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1. INTRODUCTION 

By definition, time-independent solutions of the diSfusion equation with 
infinitesimal mean free path in a homogeneous medium, are harmonic functions 
(satisfy Vsu = 0). The primary purpose of this paper is to show that transport 
equations for monoenergetic neutrons also have harmonic solutions, including 
exact harmonic polynomial solutions. This result is shown to follow from 
Gauss’ Theorem of the Arithmetic Mean. 

More precisely, let monoenergetic neutrons be scattered in an infinite 
homogeneous medium, without absorption or fissi0n.l For algebraic simpli- 
city, we choose units of length and time such that the neutron speed v = 1 
and the mean free path h = l/u = 1. We shall consider mainly solutions 
defined in free x-space RD of p dimensions, allowing p to be arbitrary; the 
(monoenergetic) neutron velocity v will then range over the unit sphere Q 
in Rg’. 

We shall utilize below both the integrodifferential and (for the case of 
isotropic scattering) the integral forms of the transport equation. The 
p-dimensional forms of these equations for time-independent transport, with 
isotropic scattering in the laboratory frame, are2 

v . Wx, v) + $(x, v) = 5, #(x, v) dm(v). (1.1) 

a(x) = jff dr e-’ 1, dm(v) @(x - TV). (1.2) 

* This work was mainly supported by the Office of Naval Research under Contract 
Nom-1866(34), but also partly by the U. S. Atomic Energy Commission. 

* In a superficially more general form [4], the assumption is that the “mean number 
of secondaries per collision is one,” c = 1. For the time dependent case, the transport 
equation with c # 1 can be reduced to the special case c = 1 ([4], p. 175). 

s Equations (1.1) and (1.2) are straightforward generalization of the standard 
integral transport equation ([4], Sec. 3.6) to p dimensions. 
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In Eqs. (I. I), (1.2) and below, dm(v) denotes the differential of solid angle on 
Q divided by the total solid angle. Thus, if p = 3, dm = dQ/4r. 

The essential equivalence of the integrodifferential and the integral forms 
(1.1) and (1.2) is well-known ([4], S ec ion t 3.6). However, this equivalence 
becomes mathematically rigorous (and Equation (1.2) meaningful) only 
under (absolute) integrability conditions which are usually omitted: 

Jndre-Tj* dm(w) I Ww) I -C + a (1.3) 

and 

1~dre-7S,,,S j #(rw, v) I h(w) dm(v) < + ~0. (1.3’) 

For (1.3) and (I .3’) to hold, either of the mutually equivalent order-of-growth 
conditions, for large r 

@(x - rv) = O(r-l+er), (l-4) 

$b(x - rv’, v) = O(r-1-q, (1.4’) 

is sufficient. We now formulate this equivalence in rigorous terms. 

THEOREM A. Let #(x, v) be any solution of (1.1) which satisfies (1.3’). Then 
the function @ = L[#], dejined by 

@b> = 1, VW v> WV) 

satis$es (1.2) and (I .3). Conversely, let O(x) be any solution of (1.2) and (1.3). 
Then the function qb = &I[@], defked by 

4(x, v) = jr e-?D(x - TV) dr U-6) 

satisfies (1.1) and (1.3’). Moreower M[L[#]] = # and L[M[@]] = @: L and M 
are mutually inverse bijections. 

2. TIME-INDEPENDENT TRANSPORTWITHISOTROPICSCATTERING 

The time-independent transport equation (1.2) with isotropic scattering 
(in the laboratory frame) will now be treated in detail. Our first main result 
is a rigorous proof of the existence of harmonic solutions: 
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THEOREM 1. Any function a(x) harmonic in RP, and satisfy& the 
integrability condition (1.3), is a solution of the integral transport equation (1.2). 

PROOF. Let Q(x) be harmonic in RD. Then, by Gauss’ Theorem of the 
Arithmetic Mean ([9], p. 223). 

Q(x) = 1, @(x - TV> h(v), O<r<+co. (2.1) 

Furthermore, for @(x - YV) satisfying (1.4) (and hence (1.3)), Eq. (2.1) can 
be multiplied by e-r and integrated over Y from 0 to co. The left-hand side 
yields 

s 
m dr e-Q(x) = CD(X), 
0 

(2.2) 

and the right-hand side is the same as for Eq. (1.2). Q.E.D. 

COROLLARY. Any harmonic polynomial is a solution of the integral transport 
equation (1.2). 

For one dimension (p = 1; slab geometry), the Laplace equation reduces 
to W’(x) = 0 and has only two linearly independent (harmonic) polynomial 
solutions, @ = 1 and @ = ,z.~ The above corollary proves that for the 
interesting case of two or more dimensions (p > 2), the transport equation 
(1.2) has harmonic polynomial solutions of any degree n. For a given integer 
n these are, in three dimensions (p = 3), the (2n + 1) linearly independent 
ordinary harmonics which are homogeneous polynomials of degree n in x 
([7], Section 7.6). Examples are the three linearly independent harmonics, 
x, y, z of degree 1 and the five independent harmonics, x2 - y2, ys - z2, xy, 
yz, xx of degree 2. 

The correspondence between harmonic solutions Q(x) of the scalar flux 
equation and those for the vector flux 4(x, v) can now be described. 

THEOREM 2. The transformation (1.6) carries solutions CD(X) of Eq. (1.2) 
in RP which are harmonic and satisfy the integrability condition (1.3), into 
solutions 4(x, v) of Eq. (1 .I) which are harmonic in x for any fixed v. 

PROOF. By hypothesis, we have as in (1.6) 

4(x, v) = j-;e-%D(x - sv) ds, all XERP,VEQ. 

3 In view of Theorem 4 below, we obtain as a corollary the result of ([l], Part C): 
all polynomial solutions of (1.2) are linear of the form 0 = a + bz. This result also 
holds for anisotropic scattering in plane geometry (see Sec. 3). 
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Averaging over a sphere with center x and radius Y: 

s R 
t/(x + rv’, v) dm(v’) = j, dm(v’) jr @(x + YV’ -- sv) e- s CA 

=s x1 
ecs ds @(x -- sv) = #(x, v), 

0 

where: (i) the first equation follows from (1.6), (ii) the second by the assumed 
absolute integrability of @, which justifies changing the order of integration 
over [0, co) x Q, (iii) the third equation because @ satisfies the Theorem 
of the Arithmetic Mean, and the last by (1.6). This proves that # satisfies 
Gauss’ Theorem of the Arithmetic Mean for any fixed v, and so ([5], p. 277; 
[9], p. 224) is harmonic in x. Q.E.D. 

In the special case of (harmonic, see Theorem 4 below) polynomial solutions 
of the transport equation (1.1) [and (1.2)], the following result yields helpful 
formulas for obtaining the vector flux of (1.6) from the scalar flux. 

THEOREM 3. Let H(x) be a homogeneous harmonic polynomial in R” of 
degree n. Then the function 

U,-,,,(x, u) = (u . V)k H(x), k = 0, 1 )..., n, (2.3) 

is a homogeneous harmonic polynomial in x of degree n - k for jixed u, and a 
homogeneous harmonic polynomial in u of degree k for fixed x. 

PROOF. Since H(x) is harmonic in x, necessarily 

VW,-,,,(x, u) = (u . V)lc V2H(x) = 0, 

i.e., U,-,,, is harmonic in x. Furthermore, since H(x) is a homogeneous 
polynomial of degree n in x it follows that (u * V)Ic H(x) is a homogeneous 
polynomial of degree n - k in x. Thus Un-k,k(~, u) is a harmonic polynomial 
of degree n - k in x. 

Moreover 

c R 2 u~-~~,~(x, u) = -f k(k - 1) (u . V)k-2 & H(x) 
i=l h2 i=l z 

= k(k - 1) (u . V)k-2 V2H(x) = 0. 

Thus, Un-k,k(~, u) is harmonic in u. Furthermore (u * V)k H(x) is a homo- 
geneous polynomial of degree k in u. Hence U++,Jx, u) is a harmonic 
polynomial of degree k in u. Q.E.D. 
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NOTE. The function U,,k = V(x, u) of Eq. (2.3) is defined for all 
(x, u) E RP x RP, and V(x, u) is doubly harmonic, i.e., 

&EL 
i ax,2 

v&g- 
i aui2 v = 0. 

We recall that if a function V(x, u) is homogeneous of degree 1 in x, then 

V(hx, u) = W(x, u). 

If V(x, u) is also homogeneous of degree k in u, then 

V(x, Au) = h”V(x, u). 

Furthermore, its restriction V(x, 0) to the unit sphere 1 0 1 = 1 is by definition 
a spherical harmonic of degree K in 0. 

COROLLARY 1. For Q(x) a harmonic polynomial of degree n, the vector 

P UX 

#(x, v) = 2 (- l)k (v . V)k G(x) (2.4) 
k=O 

is a solution of (1 .l) with scalarjux @. Each term 

v&Q&, v) = (- 1)” (v * 0)’ @(x) 

in (2.4) is a harmonic polynomial in x of degree n - k and a spherical harmonic 
in v of degree k. 

The detailed proof will be omitted, since a more general result will be 
proved as Theorem 5 below, without the assumption of isotropic scattering. 

COROLLARY 2. The vector jlux I/(X, v) given by (2.4) is also given as 
$ = M[@] by (1.6). 

PROOF. By definition, the scalar flux Q(x) in Corollary 1 is given by (1.5) 
as di = L[#]. This fact can also be verified directly from Eq. (2.4), since by 
Theorem 3 and the orthogonality properties of harmonic polynomials ([9], 
p. 252) indeed 

I R Icl(x, v) WV) = @(4. (2.5) 

Hence, Corollary 2 follows from Theorem A. Q.E.D. 

Using Corollary 1, it is easy to compute exact polynomial solutions #(X, V) 
of the integrodifferential transport equation (1.1). Thus let x = (x, y), 
v = (f, v) for p = 2, and let x = (x, y, z), v = (5, 7, 5) for p = 3. 
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Then the solutions of (1 .I) corresponding to the homogeneous harmonic 
polynomial scalar fluxes @ ::= xy, x2 - y2 and ~3 - 3.1~~2 for p -= 2 are: 

$h = xy - .l’?j - y[ i- 2.5 (2.6a) 

$A = x2 - y2 - 2{.r[ - y7)) -+ 2{5’ -- 7y) (2.6h) 

Qh = x3 - 3.xya - 3((a? - y2) I$ - 2xy7/} 

+ 6(~(5~ - v2) - 2y[v} - 6{g’ - 35~~). (2.6~) 

Likewise for p = 3, the solutions corresponding to @ = xyr and 
@ = x3 - 3 x(y2 + z”) are: 

4 = XYZ - {xyz: + Y& + .=rl) + 2h5 + ~5~5 + &I> - G%;li. (2.6d) 

4 = x3 - 2 x(y” + 2) - $ (2x2 - y2 - 9) f - 2xy7J - 2XZ5) 

+ 3{x(2t2 - q2 - 5”) - 2y& - 2.~55: - 6(t3 - # ((7” + c2)). 
(2.6e) 

We will now prove a converse to the Corollary of Theorem 1. 

THEOREM 4. .41zy polynomial solution @p(x) of the integral transport 
equation (1.2) for the scalar jkx is harmonic. 

PROOF. Let 0(x) he any polynomial solution of the transport equation 
(1.2) of degree n so that 

V2Q = 0 for all s > m + 1, m- Jk. 
[ 3 2 (2.7) 

Here, m = [n/2] is the largest integer with 2m < 1~. It is known (see [IO], 
Eq. (4), and [5], pp. 287-8) that if (2.7) holds, then @ has the spherical mean 

s 1,1 
51dm(v) @(x - rv) = @(x) + C a,,rziVzi@(x)/(2i)! 

i=l 
(2.8) 

where 

aDi = (2i)!/25! p(p + 2) ... (p + 2i -- 2). 

Now substituting Eq. (2.8) into the right-hand side of Eq. (1.2), integrating 
the finite sum term-by-term, and simplifying, we get 

[a,,lV2 + a,,zV4 + I.. + ap,l,,C2n1] Q(x) = 0. (2.9) 

The key point for the rest of the proof is that a,,1 # 0. From (2.7), 
clearly V2”+%D(x) = 0, m = [n/2]. Consequently, multiplying (2.9) by 
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(1 /a,*,) vs+rr, all terms except the first term on the left-hand side of (2.9) 
vanish and the result is V2”@ = 0. Analogously, it follows upon multiplying 

% (2.9) by (l/a,,,) v 2(k-1), that V2(L+1)@ = 0 implies V2”@ = 0 (K 3 1). 
Hence, it follows by mathematical induction that indeed 

v%D = 0, (2.10) 

i.e., @j(x) is a harmonic polynomial in x. Q.E.D. 

COROLLARY. Any solution 4(x, v) of the integrodz$erential transport 
equation (1 .l) which is a polynomial in x in RP is harmonic in x for any fixed v 
and a spherical harmonic in v for any $xed x. 

PROOF. Let 4(x, v) be any such solution. Then the corresponding scalar 
flux of (1.2) @ = L[$] defined by (1.5) is also a polynomial in x and hence, by 
Theorem 4, is harmonic in x. Therefore, by Corollaries 1 and 2 of Theorem 3, 
M[@] defined by (1.6) is h armonic in x for any fixed v and a spherical 
harmonic in v for any fixed x. But by Theorem A 

#(x, v) = Jm4fqx, v>ll = JWJI. 
Hence, the given polynomial solution #(x, v) is harmonic in x for any 
fixed v and a spherical harmonic in v for any fixed x. Q.E.D. 

3. GENERALIZATION TO ANISOTROPIC SCATTERING 

We now consider the time-independent integrodifferential transport 
equation with anisotropic scattering, still monoenergetic and with pure 
diffusion (c = 1) 

v V#(x, v) + #(x, v) = 1, dm(v’>f (v . v’) #(x, v’) (3.1) 

where f (v * v’) is the scattering function 

f (v * v’) = 2 (21 + 1) au,P,(v ’ v’), a() = 1 (3.2) 
I=0 

and the I’&) are Legendre polynomials. Physically, f (v . v’) L= f (p) > 0, 
and Jlrf(p) dp = 2 so that a0 = 1 and 1 ‘Ye 1 < l/(21 + 1). 

No analogue of Theorem A and no integral equation for the scalar flux 
Q(x) seem to be known. Hence we shall treat the integrodifferential transport 
equation (3.1) directly. One result of this section is to derive an expression 
for the vector flux in terms of the scalar flux which is valid at least when the 
scalar flux is a harmonic polynomial. 
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The following generalization of Corollary 1 of Theorem 3 enables one 
to compute a vector flux solution of (3.1) h aving any preassigned harmonic 
polynomial for its scalar flux. 

THEOREM 5. Corresponding to any homogeneous harmonic polynomial 
H(x) of degree n in R*, the transport equation (3.1) has a solution 1+5(x, v) with 
scalar flux H(x). This solution is 

4(x, v) = i (- 1)” &Jv . V)k H(x) (3.3) 
k=O 

where 

Po= 1, Sk = ((1 - 011) (1 - t,, “’ (1 - OIk)} ’ k > 0. (3.4) 

Two cases of special interest are f(p) = 1 (isotropic scattering) and 
f(p) = 1 + bp, ) b / < 1. For these cases we have jIk = 1 and 
iBk = 1 /(l - 6/3) respectively for all k > 0. 

PROOF. By Theorem 3 each term J&&X, v) = (- 1)” pk(v . V)k H(x) 
in (3.3) is a harmonic polynomial in x of degree n - k and is a spherical 
harmonic in v of degree k. Hence, integrating #(x, v) of (3.3) over all v E Q 
and using the orthogonality properties of harmonic polynomials ([9], p. 252) 
we get 

s 
R 4(x, v) dm(v) .= H(x). (3.5) 

Furthermore, we observe from (3.4) that 

#do = a, = 1, akpk = pk - (I - %) & = j3k - /3,-l 3 k > 0. (3.6) 

Now, substituting Z/(X, v) from (3.3) into the right hand side of the transport 
equation (3.1), interchanging integration and finite summations and again 
using Theorem 3, the orthogonality properties of spherical harmonics ([7], 
Section 95) and Eq. (3.6) yields 

f 
dm(v’) f (2Z+ 1) ol,P,(v . v’) #(x, v’) 

R 1-O 

= to (- l)k +$k(v ’ v)% H(x) 

= i. (- l>” 8k@ ’ v)’ f&4 + v . V i (- 1)“’ &(v . V)k’ H(x) 
k’=O 

= 4(x, v) + v . W(x, v). 
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Here L appearing in (3.2) has been replaced by infinity; this is permissible 
because cyr = 0 for 1 > L. We observe that, since H(x) is a harmonic polyno- 
mial of degree n, (v * V)%+l H(x) = 0. This fact has been used above to 
establish that #(x, v) of Eq. (3.3) is indeed a solution of the transport equa- 
tion (3.1). Q.E.D. 

A few samples of harmonic polynomial solutions of Eq. (3.1) for anisotropic 
scattering, in the notation of Sec. 2, are for p = 2 

4 = x2 - Y2 - 2/3&S - Y?} + V,{$ - 7”) 

andforp = 3 

The scalar fluxes corresponding to the above solutions are respectively 
@=xy,@=x2-y2forp=2and@=xyzforp=3. 

In one dimension (p = 1; slab geometry), there are again only two linearly 
independent polynomial solutions (for D”(z) = 0) for the scalar flux, Sp = 1 
and @ = x; the corresponding vector fluxes are I/J = 1 and 
* = x - /J/(1 - oL1). 

The form of the explicit solutions presented above and the form of the 
series in (3.3) suggests relating the vector flux to the scalar flux in the follow- 
ing way: 

y!J(x, v) = jm dr e-T -f (2k + 1) PI, j, dm(v’) @(x - TV’) P,(v . v’) (3.7) 
0 k=O 

where @(x - TV) satisfies the integrability condition (1.4). The relation (3.7) 
holds whenever the scalar flux Q(x) is a harmonic polynomial. To demon- 
strate this fact we need the following result. 

LEMMA 1. Let H(x) be a homogeneous harmonic polynomial of degree n in 
RD. Then the identity 

(- 1)” (v . V)k H(x) = 1: dr e-r jQdm(v’) H(x - rv’) (2k + 1) Pk(v * v’) 

(3.8) 
holds for all integers k. 

PROOF. Corollaries 1 and 2 of Theorem 3 imply that 

‘f. (- l)z (V . V)l H(x) = jr dre-‘H(x - rv). (3.9) 
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Since obviously (v . V)l H(x) = 0 f or all I > n, the summation on the left- 
hand side of (3.9) can be extended to infinity. Now we get (3.8) by using 
Theorem 3, and equating spherical harmonics of the same order in v 
in (3.9)-or, equivalently, by multiplying (3.9) by (2k i- 1) P,.(v . v’), 
integrating over all v’ E .G and using orthogonality properties of spherical 
harmonics ([9], p. 252). Q.E.D. 

THEORE~I 6. For H(x) any homogeneous harmonic polynomial of degree 
n in RI’, the vector flux given by (3.3) is also given by (3.7) with scaZarflu”\ 
Q(x) =: = H(x). 

PROOF. Multiply Eq. (3.8) by pk, sum over k, and interchange summation 
and integration over Y (allowed because the absolute integrability condition 
(1.3) is satisfied). We obtain 

i. (-- 1)” pk(v . V)k H(x) = jr dr e? f (2k + 1) & 
k=O 

x s dm(v’) H(x - 1~‘) Pk(v . v’). (3.10) 
R 

The right-hand side of (3.10) is the same as in (3.7) with scalar flux @ = H. 
Furthermore, since (v * V)lc H(x) = 0 if k > 12, the left-hand side of (3.10) 
is identical to the vector flux in (3.3). H ence, for a given 0 = H(x), Eqs. (3.3) 
and (3.7) yield the same vector flux 1,4(x, v). Q.E.D. 

We conjecture that Eq. (3.7) relating the vector flux to the scalar flux for 
the transport equation (3.1) for anisotropic scattering holds in general, 
provided of course that the series term in (3.7) converges and the integrability 
condition (1.3) is satisfied. 
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