the
continuous domain—such as time, distance, or sensor measurements. However, the
existing evidence theory does not provide an effective approach for dealing with
evidence about continuous variables. As an extension to Strat’s pioneering work,
this paper provides a new combination rule, a new method for mass function®
transformation, and a new method for rendering joint mass functions which are of
great utility in evidence theory in the continuous domain.  © 1993 Academic Press, Inc.

1. INTRODUCTION

When developing expert systems it is often necessary to reason from
evidential information which is uncertain, imprecise, and sometimes
inaccurate. Bayesian theory, Fuzzy set theory [2, 3], and Dempster/Shafer
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2 A mass function represents a piece of evidence as a probability distribution function in
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theory [4] have been developed to assist one in this reasoning process. Of
all these methods, Dempster/Shafer theory appears to provide the most
general framework for representing and combining evidential information.

Dempster/Shafer theory (D/S theory) has been used in many expert
systems recently for reasoning from multiple pieces of evidential informa-
tion. Examples of systems using this theory include computer vision [5, 6],
acoustic signal interpretation [7], medical diagnosis [81], etc.

Even though D/S theory is well defined for discrete sets which are
both mutually exclusive and collectively exhaustive, many supporting
theories have not been developed due to this theory’s shorter history
compared to Bayesian theory and fuzzy set theory. Moreover, many
problems need to be solved when D/S theory is applied to continuous
domain problems. In particular, many expert systems are required to use
information from continuous variables, e.g., time, distance, and sensor
measurements. Thus, there is a need to extend D/S theory to accom-
modate these variables.

Strat [1] and Fua [9], working separately, have introduced a
continuous framework for the Dempster/Shafer theory. Strat provides the
framework for accommodating continuous variables while Fua provides a
method for deriving a mass function from a probability density function.
Although their work provides a good starting point, many problems still
remain unresolved when the theory is extended to the continuous domain.
In this paper, we present some theoretical foundations, based on Strat’s
framework for applying the D/S theory in the continuous domain.

The major contributions of our efforts are as follows: First, Dubois’
method for interpreting statistical data is extended to the continuous
domain. This is a simpler alternative to Fua’s method and it forms the
basis for the rest of our development. Second, we describe how to derive a
mass function for the function of a continuous random variable when the
mass function for the variable is given. This result is more difficult to
obtain than in its discrete analogue. Third, we show how to generate a
joint mass function of two random variables when the mass functions for
two variables are known. We note that Hughes and Maksym [7]
considered this problem in the discrete domain only for a very restricted
case.

This paper is organized as follows: We begin with a summary of the
Dempster/Shafer theory. This is followed by a brief review of previous
approaches to the application of this theory in the continuous domain.
This review includes our extension of Dubois’ method. In the next two
sections, we present the theories developed for transformation of mass and
joint mass functions followed by some examples. We conclude with a
discussion of the D/S theory in the continuous domain with emphasis on
its usage and extensions.
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FiG. 1. Framework of Dempster/Shafer theory.

2. BACKGROUND

2.1. Discrete Mass Function

Consider a finite set of mutually exclusive and exhaustive propositions.
The frame of discernment or @ consists of the collection of all of » proposi-
tions, 8, for ie [1, n]. The frame @ has 2" subsets including itself and the
null set (). Subsets of @ can be arranged as a tree (for n=13 in Fig. 1).
In the D/S theory, uncertain and imprecise evidence can be fully
represented by assigning weights to all of the possible subsets of €.> Over
the frame of discernment, the mass function is defined generally by the
following:

DEerFINITION 1 (A Mass Function). Let @ be a frame of discernment,
then a function m: 29 — [0, 1] is called a mass function if

i) Y md)=1 and (i) m(¢)=0. (1)

Ac O

In the D/S theory, the quantity m(A4) corresponds to the weight of
evidence in favor of 4, i.e., the probability that the evidence is exactly and
completely described by A. The opinion about a proposition or a set of
propositions is represented by the probability interval whose lower and
upper bounds are the belief, Bel(A), and the plausibility, Pls(A),

3 Uncertain information can be represented by assigning probability masses to two or
more disjoint subsets. More probability masses are assigned to subsets of smaller sizes for
representing more precise information.
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respectively. The real probability, P(A4), when it exists, lies between these
two values. Thus,

VAS®, Belld)= Y m(B) (2)
Pls(4)=1 - Bel(4) (3)
Bel(4) < P(4) < Pls(4), (4)

where A4 is the set complement of A. Each mass function, belief function,
or plausibility function has 2" — 2 independent values. These values can be
mapped in a one-to-one fashion; e.g., one and only one mass function can
be derived from a belief function or a plausibility function. There is another
compatible function, the commonality function. This function is represented
by the quantity

Q(4)= 3, m(B), (5)
A= BcO
which measures the total probability mass that can move freely to the
subset 4.

If m(A) is not zero, then A is defined to be a focal element. If every focal
element is arranged in order so that every element except € is contained
in the following one, then the mass function is consonant. If @ is the only
focal element, then the mass function is vacuous. This is a special case of
a consonant mass function which is used to denote an initial condition in
which there is no information at all.

Dempster’'s Combination Rule proposed in [10] is illustrated with good
examples in [11]. It evolved from Bayes’s rule of conditioning. Two mass
functions m, and m, can be combined by an operation denoted m, ,,,

Y4< O, MygAA)=K Y m(X)my(Y),
XnY=A4 (6)
where K '=1—-k=1— Y m(X)my(Y),
XnY=¢

where ¢ is the null set. If k=1, the two mass functions are completely
contradictory, and the mass function for their combination is not defined.
We can combine multipie pieces of evidence by applying Eq. (6) repeatedly.
As more evidence is combined, more probability mass is focused on a
proposition. This means that the probability intervals get narrower and
narrower and the belief in a certain proposition grows towards unity.
Disadvantages of the D/S theory come from its generality. This theory
requires large memory space and calculations which grow as O(2") and
0(2%") respectively.
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Multiple pieces of evidence can be simultaneously combined in terms of
commonality functions. The mass functions of M different pieces of
evidence are transformed to the commonality functions by using Eq. (5)
and combined by the following formulas:

Q(A4)=KQ,(A)Q:(A4)--- Qr(4) o

m(A)=0Q(4)— Y m(B) where m(@)=Q(0).

B> A

Here K is a factor used to normalize the mass function. Note that if M =2,
then K is the same as in Eq. (6) and the amount of required calculations
grows as O(2").

2.2. Statistical Descriptions of a Mass Function

In this section, we discuss the construction of a mass function from
statistical data. Dubois and Prade [12] and Shafer [4] have suggested
methods for transforming statistical data (i.e., the probability distribution)
into their mass function. Both methods result in a consonant mass function
because they assume that evidence from a source does not contradict
internally.*

Suppose that we have a probability distribution in which the probability
for a proposition §, is p; for 1<i<n and p,=2p,>= --- 2p,. Then focal
elements are 4,s, where 4,={0,,6,,..,0,} (4,=6).

Dubois’ Approach. 1In [12], a belief function and plausibility function
can be defined by a probability distribution (the subscript 4 denotes
Dubois):

Bely,(4)= ) max(p,—p,,0) where p,=max{p,|0,€ 4}
8ie A
' (8)

Plsd({gt})= Z min(pi’ pk)a i=ls---’ n.

k=1
Shafer’s approach [4] is predicated on the following two assumptions:

Assumption 1. The plausibility of each label is proportional to the
likelihood ratio or probability and

Assumption 2. The belief function of a piece of evidence is consonant.

4 No pair of disjoint sets are focal in a consonant mass function.
)



526 SUH AND ESOGBUE

{x1,x2,x3)

{x1,x2}

{x2}

a b

Fi1G. 2. (a) A likelihood distribution, (b) a mass function.

A belief function and mass function which satisfy these assumptions are
defined by (the subscript , denotes Shafer)

_ MmaXgeq Pi

Bel,(4)=1 and (9)
maxg..e P;
Bel (4,) — Bel (A;_,) if A=A, and i=2,..,n
my(A)=< Bel (A4,) if A=A4,=1{0,} (10)
0 otherwise.

We note that Dubois’ and Shafer’s results are not equivalent. The
inequality relationship connecting their results as derived recently by Suh
et al. [13] may be stated as

Bely(A4) < Bel,(4) < P(4) < Pls,(4) < Pls,(A4). (11)

Thus, Dubois’ mass function is less specific according to Yager’s specificity
measure [147]. Another feature is its simplicity and graphical visualization.
The following example shows Dubois’ method for a discrete case of size 3.

ExampLE 1. Consider a likelihood distribution as depicted in Fig. 2a
whose probabilities of elements, x,, x,, and x;, are 0.3, 0.5, and 0.2. Then,
since the area under p=0.2 does not have any preference to any of
the elements, it is assigned to the entire set X' = {x,, x,, x5} in the mass
function derivation. Since the probabilities of x, and x, are larger than 0.2
and not smaller than 0.3, the area between p=0.2 and p=0.3 is assigned
to {x,, x,}. But only the probability of x, is larger than 0.3, therefore the
area above p=0.3 is assigned to {x,}. Figure 2b shows the resultant mass
function for this example. In Fig. 2b, the mass m({x,}) is represented by
the area above the line p =0.3 in the histogram and m({x, x,}) is the area
between the line p=0.2 and p=03.°

% p is the probability assigned to each proposition.
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FiG. 3. Discretization of a continuous variable, shown as (a) a tree, (b) a triangle.

3. CoNTINUOUS Mass FUNCTION

In some expert systems, it is necessary to deal with continuous variables
such as time, distance, or other sensor measurements. Since evidence theory
is defined over a finite set of discrete propositions, continuous variables
have usually been handled by partitioning the variable range into discrete
subsets of possible values. Since expert systems are mostly interested in
whether or not a value lies within some contiguous range of values, the tree
of subsets may be simplified as in Fig. 3a. This will be illustrated by means
of an example presented in Strat [1]:

A proposition of interest might be that today’s temperature is
between 65° and 75°. Rarely does a situation arise in which
a disjoint subset would be a proposition of interest (such as
“the temperature is either between 45° and 55° or between
70° and 80°”).

Since we allow only contiguous intervals, there are n(n+ 1)/2 nonempty
subsets rather than the 2” — 1 nonempty subsets that would be possible if
this constraint were not applied.

Strat found that the approach of partitioning can be very sensitive to
slight variations. For example, Bel([20, 40)) for today’s temperature in °F
may be greatly different from Bel([ 20, 39)). Strat also introduced a method
for specifying a smoothly varying set of probability masses about the value
of a continuous variable.

The subset tree of Fig. 3a can also be represented using a triangular
matrix as shown in Fig. 3b. Here, the abscissa and ordinate specify the
lower and upper bounds of an interval® respectively. This framework can

¢ This interval is the range of the continuous variable and not the probability interval.



528 SUH AND ESOGBUE

Intervals which contain [a,b}
STARTING POINT
0 a b N
N

Intervals of constant
width

Intervals of 0 width,
i.e. exact points along
the number line

END POINT

[~ 4

Point corresponding
to the interval {a,b]

Region of intervals wholly
contained in {a,b]

Successively larger intervals
centered around {a,b]

FiG. 4. The continuous frame of discernment.

be applied to the smoothly varying set of continuous variables by
generalizing the triangle to the continuous domain as shown in Fig. 4. In
order to assign mass to zero length intervals, e.g., [20, 207], intervals wil be
closed at both ends.

Probability mass can be assigned to points, lines, and regions in the
triangular frame of the continuous domain. We begin with the definition of
these mass functions.

DermiTioN 2 (Point Mass Function). If probability mass is assigned to
points in a continuous domain as shown in Fig. 5a, then it is defined as a
point mass function. Let this be denoted by m. Each point corresponds to
the interval over which the probability is uniformly distributed. Therefore,
m,(a, b) represents the probability that x has a value between a and 4.

* v !
pleeed m@am) =1 C
The darker the regions,
the more mass.
a b c

FiG. 5. (a) Point, (b) line, and (c) area mass functions.
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F1G. 6. Support for (a) belief and (b) plausibility of the interval [a, b].

DerFINITION 3 (Line Mass Function). If probability mass is assigned to
lines in the continuous domain as shown in Fig. 5b, for example, then it is
called a line mass function and denoted by m’. m’ denotes a probability
mass assigned to unit length. Its dimension’ is L~ .

DeFINITION 4 (Area Mass Function). m” denotes the probability mass
assigned to unit area. The dimension is L =2

The point and line mass functions in Fig. 5 can also be represented using
impulse function and an area mass function,

m(a,b)=j j m"(x, p) 8(x —a) 8(y — b) dx dy
o (12)
m'(xi, )= | m ) ols— 1) ds,

where s is the arc length of L and (x,, y,) denotes the coordinate of the
point on the line L at an arc length [/ from the origin. By using these
relationships, all the theories or derivations defined for area mass functions
can be converted to those for point and line mass functions.

Strat presents a method for calculating the belief and plausibility
functions graphically and mathematically. This is done by integrating the
mass function over the shaded rebgi?ns shown in Fig. 6:

Bel([ 4, b]):f f m"(x, y) dy dx

7 (13)
Pls([a,b])zjof L ) dy

7 L denotes the length unit while 7 and M denote the time and mass units, respectively. For
example, the dimension of velocity is LT~
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FiG. 7. Support for the commonality of the interval [a, &].

Extending this approach, the continuous version of Dempster’s rule is
given by

a N
my@moa b)=K [ [ (mi(x.b)m3 (b, )+ mi(a, y) m3 (x. b)
+mi(a by m3 (x, y)+mi(x, y)mi(a, b)) dx dy (14)
where

1

K=1"%

and
N sN sN »N \
k=J f f f (m{ (p, q) mj(r, s)+m}(r,s) m;(p, q)) ds dr dq dp.
0 Yp Yg Yr

THEOREM 1. A commonality function® can be derived from a mass
Junction as shown in Fig.7 and a mass function can be derived from a
commonality function using the following equations:

0(La b)) =" m'(x, y) dy dx (15)
_2Q(x D)
m(a, b)_ 0X ay x=a, y==5b (16)

8 Note that the commonality function is dimensionless.
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Proof. This theorem can be proved by using a discrete triangular lattice
and taking a limit. Let

a=n,4x; b=n, Ax; x=n,Ax; y=n, 4x.
The mass function associated with the lattice point (., n,) is given by

M(n,, n,)=m"(x, y)(4x)*

Q([na9 nb] Z Z '})M

ne=0 n,=0

(If tn,, nyle [n,, n,], 7 =1, otherwise, y =0)

=Y 3 M)
ny=0 ny=np
0(La. 51)="lim O([r,, 7))

= lim Z Z "(x, y)(dx)?

4x=>0, 0 mp=0

_f J‘ "(x, y) dx dy.

In the discrete triangular domain,
M(n,, ny)=Q([n,, n,1)—Q([n,, n,—1])
-Q([n,— L,n, N+ 0O([n,—1,n,-117)

” R N M(”a’ nb)
m"(a, b) = ALITO (4x)?

— lim ((Q( (74, 1,1) — Q([na, m, — 11)

Ax —~0 Ax
Q([na_lrnb])_Q([na_l’nb—l])>/A >
- X
Ax
_3%Q(Lx, y])
ahnr=ral U QED.

M sources of evidence denoted by continuous mass functions
m,, ms, .., m,,, can be combined using Eq. (7). This gives

O(la, b])=KQ,([a, b])Q:([a, b])--- Qu([a, b]),
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where K is a normalizing factor and Q, is derived from m, for ie[1, M]
using Eq. (15). Then the consensus mass function can be derived from

Q({a, b]) using Eq. (16).
3.1. Extended Dubois’ Method

In this section, Dubois’ approach [12], discussed in Section 2.2, is
extended to the continuous domain. Dubois’ mass function is less specific
according to Yager's specificity measure [14] than that of Shafer. Both
methods are described in Eq. (8) and in Eqs. (9, 10), respectively.

This concept may be extended to the continuous domain. Suppose that
we have a probability distribution p,(x) for a random variable X. Let the
belief on an interval [x, y] in Fig. 8 be represented by the shaded area;
then

For px(x)=px(y),  Bel([x, y1)=Px(y) — Px(x)— (¥ —x) px(x)

where P, (x)= j po(x') dx. (17)

Probability mass is assigned on a trajectory L, such that any point (x, y)
on L satisfies p,(x)=p,(y). Thus, this trajectory L is the focal line. We
then have

For py(x)=py(y) m'(x, y) A1=A£ig10 (y=x)(px(x+4x)—py(x))

, dp(x) dx
m(x, y)=(y—x) TEZ (18)
STARTING POINT
di
E L
=
B
0 x X max Y N
x+dx 2
a b

0

Fig. 8. (a) A probability distribution; (b) a consonant line mass function.
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Fi1G. 9. (a) A convex probability distribution; (b) a line mass function.

where (x, y) denotes the coordinate of the point on the line L and the arc
length between this point and the origin is /. The foregoing is illustrated by
the following example.

ExaMPLE 2. Suppose over a period of time the average temperature on
a given day of a year, say March 15, is computed as 70°. The probability
distribution from the evidence may be shown as in Fig. 9a. The mass
function can be calculated by using Eq. (18) as follows:

dpy d
m'(x, y)=(y—x) pd)(cx)-jc

1 1
00 7
The focal line is shown in Fig. 9b. This line is straight since the slopes

before and after 70° are constant. The integration of m'(x, y) along the line
from [70, 70] to [60, 80] is unity. Thus, we have

= (140 —2x) -

70

dl
L m'(x, y) d1=L m’(x,y)dxazLo m'(x, y)dx-\/fz 1.

If the probability distribution function is monotonically increasing before
and decreasing after x,.,,, as shown in Fig. 8, ie., convex, the resulting
mass function is a line mass function with one focal line in the triangular
continuous mass domain. If, however, the probability distribution is not
convex, as shown in Fig. 10a, it may result from the combination of two
different pieces of evidence and the corresponding mass function has two
focal lines. This is illustrated in Fig. 10b.

409 176 2-16
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Fic. 10. (a) A non-convex probability distribution; (b) a non-convex mass function.

4, TRANSFORMATION OF MASS FUNCTION

In certain situations, we may wish to determine the mass function for
y=g(x) in terms of the mass function of the continuous random variable
x. This is a transformation of the mass function from one mass domain to
another. In this section, it is shown how to obtain such a transformation.

In Bayesian theory, such a transformation is easily performed by
mapping one probability density function or pdf to another. Generally, if
y = g(x), whose real roots are x,, ..., X,,, ..., and the pdf for x is f, (x), then
the transformed pdf in the y-domain is

fx(xl) fx(xn)
v :——’—-—— e ——-,——~—+ ey 19
L= 8%, (%)
where y=g(x,)= - =g(x,)= --- and g'(x) is the derivative of g(x). If
there exists only one solution, Eq. (19) becomes
d —1
L) =fx) - E2 where x=g=i() (20)

dy

To illustrate this operation consider the following example.

ExaMPLE 3. Suppose that there is a uniform pdf for x in the interval
[0, 1], as shown in Fig 11a. We wish to evaluate a pdf for y= \3/;+ L.
Consider the equation y =g(x), where real root is x=g '(y)=(y—1)°.
Applying Eq. (20) we have

dl(y—1)’]
S(y)= dy
0 otherwise.

for 1<y<2
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Fic. 11. pdf’s for random variables (a) x, (b) y, where y = \3/;4— 1.

4.1. Point Mass Function

Since in the mass function probability is not assigned to a single value
of x but to an interval of x, mas function transformation cannot be done
by mapping in a point-to-point fashion. Probability assigned to a point
denoting an interval [q, 6] in the continuous mass function domain
corresponds to a uniform pdf in the interval (see Fig. 12). The variables x,
and x, denote the lower and upper bounds of an interval and [x,, x,]
corresponds to a point in the continuous mass domain. The method used
in Example 3 can be used to generate the transformation from the point
mass function of x to the mass function y = g(x).

When g(x) is linear, a uniorm probability distribution is transformed
to a uniform probability distribution; i.e., the point mass function of x is tri-
vially transformed to the point mass function of y. If, however, g(x) is non-
linear, then the point mass function of x is transformed to the line mass
function of y, which will be constructed from f,(y). The pdf in Example 3
corresponds to the mass assigned to a point [0, 1] in the m, domain, the
mass function domain of x. Then, the pdf of y, f,(y) (Fig. 11b) corresponds
to a line from [1, 2] to [2, 2] in the m, domain (see Fig. 13a). For 1<y <2,
the mass value for the interval [ y, 2] is the shaded area in Fig. 11b).

STARTING POINT
2 x1
N
b
o
Z
o]
-9
=]
a b
a E b

FiG. 12. (a) A uniform pdf; (b) a point mass function.
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Fig. 13. (a) A line mass function; (b) a mass distribution along a focal line.

Figure 13b shows the probability mass distribution along the line from
[1,2] to [2, 2] in the m, domain for this example:

LD go-p-1) for 1<y<2

m,(y,2)=(2

The area under the parabola of Fig. 13b is unity. If g(x) is defined and
differentiable within the interval, then a point mass on x is transformed
into a line mass function. In particular, if g(x) is monotonically increasing
as in Example 3, a point mass on the m, domain is transformed to a line
parallel to the y,-axis, ie., the line between [g(a), g(b)] and [ g(b), g(b)],
while for a monotonically decreasing g(x), the line mass is parallel to the
yy-axis, the line from [ g(a), g(a)] to [ g(a), g(b)].

The line mass function can be analytically derived if g(x) is a function
which is monotonic within the interval [a, 5]. For example, if m,(q, b) =1
and g(x) is a monotonically increasing function in the interval [a, ], then

d’g '(y)

m,(y, g(b))=m (a, b)(g(b) —y) e

for gla)sy<g). (21)

If g(x) is convex, then m, is the mass function of one line within the
triangle defined by the three points of {[g(a), g(a)]), [gla), g(b)],
[ g(b), g(b)]}. These formulas can also be applied to transformation of line
mass and area mass funtions.

4.2. Line and Area Mass Function

A line mass function can be viewed as an infinite number of point mass
functions. It has been shown that a point mass function is transformed to
a line mass function when g(x) is monotonic.
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If g(x) is monotonic for x € [a, b], all points along the focal line in the
m, domain are transformed into lines parallel to the axis of lower bounds
of y, the y, axis, and result in an area mass function in the m, domain. If
g(x) is monotonically increasing and no two points have the same upper
bound in the m, domain, then the line mass function is transformed into
an area mass function that lies below the line along [g(x,), g(x,)] in the
m, domain. In the foregoing, x, and x, are two random variables with
X min < X € x, € X,.,. Let the mass assigned to each unit area be denoted
m;(y, g(x,)); then from Eq. (21), we have for g(x;) <y <g(x,)

d’g " '(y)

e (22)

m;(}’, g(xu))=m;'(xl’ xu)(g(xu)—y)

where m’, is a line mass function for the random variable x.

In the same manner, the result of transforming an area mass function in
the m, domain when g(x) is monotonically increasing, can be analytically
expressed as an area mass function in the m, domain by using Eq. (22). For

g(xmin) éy <g(xu),

g7») 251
mi g =] it vteee -0 Tt an, 2
where m; is the line mass function for the random variable x. We may
follow this same approach to derive analytically the transformed mass
function when g(x) is monotonically decreasing. Even in the case when
g(x) is not monotonic or convex, the mass function m, can still be
calculated numerically by exploiting the ideas developed in this paper. The
computational burden, however, may be expensive and the procedure, in
general, may be problem dependent.

5. JoINT Mass FUNCTION

In the previous section, we discussed how to transform a mass function
of one random variable to that of another random variable. In this section,
we show how to construct a joint mass function of two random variables,
i.e., how to obtain the mass function of z from the mass functions of x
and y when z=g(x, y). Following our usual approach we begin with a
preliminary discussion of the Bayesian procedure.

ExaMpPLE 4. Suppose that we are given the uniform pdf’s of two
independent random variables x and y, and that it is desired to evaluate
the pdf of z=x+y and w=xy.
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£(x) Ly £x) £4v)

\

a b e d l+c'b+c lﬁtb*ﬁ ac bc ad bd

zl zu

a b c d

FiG. 14. Probability density functions for random variables (a) x, (b) y, (¢) z=x+y (for
(b—a)<(d—c)), and (d) w=xy (for bc < ad).

Let

1
for ag<x<b — for c¢<y<d
felx)=<b—a and fy(y)=<{d—c Y

0 otherwise 0 otherwise.

Both f,(z) and f,(w) can be easily derived via the following equations:

@)= fulz=p)fin)dy

and  fu( w)—j fx( )fy )y

These are shown graphically in Fig. 14¢ and d.

5.1. Joint Mass Function of Two Point Mass Functions

The uniform pdf’s for random variables x and y correspond to two point
mass functions as in Figs. 15a and b respectively. Thus, the joint mass
function of z= x + y can be obtained from the joint pdf of z=x + y shown
in Fig. 14c. The resulting mass function is a line mass function from (a+c,
b+d) to (b+c¢, a+d). Mass distribution along the focal line can be
calculated by using the extended Dubois method.

STARTING POINT STARTING POINT STARTING POINT
.--5;..@ c ,,X_l,,,...., 3¢ bic

(-9
H

END POINT

4.

Fic. 15. (a) A point mass function of x; (b} a point mass {unction of y, {¢) a joint mass
function of z=x + y.
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When b — a <d— c, the belief on the intrval (z,, z,) is the shaded region
in Fig. l4c. For a+c<z<b+c and a+d<z,<b+d, Bel([z),z,]) can
be calculated using

(a+d—b—c—z1+z,)(z,—a—d)

Bel(z,, z,])= 2(d—c)(b—a)

But in order for f,(z)|, to be the same as f,(z)|,,, z, must be a function
of z,; ie, zy=b+c— (z —a—d). Since z; and z, are related by a linear
equation, the focal line is straight and the slope in the m, domain is 45°.
That is,

(2o —b—c)z,—a—d)
(d—c)b—a)

Bel([zl’ zu]) =

From the belief function, the line mass fuction m/, can be calculated. When
s i1s defined as the distance between (a+c¢, b+d) and (z),z,), ie
= \/5 (z,—a—c) and ds/dz, = \/5, then
dBel([zl, u]) dBC]([Zl, zu]) _C_i_z__ll
ds dz, ds

_2z,—a—-d—-b—c
V2(@-b)e—d)’

where m, denotes the probability assigned to unit length and integrating m.,
along the focal line yields unity. The length of the focal line is \/5 |a—b|.
This subsection can be summarized by the following theorem.

m;(z), z,) =

(24)

THEOREM 2. The joint mass function m, of two point mass functions m,
and m, is a line mass function when z=x+y.

COROLLARY 2.1. Its support is a straight line between (a+c, b+d) and
(b+c, a+d) when (b—a)<(d—c) or between (a+c, b+d) and (a+4d,
b+c) when (b—a)z(d—c).

COROLLARY 2.2. The line mass along the support line is

iz, 20) = —a—d—-b—c
m\z,, 2, \/—(a b)c—d)

5.2. Joint Mass Function of Point and Line Mass Function

Suppose that we have the point mass function of x (m(a, b)=1) and the
line mass function m, of y. The mass function of z=x + y is obtained by
accumulating the point-to-point joint mass function.
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STARTING POINT STARTING POINT STARTING POINT
x1 -

g,
.
>

g

~
[

b-amy2-yl

END POINT
END POINT
END POINT

AIA” = B,Bll
AC=AC ¢

a b

Fi1G. 16. (a) A point mass function of x; (b) a line mass function of y; (c) a joint mass
function of z=x+y. (Il A={(¥nin> Ymax)» 4 =@+ ¥imins & + Ymax)-)

Each point-to-point joint mass function between m, and the point mass
function at (y,, y,) results in a 45° line mass function with upper end point
at (a+y;, b+y,). Since a and b are constant, the tracks of these upper end
points in the m, domain are parallel as well as those of the focal line in the
m, domain; furthermore their lengths are the same. The lower end point is
determined by the length of the focal line for each point-to-point joint mass
function

From A to B. If (y,—y,) is larger than (b—a) (Line AB in Fig. 16b),
the length is independent of y, and y,, and equal to \/E(b—a). {See
Fig. 16¢c A to B.) Hence we can figure out the focal area in the m. domain
by sliding a 45° tilted line with the length of ﬁ (b — a) along the focal line
in the m, domain.

From B to C. But in the region where (y,— ) is smaller than (b—a)
(Line BC in Fig. 16b), the length is dependent on y, and y,, and is equal
to \/5 (yu —»1). If the focal line in this region of the m, domain is straight

(BC), then the track of the lower end points connects the lower end point
for the point B and the upper end point for the point C; i.e., this track
connects B” and C’ in the m_ domain. (See Fig. 16¢c B to C.)

5.3. Joint Mass Function of Point and Area Mass Function

In the previous section, we noted that a point-to-point joint mass func-
tion is a line mass function. Although the length of the line is dependent on
the location of (y;, y,) and (b, a), the slope is always 45° for z=x+y. As
a result, the possible focal area in the m, domain is the shaded region in
Fig. 17c. This area is uniquely defined by m, and (a, b). Both the shape and
size of A PQR in Fig. 17b are the same as those of A P'Q’R’. The trapezoid
OAQRB in Fig.17b is the same as the trapezoids JA'Q'R'B” and
0OA4"Q'R'B" in Fig. 17c. When P={y,i., Ymax) In Fig. 17b, the points in
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STARTING POINT STARTING POl{‘T STARTING POINT

. ——

END POINT

Fig. 17. A point mass function, m,; (b} an area mass functon, m;; (c) a joint mass
function of z=x+ .

Fig. 17c become P '=(a+ Vpins O+ Vmax) QO =@+ Vinaxs D+ Ymax), and
R = (a + Ymins b +ymin ) When (b - a) < (ymax _ymin)* A" is (b +ymin9
b+ymin) Whlle B" iS (a+ymax7 a+}"max)' But lf (b_ a) ? (ymax _.Vmin)’
A" = B” = (a+ymax’ b +ymin)'

The procedure for calculating the mass assigned to each unit area in the
m_, domain is different between the regions inside A P'Q'R’ and the regions
inside the trapezoid (JA"Q'R’'B".

Point ' Y' in APQ'R. For the point Y =(z,2z,), mi(z,z,) is
dependent on every point along YZ in the m, domain where Y= (z,—a,
z,—b)and Z =(z,— b, z, — a). In other words, m/(z,, z,) can be calculated
by integrating the effect of the line mass functions each of which is a joint
mass function between point mass function m, and point mass function
m; (yi, y,) dy, dy,, where (y,, y,) lies on the line YZ. Since YZ is tilted by
45°, y, can be described as a function of y,. Then, by using Theorem 2,

w4 2Zu_a—b—yu_yl
m!(zh Zu)= m;vl(yh yu)
Lwh V2(b=a)y,—»)

Point X in OA"Q'R'B". When X=(z,z,} is inside the trapezoid
JA"Q'R'B”, no point along WY in Fig. 17b affects m/(z,, z,). A point
(y1, o) on WY in Fig. 17b affects mass on a straight line between
(a+y,b+y,) and (a+y,, b+ y,) which does not include the point X.
Equation (25) can be used to calculate m](z,, z,} by modifying the bound
of y:

dy,. (25)

Y zy+a—»b . 2Zu—a—b—yu—}‘
mizuz) =] mi(n) 'y (26)

V2 (b—a)(y,—n)
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Our method can easily be applied to the problem of determining the
joint mass function when both m, and m, are area mass functions. As
a result, m,, the joint mass function, can be calculated from any mass
functions of two random variables x and y when z=x+y.

5.4. Joint Mass Function for Separable Functions

Suppose that it is desired to calculate the mass function m, for
z=g(x, y) when the mass functions, m, and m, are given. If the function
g(x, y) is separable, then the joint mass function can be readily calculated
by using the methods described in the previous sections.

Let g(x, y)=g,(x)-g2(y), where p=log(g(x)) and g =log(g,(x)); then
using logarithms, this separable function is transformed to

log(g(x, y))=log(g,(x)) +log(g,(¥))=p+4q.

Note that the logarithm functions are monotonic in the region where they
are defined.

The mass functions m, and m, are calculated by transformation of
mass function. By using Eq. (25), we can obtain the joint mass function
m,, , that is obtained from m, and m,. Finally, m. can be obtained by
transforming m, , , for z=e?*4.

6. DiscussioN

In this paper, we have solved problems which must be resolved in order
for evidence theory to be used for continuous variables. First, a new
method has been developed for calculating a continuous mass function
from statistical data. Second, this paper provides a method for computing
the continuous mass function of a random variable that is a function of
another random variable where mass function is known. Last, this paper
provides a method for calculating a joint mass function from continuous
mass functions of two random variables.

It has been said that evidence theory is a subset of fuzzy set theory,
because the former does not have as many supporting theories as the latter.
Actually, since the number of degrees of freedom of the fuzzy variable and
the computation amount of the fuzzy operations are proportional to O(n),
where » is the number of propositions, it is easier to develop the various
fuzzy operations, such as conjunction, intersection, transformation, joint
fuzzy set variables, etc., either in the discrete domain or in the continuous
domain. With evidence theory, one does not enjoy such a variety. For
example, the conjunction of two pieces of evidence has not been well
defined yet.
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Moreover, when evidence theory is used in the continuous domain, there
arise some problems which do not matter in the discrete domain. Since a
mass function is defined by using O(2") variables, it is not defined in the
continuous domain. Strat [1] introduced a continuous framework based
on the restriction that no disjoint interval is allowed. As an extension,
we developed a new combination rule, a method for mass function trans-
formation, and a method for yielding joint mass functions. These methods
will help one to design expert systems which involve reasoning in the
continuous domain using evidence theory.

Evidence theory can be coinsidered as a generalized Bayesian theory.
For the transformation of mass functions and the generation of joint
mass functions, each point on the continuous mass function domain is
considered as a uniform probability distribution and these operations are
basically performed point by point. The results are converted to mass
functions by using the Dubois method, which is computationally less
expensive than its alternative, Shafer’s method.

All the theories developed in this paper provide analytic solutions for
transformations and joint mass functions for the restricted cases described.
They can also be implemented numerically in all cases if their domain is
closed and well defined (differentiable and integrable). In the case of
numerical implmentation, sampling techniques are very important for
efficient calculation and accurate results.
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