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In this note, we calculate projective limits of localization functors. We relate the
results, thus obtained, to the construction of structure sheaves for noncommutative
rings. Q 1996 Academic Press, Inc.

INTRODUCTION

w xWhereas in 1, 5, 9 , the authors used compatibility results between
torsion and localization functors in order to construct structure sheaves for
suitable topologies on the spectrum of a noncommutative ring, here we do
exactly the opposite, i.e., we investigate what happens in the case of
non-compatibility. One of the main results in this direction states that two
idempotent kernel functors s and t in R-mod, the category of left

Ž w xR-modules, are compatible, i.e., s Q s Q s cf. 3, 4, 7 for notations andt t

.definitions if and only if the canonical sequence of functors

0 ª Q ª Q [ Q ª Qs n t s t s kt

is exact. This is the torsion-theoretic analogue of the well-known fact that
for any quasi-coherent sheaf EE on an algebraic variety X and any open
subsets U, V, and W of X, there is an exact sequence

0 ª EE U j V l W ª EE U l W [ EE V l W ª EE U l V l W .Ž . Ž . Ž . Ž .Ž .
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In general, if s and t are not necessarily compatible, it appears that one
Ž .may still show that the sequence with obvious morphisms

0 ª Q ª Q [ Q ª Q Q [ Q Qs n t s t s t t s

� 4is exact. Actually, we will prove that for any finite family s ; a g A ofa

idempotent kernel functors over R, the localization functor Q is then sa

projective limit of the family

Q ª Q Q , Q ª Q Q ; a , b g A .� 4s s s s s sa a b b a b

This result is then strengthened to encompass projective limits of ‘‘locali-
zation functors’’ with respect to words in the free monoid over the set of
all Gabriel filters for R.

1. PROJECTIVE LIMITS OF LOCALIZATION FUNCTORS

Ž .1.1 As stated in the Introduction, two idempotent kernel functors s
and t are mutually compatible if and only if the following sequence of
functors is exact

0 ª Q ª Q [ Q ª Q .s n t s t s kt

Of course, the exactness of the latter sequence may also be formulated by
Ž .saying that Q is the limit equalizer of the projective systems n t

� 4Q ª Q , Q ª Q .s s kt t s kt

In this section, we will take a look at this type of projective limits, when s
and t are no longer assumed to be compatible.

Actually, one may prove:

Ž . � 41.2 PROPOSITION. Let K s s ; 1 F a F n be a finite family of idem-a

potent kernel functors o¨er R and put s s H s . Let M be a left R-modulea a

and denote by j : M ª Q M the localization map with respect to s . IfM , a a a

QQ M denotes the projectï e systemK

ja : Q M ª Q Q M , j b : Q M ª Q Q M ; 1 F a , b F n ,� 4ab a a b a b b a b

a bwhere j s Q j , and j s j , then lim QQ M s Q M.6ab a M , b a b Q M , a K sb
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Proof. We write Q s Q Q resp. Q s Q Q Q . One easily re-ab a b a bg a b g

duces to n s 2, and in this case, one has to show that the sequence

i p
0 ª Q M ª Q M [ Q M ª Q M [ Q Ms 1 2 12 21

Ž .is exact, where i is the canonical map and where for any m , m g1 2
Q M [ Q M, we put1 2

p m , m s j1 m y j2 m , j1 m y j2 m .Ž . Ž . Ž . Ž . Ž .Ž .1 2 12 1 12 2 21 1 21 2

Let

K s Ker p s j1 y j2 : Q M [ Q M ª Q M .Ž .ab a b a b a b 1 2 a b

Ž .To prove the assertion, we have to verify that K s Ker p s K l K12 21
coincides with Q M within Q M [ Q M. Since Q M : K l K s Ks 1 2 s 12 21
and all of these are s-closed, it suffices to show that K l K rM12 21
is s-torsion.

Localizing at s yields exact sequences

0 ª Q K ª Q M [ Q M ª Q M ,1 12 1 12 12

resp.

0 ª Q K ª Q M [ Q M ª Q M .1 21 1 12 121

Ž . 1 Ž .Since y, z belongs to Q K resp. Q K if and only if j y s z resp.1 12 1 21 12
1 Ž . Ž .j y y z g Ker Q M ª Q M , it follows that12 12 121

Q K l K s Q K l Q K s Q K s Q M .Ž .1 12 21 1 12 1 21 1 12 1

Ž .Similarly, Q K l K s Q M, so, as s s s n s , we find that K l1 12 21 2 1 2 12
K rM is s-torsion, indeed.21

Ž .1.3 If s and t are mutually compatible, then Q Q is s k t-torsions t

free, so, in particular, the canonical map Q Q ª Q is injective.s t s kt

� 4Applying this to a family s ; 1 F a F n of mutually compatible idempo-a

tent kernel functors over R, it then follows from the previous result that
there is an exact sequence

0 ª Q M ª Q M ª Q M ,[ [s a a k b
a a , b

where Q is the localization functor at s k s .a k b a b

w xWe thus recover the results in 1, 5, 6, 10 , to which we refer for the
implications of the exactness of this sequence upon the construction of
structure sheaves.
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2. A GENERALIZATION

Ž .2.1 Denote by G the free semigroup generated by all Gabriel filters
over R, i.e., elements in G are words L s LL . . . LL , where all the LL are1 n i

w xGabriel filters. Recall from 2 that two Gabriel filters LL and HH yield a
new filter LL ( HH, which consists of all left ideals L of R, with the property

Ž .that there exists some H g HH containing L and such that L : U g LL for
some finite subset U of H. In general, LL ( HH is not a Gabriel filter

Ž w x.anymore; however, since it is uniform in the sense of 2 , torsion with
Ž .respect to it may still be defined. We will denote by e L the uniform filter

LL ( . . . ( LL and by s the associated torsion functor s . We write Q1 n L e ŽL. L
for the composition Q . . . Q .LL LLn 1

Ž .Let us call a left R-module L-torsion, if it is e L -torsion. Then one may
show, by induction on the length of L s LL . . . LL g G, that for any1 n

Ž .M g R-mod with associated canonical morphism j : M ª Q M , weL L
Ž . Ž .have that Ker j s s M and that Coker j is L-torsion.L L L

Ž . � 42.2 Let K s L ; 1 F a F n be a finite family of words in G. Puta

Q s Q and consider the projective systemL aa

QQ M s ja : Q M ª Q Q M , j b : Q M ª Q Q M ; 1 F a , b F n ,� 4K a b a a b a b b a b

n Ž .where the maps are the obvious ones. Let LL s F e L , then theas1 a

previous remarks imply that

s M : e L M s Ker M ª Q MŽ . Ž .LL a a

for all 1 F a F n. The canonical map M ª lim QQ M thus factorizes6 K
through

j : Mrs M ª lim QQ M .6LL K

We then have:

Ž . Ž .2.3 PROPOSITION. With the pre¨ious notations, Ker j s 0 and the
Ž .cokernel Coker j is LL ( LL-torsion.

Proof. Let s s s and consider the canonical mapa e ŽL .a

j : M s Mrs M ª Mrs M ¨ Q M .a LL a a

Ž .Clearly, Ker j s s M, and from this, it easily follows that j is injective.a a

Ž . nOn the other hand, assume q s q g [ Q M belongs to lim QQ M6a as1 a K
Ž w x .and fix 1 F b F n. Then, an easy induction argument cf. 10 for details ,
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Ž .shows that for any index a , there exists some L g e L such thata a

L q : Im M ª Q M s Im M ª Q M .Ž . ž /a b b b

n n Ž . Ž .Clearly, L s Ý L g F e L s LL and Lq : Im M ª Q M .as1 a as1 a b b

Since the q are finite in number, we may find a single L g LL , whichb

Ž .works for all b , i.e., Lq : Im M ª Q M for all 1 F b F n.b b

Ž .Let l g L, then lq s j x for some x g M. Fix b for a moment and,a a a a

for each a , consider the commutative diagram

jb 6
M Q Mb

6

bj ja ba

6 6

Q Q MQ M a a ba jba

Since

ja j x s j b j x s l j b q s l ja q s ja j x ,Ž . Ž . Ž . Ž . Ž .ba a b ba b b ba b ba a ba a a

Ž . Ž Ž . Ž ..there exists some J g e L with J j x y j x s 0, for all 1 Fb b b a b a a

Ž .a F n and it easily follows that J lq : j M . We thus obtain that Jlq :b
n nŽ . Ž . Ž .j M , with J s Ý J g F e L s LL , so Kq : j M for some K gbs1 b bs1 b

LL ( LL , which proves the assertion.

As a consequence, let us mention:

Ž .2.4 COROLLARY. With the pre¨ious notations, assume that L sa

LL a . . . LL a satisfy the following properties:1 na

Ž . n Ž .1 LL s F e L is a Gabriel filter;as1 a

Ž . a2 LL : LL for all 1 F a F n and 1 F i F n .1 a

Then lim QQ M s Q M.6 K LL

Proof. Let j : Mrs M ª lim QQ M, as before. Since LL is a Gabriel6LL K
filter, we obtain an exact sequence

j
0 ª M ª lim QQ M ª T ª 0,6 K

where T is LL-torsion. Now,

n n

a alim QQ M : Q M s Q . . . Q M .[ [6 K a LL LLn 1aas1 as1

As LL : LL a for all 1 F a F n and 1 F i F n , it follows that Q com-i a LL
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amutes with all of the Q , so lim QQ M is LL-closed. Applying Q to the6LL K LLi

above exact sequence thus easily yields the result.

Ž . Ž .Note that 1.2 may be recovered from 2.4 by assuming for each
1 F a F n that L is the Gabriel filter associated to some idempotenta

w xkernel functor s over R. On the other hand, this result strengthens 8 ,a

where only Gabriel filters associated to Ore sets are considered.
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