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Abstract

In this work we consider a simple extension of the Standard Model involving additional fermionic sin-
glets and assume an underlying inverse seesaw mechanism (with one or more right-handed neutrinos and 
one or more sterile fermions) for neutrino mass generation. Under the assumption that both sterile states 
and right-handed neutrinos are present, our goal is to determine which is the minimal inverse seesaw reali-
sation that accounts for neutrino data while at the same time complying with all experimental requirements 
(electroweak precision tests and laboratory constraints). This study aims at identifying the minimal inverse 
seesaw realisation for the 3-flavour and for the 3 + more-mixing schemes, the latter giving an explanation 
for the reactor anomalies and/or providing a possible candidate for the dark matter of the Universe. Based 
on a perturbative approach, our generic study shows that in the class of inverse seesaw models giving rise to 
a 3-flavour flavour mixing scheme, only two mass scales are relevant (the light neutrino mass scale, mν and 
the mass of the right-handed neutrinos, MR) while in the case of a 3 +1-mixing scheme, an additional mass 
scale (μ ∈ [mν, MR]) is required. For each of the two obtained inverse seesaw frameworks, we conduct a 
thorough numerical analysis, providing predictions for the hierarchy of the light neutrino spectrum and for 
the effective mass in neutrinoless double beta decay.
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1. Introduction

Oscillation experiments have established a clear evidence for two oscillation frequencies 
(�m2

ij ) – implying that at least two neutrino states are massive – as well as the basic structure 
of a 3-flavour leptonic mixing matrix (for a recent review, see [1]). However, current reactor [2], 
accelerator [3,4] and Gallium anomalies [5] suggest that there might be some extra fermionic 
gauge singlets with mass(es) in the eV range. This would imply that instead of the three-neutrino 
mixing scheme, one would have a 3 + 1-neutrino (or 3 + more) mixing schemes (for a global 
overview, see [6]).

Sterile fermionic states (not necessarily light) are present in several neutrino mass models and 
their masses can range from well below the electroweak scale up to the Planck scale. Other than 
the reactor and accelerator anomalies, the existence of sterile states is also motivated by certain 
indications from large scale structure formation [7,8]. Nevertheless, due to the mixings of the 
sterile fermionic states with the active left-handed neutrinos, models with sterile fermions are 
severely constrained from electroweak (EW) precision observables, laboratory data and cosmol-
ogy.

In contrast with the huge experimental achievements in determining neutrino oscillation pa-
rameters, many questions remain to be answered concerning neutrino properties, as for instance 
the neutrino nature (Majorana or Dirac), the absolute neutrino mass scale and the hierarchy of 
the neutrino mass spectrum, which are not yet determined. Finally, and most importantly, one 
must unveil the neutrino mass generation mechanism at work and which new physics scales are 
required.

One of the most economical possibilities to account for massive neutrinos is to embed a stan-
dard seesaw mechanism (of type I, II or III) [9–11] into the framework of the Standard Model 
(SM). The caveat of these scenarios is that, in order to have natural neutrino Yukawa couplings 
the typical scale of the extra particles (such as right-handed neutrinos, scalar or fermionic isospin 
triplets) is in general very high, potentially very close to the gauge coupling unification (GUT) 
scale, thus implying that direct experimental tests of the seesaw hypothesis might be impossible. 
In contrast, low-scale seesaw mechanisms [12–17], in which sterile fermions are added to the 
SM particle content with masses around the electroweak scale or even lower, are very attractive 
from a phenomenological point of view since the new states can be produced in collider and/or 
low-energy experiments, and their contributions to physical processes can be sizeable.

In view of the strong potential of low-scale seesaw mechanisms, in this work we consider 
the inverse seesaw (ISS) mechanism [12–14] which requires the addition of both #νR �= 0 right-
handed (RH) neutrinos and #s �= 0 extra sterile fermions to the SM field content.1 The distinctive 
feature of the ISS is that an additional dimensionfull parameter (μ) allows to accommodate the 
smallness of the active neutrino masses mν for a low seesaw scale, and still with natural Yukawa 
couplings (Y ν ∼ O(1)). In turn, this allows for sizeable mixings between the active and the ad-
ditional sterile states. Such features are in clear contrast with, for instance, the canonical type I 
seesaw [9], where O(1) Yukawa couplings require the mass of the right-handed neutrinos to be 
close to the GUT scale, MR ∼ 1015 GeV, thus leading to extremely small active–sterile mix-
ings.

Any type I seesaw realisation requires the introduction of N gauge singlet Weyl fermions w
that can thus couple via a Majorana mass term ∼ Mijw

c
i wj . Both the number N and the energy 

1 In the case where #s = 0, one recovers the type I seesaw realisation which could account for neutrino masses and 
mixings provided that the number of right-handed neutrinos is at least #νR = 2.
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scale M are in principle free parameters that can be fixed by neutrino data. It is thus natural to 
ask what is the minimal number of fermionic singlets N required to successfully generate neu-
trino masses and mixings in agreement with experiments. It was shown in [18] that the choice 
N = 1, although containing in principle enough parameters, fails in fitting all neutrino oscillation 
experiments, while the choice N = 2 is the minimal one that is phenomenologically viable. If 
no structure is assumed for the M matrix, type I seesaw realisations usually contain only one 
relevant energy scale related to the mass of the new sterile fermions. If they can be integrated 
out, this energy scale M , which suppresses the dimension 5 effective operator (actually respon-
sible for the smallness of neutrino masses), double-suppresses the dimension 6 operator that can 
induce lepton flavour violating (LFV) processes. In this situation tiny neutrino masses neces-
sarily imply very strongly suppressed LFV processes. As pointed out in [19], the situation is 
different for instance in the type II seesaw, or in the type I seesaw, when the matrix M has some 
specific structure leading for example to the inverse seesaw scenario. In this case, the matrix M
exhibits two different energy scales (as a consequence of the lepton number assignment of the 
new singlet Weyl fermions), among them explicit total lepton number violating (LNV) entries, 
very small compared to the conserving ones. This implies that the same high-energy suppres-
sion is expected for the dimension 5 and 6 effective operators, but the former one is further 
suppressed by the small LNV parameters. It is thus possible to generate tiny neutrino masses 
and sizeable coefficients for the dimension 6 LFV operators. Minimal models in this frame-
work have been addressed in [16], where N = 2n Weyl fermions were added to the SM field 
content with a lepton number assignment allowing them to be cast into two groups of n ele-
ments with opposite lepton number charges. It was found that the minimal phenomenologically 
viable model is the one with n = 1, which can be the mechanism at work if all the (gauge in-
variant) lepton number violating interactions are allowed. In this situation the tree level neutrino 
masses derive from the sum of two terms which are differently suppressed by the high-energy 
scale – and which depend on two sets of Yukawa couplings present (lepton number violating 
and conserving) – while the coefficients of the LFV dimension 6 operators only depend, to a 
first approximation, on the lepton number conserving Yukawas. The situation is different in the 
case of the inverse seesaw scenario, where LNV Yukawas are not allowed and the dimension 
5 and 6 effective operators have the same high-energy suppression [16]. The price to pay in 
this case is that the minimal phenomenologically viable model is the one with n = 2, that is 
N = 4.

Usually, in the inverse seesaw scenario, where an LNV parameter μ is present, an equal num-
ber of singlet Weyl fermions with opposite lepton number is added to the SM field content, i.e. 
N = n + n. After the diagonalisation of the neutral mass matrix, one ends up with three active 
neutrinos (at least two massive in order to accommodate neutrino data) and n pseudo-Dirac pairs 
with mass differences of the order of the LNV parameter μ. Notice that in this scenario the 
scale μ does not correspond to the mass of any new physical state (after diagonalisation). In this 
work, we will consider the inverse seesaw scenario in which we relax the previous assumption: 
adding N = n + n′ Weyl fermions with opposite lepton number, with n not necessarily coincid-
ing with n′. We will show that when n �= n′, the LNV scale μ can indeed correspond to the mass 
of a physical (almost sterile) state, i.e., a light sterile neutrino.

Since both RH neutrinos and sterile states are gauge singlets, there is no requirement on 
their (generation) number from anomaly cancellation. Moreover, in view of the presence of two 
independent mass scales (the mass of the RH neutrinos and the Majorana mass of the sterile 
states), associated to gauge singlet fermions, it is only natural to investigate which is the minimal 
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content of the ISS extension of the SM successfully accounting for neutrino data, while at the 
same time complying with all available experimental and observational constraints.

We thus embed the inverse seesaw mechanism into the SM, considering models with an ar-
bitrary non-vanishing (and different) number of RH neutrinos and of additional sterile states, 
in order to establish which class of models provides a minimal 3-flavour and 3 + more-mixing 
schemes. The latter class of realisations (configurations) may offer an explanation to the reac-
tor anomalies or, depending on the mass scales, a (partial) solution for the Dark Matter (DM) 
problem, in the form of a Warm DM (WDM) candidate [20]. In a first stage, we do not impose 
a particular mass scale for the (RH) Majorana states nor the hierarchy of the associated light 
spectrum; likewise, we do not specify a mass range for the sterile fields.

Our study has allowed to identify two classes of minimal ISS realisations that can successfully 
account for neutrino data: the first leads to a 3-flavour mixing scheme, and requires only two 
scales (that of light neutrino masses, mν , and the mass of the RH neutrinos, MR); the second 
corresponds to a 3 +1-mixing scheme, and calls for an additional scale (μ ∈ [mν, MR]). For each 
of these minimal classes, we carried a numerical analysis taking into account all possible bounds 
associated to the presence of sterile fermions (which constrain the mixings between active and 
sterile neutrinos for different mass regimes). We also provide predictions regarding the hierarchy 
of the light neutrino spectrum (normal or inverted) and the effective mass in neutrinoless double 
beta decay, for each of the minimal realisations identified.

The paper is organised as follows: in Section 2, we briefly review the inverse seesaw mech-
anism and define the framework; we also determine the generic class of frameworks leading to 
3- and to 3 + more-mixing schemes as well as their generic features concerning the different 
mass scales. In Section 3, we consider all the different constraints from neutrino data, elec-
troweak observables and laboratory measurements applied in the analysis. Section 4 is devoted 
to the phenomenological analysis of the minimal ISS framework leading to the 3-flavour and to 
the 3 + 1-mixing schemes. Our final remarks are given in Section 5. For completeness, some 
technical details concerning the computation are included in Appendices A and B.

2. Towards the minimal inverse seesaw realisation

In this work we consider the inverse seesaw mechanism [12–14] for the generation of neutrino 
masses and lepton mixings, with a minimal field content. We work in the framework of the SM 
extended by one or more generations of right-handed neutrinos νR and additional fermionic 
singlets s.

2.1. The one generation case

We first consider the illustrative one generation case. In the basis nL ≡ (νL, νc
R, s)T , the neu-

trino mass term reads:

−Lmν = 1

2
nT

L C M nL + h.c., (1)

where C ≡ iγ 2γ 0 is the charge conjugation matrix and the matrix M is given by

M =
⎛⎝ 0 d 0

d m n

0 n μ

⎞⎠ . (2)
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We assume that there is no term mixing the left-handed neutrino with the fermionic singlet s
(∼ νc

Ls). In the above, d corresponds to the Dirac mass term. The matrix M also includes a 
Majorana mass term for the RH neutrino,

−m∗

2
νT
RCνR + h.c.. (3)

The values of m and μ in Eq. (3) are arbitrary. However, accommodating neutrino masses of 
O(eV) implies that both must be very small in the case of the inverse seesaw framework. As-
signing a leptonic charge to both νR and s, with lepton number L = +1 [12–14] (such that 
the Dirac mass term −d∗νLνR + h.c. preserves the leptonic number), the terms νT

RCνR and 
sT Cs violate total leptonic number L by two units. Small values of m and μ are natural in the 
sense of ’t Hooft [21] since in the limit where m, μ → 0, the total lepton number symmetry 
is restored. In the following, we assume for simplicity that μ and m are of the same order of 
magnitude.

In order to obtain the tree-level neutrino mass spectrum and the leptonic mixing, we diago-
nalise the matrix M as [22]

UT MU = diag(m0,m1,m2), (4)

where U is a unitary matrix, and m0,1,2 correspond to the physical neutrino masses. The mixing 
matrix is obtained from

diag
(
m2

0,m
2
1,m

2
2

) = (
UT MU

)†(
UT MU

) = U†M†MU, (5)

so that the matrix U diagonalising M†M is the same as the one in Eq. (4).
We determine the neutrino spectrum perturbatively: the perturbations correspond to taking 

into account the tiny effects of the lepton number violating diagonal entries,

�M = diag(0,m,μ). (6)

The lightest neutrino mass arises from perturbative corrections2 to the zeroth order m0 = 0 eigen-
value; the two other states are pseudo-Dirac heavy neutrinos, massive and degenerate.

Concerning m0, the second order corrections m2
0
(2)

(the first order one gives vanishing contri-
butions) are given by

m2
0
(2) = |d|4|μ|2

(|d|2 + |n|2)2
, (7)

which reduces to the usual inverse seesaw expression once one assumes |d| 	 |n|. The first order 
corrections to m2

1,2
(0) = |d|2 + |n|2 lift the degeneracy:

m2
1
(1) = −|μ∗n2 + m|d|2 + m|n|2|√|d|2 + |n|2 , m2

2
(1) = |μ∗n2 + m|d|2 + m|n|2|√|d|2 + |n|2 . (8)

The corresponding eigenvectors allowing to build the leptonic mixing matrix can be found in 
Appendix A. Notice that in this approach, the only assumption on the magnitude of the physical 
parameters, i.e.

|m|, |μ| 	 |d|, |n| (n �= 0) (9)

2 We denote by (n) superscript perturbative corrections of order n.
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is driven (and justified) by the naturalness criterion. Notice that when n → 0, one recovers the 
simple realisation of the usual type I seesaw, which is not the scenario we consider in this 
study.

2.2. Minimal inverse seesaw realisations

In this section, we build the minimal ISS framework complying with experimental observa-
tions. The latter lead to the following requirements:

• there are 3 generations of neutrino fields with SU(2)L ⊗U(1)Y gauge interactions (#νL = 3);
• there are at least 3 non-degenerate light mass eigenstates.

We extend the one generation matrix of Eq. (2) to the case of several generations of νR and s
fields, so that M now reads

M =
⎛⎝ 0 d 0

dT m n

0 nT μ

⎞⎠ , (10)

d, m, n, μ now being complex matrices. Since M is symmetric (due to the Majorana character of 
the fields), it follows that m and μ are also symmetric matrices.

A possible choice in Eq. (10) is to set the matrix n = 0, such that the singlets s decou-
ple. In this case, the model reduces in practice to the type I seesaw model, already compat-
ible with low-energy data. We will conduct our analysis always assuming the (perturbativ-
ity) condition Eq. (9) and thus considering the matrix n �= 0 and its entries always such that 
|m|, |μ| 	 |d|, |n|.

In the following, we denote by #νL, #νR and #s (with #νR �= 0 and #s �= 0) the number of 
generations of left-handed, right-handed and sterile fields, respectively. The Dirac mass matrix d
arises from the Yukawa couplings to the Higgs boson (Φ̃ = iσ 2Φ),

YαβlL
αΦ̃ν

β
R + h.c., (11)

where Y is a complex matrix, lαL denotes the left-handed (LH) leptonic doublet,

lαL =
(

να
L

eα
L

)
, (12)

α and β being generation indices. After electroweak symmetry breaking (EWSB), the matrix d
is given by

dαβ = v√
2
Y ∗

αβ, (13)

and its dimension is

dimd = (#νL × #νR). (14)

The matrix n describes the lepton number conserving interactions involving νc
R and s fields, and 

its dimension is

dimn = (#νR × #s). (15)
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Table 1
Tree-level neutrino mass spectra for different choices of the number of additional fields, νR and s, and different properties 
of the light neutrino spectrum (see text for details and for description of used symbols). We limit the table to the case 
where the maximum number of additional singlet fields is six.

# new 
fields

#νR #s #m2
i

(0) = 0 #m2
i

(1,2) �= 0 # of 
non-deg. 
light mi

oscillation 
data:
�m2

oscillation 
data:
�m2 & 
UPMNS

2 1 1 3 1 2 ✗ ✗

3 1 2 4 2 3 ✓(s) ✗

3 2 1 2 1 2 ✗ ✗

4 1 3 5 3 4 ✓(a) ✗

4 2 2 3 2 3 ✓(s) ✓

4 3 1 1 1 1 ✗ ✗

5 2 3 4 3 4 ✓(a) ✓

5 3 2 2 2 2 ✗ ✗

6 3 3 3 3 3 ✓(s) ✓

Finally, the dimensions of the (symmetric) Majorana mass matrices m and μ are given by

dimm = (#νR × #νR), dimμ = (#s × #s). (16)

Being gauge singlets, and since there is no direct evidence for their existence, the number 
of additional fermionic singlets #νR and #s is unknown. In the following we determine their 
minimal values when accommodating either a 3-flavour or a 3 + 1 (or more)-flavour mixing 
schemes. The different possibilities are summarised in Table 1.

The first three columns of Table 1 indicate the total number of additional fermionic singlets 
#νR + #s, #νR and #s, respectively. The fourth column contains the number of massless eigen-
states at zeroth order (in the absence of accidental cancellations between the a priori independent 
entries of the mass matrix). Always in the absence of accidental cancellations, the fifth column 
displays how many massless eigenstates acquire mass once higher order corrections from per-
turbations are taken into account (see Appendix A): although massive, these states remain light 
since the corresponding masses are proportional to entries of m and μ (this can be inferred from 
the one generation illustrative case, see Eq. (7)). It is important to notice that states which are 
already massive at zeroth order have masses proportional to the d and n matrix entries. Finally, 
the sixth column contains information on the number of non-degenerate light mass eigenstates 
predicted by each of the different ISS configurations considered.

The last two columns provide information on the phenomenological viability of the different 
ISS realisations. Firstly, neutrino oscillation experiments require at least two independent oscilla-
tion frequencies (�m2

ij ); if there are less than 3 different light masses, the model is then excluded 
by observation, and this is denoted by a ✗. Models with 3 different light masses can generate the 
correct neutrino mass spectrum and are marked with a ✓ (s) in the seventh column of the table.

Interestingly, models with 4 different light masses could potentially explain the (anti)neutrino 
anomalies reported by the short baseline experiments LSND [3] and MiniBooNE [4], the Gallium 
anomaly in radioactive source experiments [5] and the reactor antineutrino anomalies [2]. Such 
configurations, leading to a 3 + 1-mixing scheme (see for example [23]) are indicated by a ✓ (a) 
in the seventh column of Table 1.

For all cases with a viable mass spectrum – either (s) or (a) – we have then verified if the 
observed mixing pattern could be successfully reproduced. Should this be the case, a ✓ is present 
in the eighth column of the table.
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As can be seen from the information summarised on Table 1, the simplest model3 which could 
accommodate the observed neutrino spectrum is the one with (#νR = 1, #s = 2), which will be 
here denoted as “(1, 2) ISS”. It predicts 4 light eigenstates, two of which are massive; provided 
that the latter are non-degenerate, one could have two independent mass squared differences 
(corresponding to the solar and atmospheric mass differences). Notice however that this model 
cannot provide the observed leptonic mixing matrix UPMNS. This is a consequence of having one 
of its light mass eigenstates dominated by sterile components, and as such it cannot be identified 
with an SM active neutrino. A similar problem is present for the “(1, 3) ISS” configuration, 
which although in principle accommodating the correct neutrino mass spectrum fails to provide 
the observed mixings.

The scenarios (#νR = 2, #s = 1) and (#νR = 3, #s = 1) could in principle accommodate neu-
trino data (masses and mixing) in the limiting case where sterile fields decouple, i.e. the matrix 
n → 0 in Eq. (10). We further emphasise here that we are not in this situation (of a type I seesaw 
with 2 or 3 right-handed neutrinos), and these two scenarios do not comply with neutrino data. 
In the case of (#νR = 2, #s = 1), the corresponding mass spectrum contains one massless active 
neutrino, one light active while the third active one is too heavy to explain solar and atmospheric 
oscillation frequencies. A similar situation occurs for the (#νR = 3, #s = 1) case, where one has 
only one light active neutrino and two (too) heavy active ones.

From this simple analysis and in view of Table 1, the first realisation of the inverse seesaw 
(with #s �= 0) possibly accommodating neutrino data is (#νR = 2, #s = 2), which we define to 
be the minimal one under the previous assumption of Eq. (9), hereafter denoted by “(2, 2) ISS” 
realisation. Notice that this solution corresponds to the minimal model found in [16] in the case 
where no lepton number violating Yukawa couplings are allowed. This “(2, 2) ISS” scenario does 
not provide an explanation for the reactor anomaly; the next (to minimal) ISS realisation which 
could explain such anomaly is the one with (#νR = 2, #s = 3), which we denote by “(2, 3) ISS” 
configuration.

Before addressing in detail the phenomenology of each minimal framework above identified, 
we will briefly comment on some aspects intrinsic to all ISS realisations.

2.3. Different neutrino mass scales

As a function of the number of generations for the sterile fields (#s �= 0, #νR �= 0), the model 
always exhibits #νL + (#s − #νR) light mass eigenstates. These states would be massless at 
zeroth order, and their masses arise from higher order corrections (in perturbation) due to the 
block-diagonal matrix which now generalises �M , see Eq. (6). In addition, the full spectrum 
contains heavy states with masses ∼ O(ni,j ) + O(di,j ), which form #νR pseudo-Dirac pairs 
with mass differences ∼ O(μi,j ), O(mi,j ). In the limit where lepton number is conserved (i.e. 
�M = 0) these states become Dirac particles.

The low-energy phenomenology of these models is determined by two quantities: the scale 
of the Lepton Number Violating parameters μ and the ratio between the scale of the Dirac mass 
terms d and that of the n mass matrix, denoted by k. To understand the key rôle of these quan-
tities, let us consider again the illustrative one-generation model (i.e. #νL = #νR = #s = 1) of 
Section 2.1. The active neutrino mass of Eq. (7) can be rewritten as mν = |μ|k2/(1 + k2), with 

3 In our study, the first scenario (“(1, 1) ISS”) would have corresponded to the n = 1 scenario in [16], provided the 
entry (1, 3) of Eq. (2) was different from zero.
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Fig. 1. Pictorial representation of typical scales for the neutrino mass spectrum in several ISS realisations.

k = |d|/|n|. In the realistic case of several generations, d, n, μ are matrices, and these consid-
erations loosely apply to the order of magnitude of their entries. The ratio k is directly related 
to deviations from unitarity of the leptonic mixing matrix, as shown in Appendix A, Eq. (A.11). 
Constraints on the non-unitarity of the PMNS matrix impose that k should not be too large; as 
we will discuss in the section devoted to the numerical analysis, solutions in agreement with 
experimental data can be found if, and only if, O(d)/O(n) � 10−1. These features are shared by 
the different realistic extensions presented in Table 1.

The mass spectrum of the ISS models is thus characterised by either 2 or 3 different mass 
scales (as illustrated in Fig. 1):

• the one of the light active neutrinos ∼O(μ)O(k2);
• the scale corresponding to the heavy states, roughly O(d) +O(n) ≈ O(n);
• an intermediate scale of order O(μ) corresponding to #s − #νR sterile light states (only 

present when #s > #νR).

2.4. Removing unphysical parameters

The relevant leptonic terms of a general inverse seesaw Lagrangian can be written in the 
following compact form,

Lleptonic = Lkinetic +Lmass +LCC +LNC +Lem, (17)

where

Lkinetic = ieL
α/∂δα,βe

β
L + ieR

α/∂δα,βe
β
R + iνL

α/∂δα,βν
β
L + iνR

i/∂δi,j ν
j
R + isa/∂δa,bs

b,

Lmass = −eR
αmα,βe

β
L − νR

idT
i,ανα

L − νR
imi,j ν

c
R

j − νR
ini,as

a − scaμa,bs
b + h.c.,

LCC = g√
2
eL

α/W−δα,βν
β
L + h.c.,

LNC = g

cos θW

{
1

2

[
νL

αγμδα,βν
β
L − eL

αγμδα,βe
β
L

] − sin2 θWJ em
μ

}
Zμ,

Lem = eJ emAμ. (18)
μ
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Table 2
Total number of physical and non-physical parameters in the 
Lagrangian of Eq. (17).

Matrix Total number of parameters

m 18
d 6 × #νR

n 2 × #νR × #s

m #νR × (#νR + 1)

μ #s × (#s + 1)

Total 18 + #νR(7 + #νR + 2 #s) + #s(#s + 1)

In the above equation α, β = 1, 2, 3, i, j = 1, . . . , #νR and a, b = 1, . . . , #s. The total number 
nu of physical and non-physical parameters in the mass matrices present in the Lagrangian of 
Eq. (17) is equal to

nu = 18 + 6 #νR + #νR(#νR + 1) + #s(#s + 1) + 2 #νR #s, (19)

and detailed in Table 2.
In order to determine the actual number of physical parameters, one has to identify all in-

dependent transformations under which the Lagrangian of Eq. (17) is invariant. One finds four 
classes of transformations with the following unitary matrices:

1. UL (3 × 3):

eα
L → UL

α,βe
β
L, mα,β → mα,γ UL†

γ,β,

να
L → UL

α,βν
β
L, dT

i,α → dT
i,βUL†

β,α; (20)

2. UR (3 × 3):

eα
R → UR

α,βe
β
R, mα,β → UR

α,γmγ,β; (21)

3. UνR (#νR × #νR):

νc
R

i → U
νR

i,j νc
R

j
, mi,j → UνR ∗

i,kmk,lU
νR †

l,j ,

dT
i,α → UνR ∗

i,j d
T
j,α, ni,a → UνR ∗

i,j nj,a; (22)

4. Us (#s × #s):

sa → Us
a,bs

b, μa,b → Us∗
a,cμc,dUs†

d,b, ni,a → ni,bU
s†
b,a. (23)

The number of parameters defining the transformations of Eqs. (20)–(23) is nt = 18 + (#νR)2 +
(#s)2, as shown in Table 3, so that the number of physical parameters np thus reduces to

np = nu − nt = 7 #νR + #s + 2#νR #s. (24)

Since Lkin is invariant under each of the transformations of Eqs. (20)–(23), we can use the 
latter to redefine the fields and cast the mass matrices only in terms of physical parameters. For 
instance, with the transformations of Eqs. (20), (21), one can choose a basis in which the charged 
leptonic matrix m is real and diagonal, and similarly for the symmetric Majorana mass matrices 
m and μ (in this case using Eqs. (22), (23)). Finally, one can eliminate three phases from the 
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Table 3
Number of parameters defining the transformations of 
Eqs. (20)–(23).

Matrix Number of free parameters

UL 9
UR 9
UνR (#νR)2

Us (#s)2

Total 18 + (#νR)2 + (#s)2

Table 4
Example of a basis in which all unphysical degrees of freedom have been rotated away.

Matrix # of moduli # of phases Total

Diagonal and real m 3 0 3
d with three real entries 3 #νR 3 #νR − 3 6 #νR − 3
Real and diagonal m #νR 0 #νR

n #νR #s #νR #s 2 #νR #s

Real and diagonal μ #s 0 #s

Total 7 #νR + #s + 2#νR #s

Dirac mass matrix d while keeping m real, via a combination of transformations of Eqs. (20)
and (21). In this simple example, there are exactly np free parameters, as summarised in Table 4.

3. Effects of fermionic gauge singlets and constraints on the ISS parameters

In addition to succeeding in accommodating neutrino oscillation data, models with sterile 
fermions are severely constrained, since the mixings of the sterile neutrinos with the active 
left-handed states might induce contributions to several observables, leading to conflict with 
experimental data. The mixings of the sterile neutrinos with the active left-handed states imply a 
departure from unitarity of the 3 ×3 UPMNS matrix, which can have an impact on several observ-
ables, inducing deviations from the SM predictions. Bounds on the non-unitarity of the PMNS 
were derived in [24], using Non-Standard Interactions (NSI). These bounds are especially rele-
vant in our analysis when the masses of the sterile states are heavier than the GeV, but some are 
still lighter than 174 GeV.

If the sterile states are sufficiently light and have large mixings with the active neutrinos 
(as for example in the inverse seesaw [12], the νSM [15] and the low-scale type I seesaw [16,
17,25]), then the deviations from unitarity of the PMNS mixing matrix can be sizeable, and 
lead to (tree-level) corrections to the W�ν vertex. This will have a significant impact to several 
observables, such as corrections to the invisible Z decay width [26], significant contributions 
to lepton flavour universality (LFU) violation observables [27–29], and new contributions to 
numerous low-energy rare decays.

Another important constraint concerns charged lepton flavour violation (cLFV) since the mod-
ified W�ν vertex gives rise to cLFV processes, typically at rates higher than the current bounds 
unless the active–sterile mixings are small [12–14,30]. In the case of μ → eγ decays, the rate 
induced by the presence of the sterile states is given by [31]:
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Br(μ → eγ ) = 3αem

32π

∣∣∣∣∑
i

U∗
μiUeiG

(
m2

i

M2
W

)∣∣∣∣2

, (25)

where the index i runs over all neutrino states, U is the leptonic mixing matrix obtained after 
diagonalisation of the mass matrix and G is the associated loop function. The current bound on 
this branching ratio is Br(μ → eγ ) < 5.7 × 10−13 at 90% C.L., as reported very recently by 
the MEG experiment [32]. This will prove to be the most relevant LFV bound in most of our 
scenarios with light sterile neutrinos.

Constraints arising from neutrinoless double beta (0ν2β) decay bounds can be particularly 
relevant, since in the ISS the heavy sterile states also contribute to the process. The effective 
neutrino mass mνe

eff, to which the amplitude of the 0ν2β process is proportional, can receive 
further corrections with respect to the standard expression, 

∑3
i=1 U2

e,imνi
. Since the heavy Ma-

jorana states mix to form pairs of pseudo-Dirac states, their contribution is proportional to their 
mass difference weighted by the νe-sterile mixing. Each Majorana state thus contributes to the 
amplitude of a 0νββ decay as [33]

Ai ∝ miU
2
e,iM

0νββ(mi), (26)

where M0νββ(mi) is the nuclear matrix element that characterises the process. The latter is a 
function of the neutrino mass mi and depends on the nucleus that undergoes the 0νββ transition. 
It can be satisfactorily approximated by the analytic expression

M0νββ(mi) � M0νββ(0)
p2

p2 − m2
i

, (27)

where p2 � −(125 MeV)2 is the virtual momentum of the neutrino. We will conduct a detailed 
analysis of the impact of two minimal ISS realisations, the “(2, 2) ISS” and “(2, 3) ISS”, on the 
effective electron neutrino mass in Sections 4.1.5 and 4.2.5.

Moreover, if the typical scale of the new states is sufficiently light, they can be produced in 
collider or low-energy experiments, thus being subject to further constraints [34]. Robust labo-
ratory bounds arise from direct searches for sterile neutrinos, which can be produced in meson 
decays such as π± → μ±ν, with rates that depend on their mixing with the active neutrinos. 
Therefore, negative searches for monochromatic lines in the muon spectrum can be translated 
into bounds on the active–sterile mixing [7,35].

All the above mentioned bounds will be taken into account in our subsequent numerical anal-
ysis of the two minimal ISS realisations.

4. Phenomenological analysis

Although it is possible to derive analytical expressions for the neutrino mass eigenvalues and 
leptonic mixing matrix (see Appendices A and B), these expressions are lengthy and involved, 
and do not easily convey the general features and behaviour of the ISS configurations investi-
gated. We thus conduct a numerical analysis for each of the minimal “(2, 2) ISS” and “(2, 3)

ISS” realisations. In order to unveil some interesting features, we performed a scan of the pa-
rameter space (corresponding to all the entries of the mass matrix; in our analysis we will not 
address the effect of CP violating phases, both Dirac and Majorana). This also allows to numeri-
cally compute interesting quantities, as for instance the effective mass in 0ν2β decay amplitude. 
All the constraints listed in Section 3 were implemented. We proceed to discuss the results in the 
following sections.
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4.1. The “(2, 2) ISS” realisation

Some aspects of this model have already been studied, in particular CP violation and Non-
Standard Interactions [36]. We have determined the neutrino spectrum and the leptonic mixing 
matrix using a perturbative approach, whose details are summarised in Appendix B. At second 
order in the perturbative expansion, the light neutrino spectrum is given by:

m2
1
(2) = 0, m2

2
(2) = b − √

b2 + 4c

2
, m2

3
(2) = b + √

b2 + 4c

2
, (28)

where the parameters b and c are defined in terms of the entries of the (2, 2) mass matrix; these 
expressions are lengthy, as explained in Appendix B. Notice that b and c do not depend on the 
submatrix m of the mass matrix of Eq. (10).

Having one massless eigenstate (to all orders in perturbation theory) is a feature of this mini-
mal “(2, 2) ISS” model (see also Table 1). The expressions of Eq. (28) allow to easily understand 
why the “(2, 2) ISS” model strongly prefers the normal hierarchy scheme. In order to accommo-
date an inverted hierarchy, i.e. m2

2 � m2
3 � 10−3 eV2 and m2

3 −m2
2 � 10−5 eV2, one would be led 

to comply with 10−6 eV4 + 4c � 10−10 eV4. This amounts to an extreme fine-tuning. Although 
some solutions can indeed be found (see the numerical studies of the following section), it should 
be stressed that accommodating a NH spectrum also requires a certain amount of fine-tuning.

Even if useful when addressing the issue of the hierarchy of the light neutrino spectrum, the 
analytical expressions we have derived for the neutrino masses and leptonic mixings cannot be 
used to extract general features, nor to infer the magnitude of the fundamental scales of the 
ISS model (i.e. the magnitude of the entries of the matrices μ, m, ...). To do so, we performed 
numerical scans of the “(2, 2) ISS” parameter space, the result of which we proceed to report.

4.1.1. Mass hierarchy
As discussed in Section 2 and illustrated in Fig. 1, the low-energy phenomenology of a “(2, 2)

ISS” model is determined by two scales: that of the LNV parameter μ, and the ratio k between 
the magnitude of the entries of the d and n matrices, see Appendix A.

In our numerical analysis, we randomly scan over all parameters: the entries of the d and 
n submatrices are varied such that the obtained mixing matrix UPMNS is in agreement with 
oscillation data (global fits to both hierarchies, normal and inverted [1]) and the interval of 
variation for the entries of μ is chosen to ensure that the largest neutrino squared mass value 
∼ 2.4 × 10−3 eV2. While scanning over the parameter space, we always make sure that Eq. (9)
is fulfilled, assuming μ and m to be of the same order of magnitude. Moreover, we take all pa-
rameters to be real (leading to vanishing Dirac and Majorana phases, and hence no contributions 
to leptonic electric dipole moments).

In Fig. 2, we collect the values of the squared masses m2
i imposing that all the obtained 

mixing angles θij are in agreement with oscillation data (for both cases of hierarchy, NH and 
IH). Leading to this figure, we varied for the left (right) panel the entries of each submatrix (see 
Eq. (B.4)) as di,j ∈ [106, 108] eV, ni,j ∈ [107, 109] eV (ni,j ∈ [108, 1010] eV), and mi,j , μi,j ∈
[10−3, 10] eV (mi,j , μi,j ∈ [10−1, 102] eV).

The best fit values for the mass eigenvalues resulting from the global analysis of the oscilla-
tion experiments [1] are indicated in Fig. 2 by horizontal and vertical lines. This example clearly 
illustrates the analytical result found in Section 4.1 (as well as in Appendix B): the “(2, 2) ISS” 
model favours a normal hierarchical scheme – the inverted hierarchy requiring in this case an 
extreme fine tuning of the parameters, see Eq. (28). This can be seen in the right panel of Fig. 2, 
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Fig. 2. Squared masses of the active neutrinos for the “(2, 2) ISS” model (the lightest neutrino is massless). All points 
displayed fulfill the experimental constraints on the PMNS entries for the NH (left) and IH (right) schemes. The green 
lines denote the experimental best fit values [1] in the NH or IH schemes. The scan details are summarised in the text.

as no solutions can be encountered for an IH scheme (corresponding to �m2
32 ∼ 10−5 eV2 to-

gether with m2
2 ∼ m2

3 ∼ 10−3 eV2). Moreover, as can be seen in the left panel of Fig. 2, for the 
NH scheme, finding solutions for the light neutrino masses in agreement with data is possible 
although difficult.

4.1.2. Constraints from unitarity
The non-observation of NSI in the leptonic sector as induced by the deviation from unitarity 

of the UPMNS matrix due to the presence of additional fermions puts stringent constraints [24] on 
the ISS parameter space.

The non-unitarity effects can be quantified by

εαβ ≡
∣∣∣∣∣

7∑
i=4

Uα,iU
†
i,β

∣∣∣∣∣ = ∣∣δα,β − (
NN†)

α,β

∣∣, (29)

where N is the 3 × 3 submatrix encoding the mixings between the active neutrinos and the 
charged leptons, i.e. the PMNS matrix. Depending on the mass regime for the sterile fermions 
(above or below the EW scale) the constraints on (NN†) are different [24]. We thus identify the 
following mass regimes for our sample of “(2, 2) ISS” mass matrices:

• no (or only some) sterile states are above 1 GeV – implying that not all the extra states can 
be indeed integrated out; the NSI constraints of [24] do not apply in this case;

• all sterile states are heavier than 1 GeV, but do not necessarily lie above the EW scale, 
ΛEW ∼ 174 GeV;

• all sterile states are heavier than ΛEW.

When appropriate, we thus compute the amount of non-unitarity from Eq. (29), and apply the 
corresponding bounds, to further constrain the ISS parameter space.

Notice that in the ISS models the non-unitarity effects are proportional to the ratio O(d)/O(n)

(see for example the neutrino mass eigenvector expression for the one-generation model 
(Eq. (A.11))).

We display in Fig. 3 the most constraining deviations from unitarity parametrised by ε =
|1 − (NN†)|, see Eq. (29), as a function of an effective factor k generalising the one introduced 
in Section 2.3, which is defined as (see Eq. (B.4) in Appendix B):
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Fig. 3. Examples of ε = |1 − (N N†)| entries, as a function of an effective factor k (see Eq. (30)). On the left, ε22, for a 
mass regime in which the sterile neutrino masses are between 1 GeV and ΛEW; on the right, ε12, in the regime where 
all sterile states are heavier than ΛEW. The green lines indicate the corresponding upper bounds [24]. All points comply 
with oscillation data in the NH scheme. The scan details are summarised in the text.

k = (d1,1 + d2,1 + d3,1 + d1,2 + d2,2 + d3,2)/6

(n1,1 + n2,2)/2
. (30)

Each point is generated with random values for the entries of the d, n submatrices – but 
allowing the entries of each submatrix to vary at most over two orders of magnitude –, and 
such that the mass matrix would generate a PMNS matrix and a neutrino mass spectrum in 
agreement with experimental constraints (in the NH scheme). Leading to this figure (left and right 
panels), we varied the entries of each submatrix (see Eq. (B.4)) as di,j ∈ [103, 1.7 × 1011] eV, 
ni,j ∈ [5.5 × 104, 1.6 × 1013] eV and mi,j , μi,j ∈ [5 × 10−6, 100] eV.

As can be seen from both panels of Fig. 3, NSI constraints significantly reduce the number of 
otherwise phenomenologically viable solutions for the “(2, 2) ISS” model.

4.1.3. LFV constraints: Br(μ → eγ )

The presence of sterile fermions may impact several observables in particular LFV processes, 
with rates potentially larger than current bounds. We focus here on the radiative muon decay 
μ → eγ , searched for by the MEG experiment [32] and which provides the most stringent con-
straint on the branching ratio of Eq. (25).

In Fig. 4, we display this observable as a function of the mass of the lightest sterile state, m4. 
The investigated parameter space (the same as the one leading to the previous figures) leads to 
contributions typically below the future experimental sensitivity. However, for m4 heavier than 
∼1 GeV, one might observe a cLFV signal of the “(2, 2) ISS” at MEG.

4.1.4. Lepton number violating parameter space
From the numerous numerical scans we conducted, certain features of the “(2, 2) ISS” model 

became apparent:

• Low-energy neutrino data (i.e. masses and mixings) can be accommodated if the entries in 
each of the submatrices of Eq. (10) are allowed a strong hierarchy – varying at least over 2 
orders of magnitude.

• The model leads to a strongly hierarchical light neutrino mass spectrum, with the second 
lightest neutrino mass being strongly suppressed with respect to the heaviest one (the first 
state being massless).
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Fig. 4. Br(μ → eγ ) as a function of the mass of the lightest sterile state, m4. The green full (dashed) horizontal lines 
denote MEG’s current upper bound [32] (future sensitivity [38]). All points comply with oscillation data in the NH 
scheme and unitarity constraints. Scan details as in Fig. 3.

The size of the LNV parameters (i.e. the entries of the μ submatrix – recall that the LNV 
matrix m does not enter in the expression for the lightest neutrino mass eigenvalues, as derived 
in a perturbative approach – see for instance, Eq. (7)) is bounded from below by PMNS matrix 
constraints, and from above by the naturalness requirement. The lower limit is due to the fact that, 
to a good approximation, the entries of d must be at least one order of magnitude smaller than 
those of n (in order to accommodate oscillation data). In order to fulfill solar and atmospheric 
mass squared differences, and given that one typically has k < 10−1 (see Eq. (7)), it follows that

|μ|� k−2 × 8 × 10−3 eV � 8 × 10−1 eV. (31)

We have checked that the latter condition is indeed valid in the “(2, 2) ISS” model; the lower 
values for the μ submatrix entries, in agreement with both UPMNS data and neutrino mass squared 
differences are: min |μi,i | ∼ 0.13 eV, min |μi �=j | ∼ 5 × 10−6 eV. The upper bound on the LNV 
parameters comes from ’t Hooft naturalness criterion, even though a clear definition regarding 
the naturalness of a small dimensionfull parameter breaking some SM accidental symmetries 
does not exist. In this study, we have posited a “naturalness” upper limit of 100 eV on the entries 
of the submatrix μ. This translates into a lower bound on the factor k (since mν ≈ k2μ).

4.1.5. Neutrinoless double beta decay
When applied to the “(2, 2) ISS” model, the effective neutrino mass mνe

eff determining the 
amplitude of the neutrinoless double beta decay rate is given by (see Section 3) [33]:

m
νe

eff �
7∑

i=1

U2
e,ip

2 mi

p2 − m2
i

�
(

3∑
i=1

U2
e,imνi

)

+ p2
(

−U2
e,4

|m4|
p2 − m2

4

+ U2
e,5

|m5|
p2 − m2

5

− U2
e,6

|m6|
p2 − m2

6

+ U2
e,7

|m7|
p2 − m2

7

)
, (32)

where p2 � −(125 MeV)2 is the virtual momentum of the neutrino. From the analytical expres-
sions derived in Appendix B.2, one can see that in the limit μi,j , mi,j → 0, one has m5 → m4, 
m7 → m6, U2 → U2 , U2 → U2 , and thus the extra contribution vanishes.
e,4 e,5 e,6 e,7
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Fig. 5. Effective electron neutrino mass, mνe
eff, as a function of the lightest sterile mass m4. The green full and dashed 

horizontal lines denote the current upper bound and the expected future sensitivity [37]; blue points pass all imposed con-
straints (oscillation data, NSI, Br(μ → eγ ) and laboratory direct searches), while grey points are excluded by laboratory 
bounds. Scan details as in Fig. 3.

Our predictions for the effective electron neutrino mass are collected in Fig. 5, and displayed 
as a function of the mass of the lightest sterile state, m4. By defining an “average” effective sterile 
mass, ms = m4+m5+m6+m7

4 , three distinct mass regimes for ms can be identified from Fig. 5,

• ms 	 |p|: in this regime the effective mass goes to zero, since from Eq. (32) one approxi-
mately has

m
νe

eff = p2
7∑

i=1

U2
e,i

mi

p2 − m2
i

�
7∑

i=1

U2
e,imi, (33)

and one can write

7∑
i=1

U2
α,imi =

7∑
i=1

Uα,imiU
T
i,α = Mα,α, (34)

where M denotes the full neutrino mass matrix.
• ms ≈ |p|: the contribution of the pseudo-Dirac states becomes more important, and can 

induce sizeable effects to mνe

eff.• ms � |p|: in this regime the heavy states decouple, and the contributions to mνe

eff only arise 
from the 3 light neutrino states.

Notice that the values of mνe

eff displayed in Fig. 5 correspond to conservative (maximal) es-
timations; since in our scan all parameters are taken to be real, no cancellation due to possible 
(Majorana) phases can take place, and thus reduce the contributions of the “(2, 2) ISS” model. 
It is important to stress that all points leading to Fig. 5 comply with all available low-energy 
constraints discussed in Section 3. The MEG bound on Br(μ → eγ ) [32] and the constraints 
from laboratory experiments [35] are particularly important, and the latter are in fact responsible 
for the exclusion of a significant amount of points found (corresponding to the grey regions) in 
Fig. 5.
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Fig. 6. Squared masses of the active neutrinos for the “(2, 3) ISS” model (the lightest neutrino is massless). All points 
displayed fulfill the experimental constraints on the PMNS entries in the NH (left) and IH (right) schemes. The green 
lines denote the experimental best fit values [1] in the NH or IH schemes. The scan details are summarised in the text.

4.2. The “(2, 3) ISS” realisation

We now address the phenomenology of the next-to-minimal configuration, the “(2, 3) ISS”, 
where two generations of RH neutrinos and three sterile states are added to the SM content. In 
view of the degree of complexity of the analytical expressions derived for the simpler “(2, 2)

ISS”, in this case we directly base our analysis on a numerical approach.

4.2.1. Allowed mass hierarchies
Concerning the neutrino spectra, the crucial difference of the “(2, 2) ISS” and the “(2, 3) ISS” 

configurations is that the latter contains four light states, one being dominantly sterile-like. Its 
mass typically lies below the GeV (in the analysis we have explored the interval [0, 100] keV for 
all the entries of the μ submatrix); recall that the four remaining states are heavy, pseudo-Dirac 
pairs. As can be seen in Table 1, and similar to what occurred for the “(2, 2) ISS”, the light-
est neutrino is also massless in the “(2, 3) ISS” configurations. Thus, bounds on squared mass 
differences also translate into bounds for the masses themselves.

Our study reveals that the “(2, 3) ISS” model is not as fine-tuned as the “(2, 2) ISS” one. 
Allowing the entries of each submatrix of Eq. (10) to vary over one order of magnitude leads to 
abundant solutions in agreement with low-energy neutrino data. Concerning the hierarchy of the 
light neutrino spectrum, we have verified that both NH and IH spectra are possible in the explored 
“(2, 3) ISS” parameter space, although IH tends to be only marginally allowed, as is illustrated 
in Fig. 6. For the left panel (NH), the parameters were varied as di,j ∈ [106, 107] eV, ni,j ∈
[107, 108] eV, mi,j , μi,j ∈ [10−1, 10] eV, while leading to the right plot (IH) we considered 
di,j ∈ [106, 107] eV, ni,j ∈ [108, 109] eV, mi,j , μi,j ∈ [10, 103] eV.

4.2.2. Constraints from non-unitarity
Similar to what was previously discussed for the “(2, 2) ISS” configuration, the constraints 

coming from the non-observation of NSI (see Section 3) also apply to “(2, 3) ISS” models. We 
conducted here an analogous study: the formulae and notations are simple generalisations of 
those introduced in Section 4.1.2, the only difference being that in the present case the index i

in Eq. (29) runs over the states that are integrated out (�1 GeV), i.e., i = 5, . . . , 8. Moreover 
and since we are interested in a potential “Warm” DM candidate, we consider realisations
of the “(2, 3) ISS” model in which only the lightest sterile state lies below 100 keV (i.e. 
μ ∈ [0, 100] keV).
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Fig. 7. Examples of εαβ ≡ | ∑8
i=5 Uα,iU

†
i,β

| entries, as a function of an effective factor k (generalisation of Eq. (30)
for the “(2, 3) ISS” model). On the left, ε22, for a mass regime in which the sterile neutrino masses are between 1 GeV 
and ΛEW; on the right, ε12, in the regime where all sterile states are heavier than ΛEW. The green lines indicate the 
corresponding upper bounds [24]. Blue (red) points comply with oscillation data in the NH (IH) scheme. The scan 
details are summarised in the text.

Fig. 8. Br(μ → eγ ) as a function of the mass of the next-to-lightest sterile state, m5. The green full (dashed) horizontal 
lines denote MEG’s current upper bound [32] (future sensitivity [38]); blue and red points correspond to NH and IH 
solutions, respectively, and pass all imposed constraints (oscillation data and NSI). Scan details as in Fig. 7.

In Fig. 7 we display two examples of deviations from unitarity as parametrised by εαβ ≡
| ∑8

i=5 Uα,iU
†
i,β | as a function of an effective factor k. We notice that the relative density of 

points in the figure confirms that the “(2, 3) ISS” allows for both spectra, although with a clear 
preference for NH. As in the previous “(2, 2) ISS” model, we again verify that NSI constraints 
significantly reduce the number of viable solutions for a “(2, 3) ISS” configuration. Leading 
to this figure, we varied the entries of each submatrix as di,j ∈ [103, 1.7 × 1011] eV, ni,j ∈
[4.3 × 104, 4.8 × 1014] eV and mi,j , μi,j ∈ [2 × 10−2, 105] eV.

4.2.3. LFV constraints: Br(μ → eγ )

For completeness, we illustrate the contributions of the new sterile states to rare LFV pro-
cesses, in particular considering Br(μ → eγ ), see Eq. (25). In Fig. 8, we display this observable 
as a function of the mass of the next-to-lightest sterile state, m5. The investigated parameter space 
leads to contributions typically below the future experimental sensitivity. However, for m5 in the 
range [102, 104] GeV, one might observe a cLFV signal of the “(2, 3) ISS” at MEG.
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Fig. 9. Mixings between the electron neutrino and the lightest sterile state, as a function of the sterile squared mass m2
4. 

The green lines indicate the best fit values of (�m2
41, |Ue4|) for the 3 + 1-scheme [6], while the purple vertical line 

indicates the value m2
4 = (2 keV)2, corresponding to the mass of the (warm) dark matter candidate suggested in [20]. 

Blue and red points correspond to NH and IH solutions, respectively. The points displayed comply with all imposed 
constraints (oscillation data, laboratory, NSI and Br(μ → eγ )). Scan details as in Fig. 7.

4.2.4. An intermediate sterile scale
A fundamental difference between the “(2, 2)” and the “(2, 3) ISS” models is that, since in 

the latter case #s − #νR = 1 (see Section 2.3), the model has a third intermediate energy scale 
O(μ), which corresponds to the mass of a sterile state. It follows that if μ ≈ eV this model can 
accommodate a 3 + 1-scheme that can potentially explain the (anti)-neutrino anomalies in the 
short baseline, Gallium and reactor experiments. Should μ ≈ keV, then the model can potentially 
provide a WDM candidate (see for example the analysis of [20]).

In Fig. 9 we display the mixings of the light sterile state with νe, as a function of m2
4. All points 

are in agreement with constraints from oscillation data, NSI, laboratory and LFV constraints. As 
is clear from Fig. 9, the parameter space of the “(2, 3) ISS” can provide solutions to either reactor 
anomaly. It can also provide a WDM candidate in the form of a sterile state of mass ∼1 keV.

4.2.5. Neutrinoless double beta decay
Due to the presence of the extra light sterile state, in the “(2, 3) ISS” model there is an ad-

ditional contribution to the effective mass derived in Eq. (32). In our analysis we assumed the 
lightest sterile state to have a mass m4 < 100 keV 	 |p| ≈ 125 MeV, it contributes to the neu-
trinoless double beta decay effective mass as

m
νe

eff =
8∑

i=1

U2
e,ip

2 mi

p2 − m2
i

�
(

4∑
i=1

U2
e,imνi

)

+ p2
(

−U2
e,5

|m5|
p2 − m2

5

+ U2
e,6

|m6|
p2 − m2

6

− U2
e,7

|m7|
p2 − m2

7

+ U2
e,8

|m8|
p2 − m2

8

)
, (35)

trivially generalising Eq. (32) and where above, p2 is again the virtual momentum of the propa-
gating neutrino.

In Fig. 10 we summarise our predictions for the effective electron neutrino mass as a func-
tion of m5. Like in the previous case, by defining an “average” heavy sterile mass ms =
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Fig. 10. Effective electron neutrino mass, mνe
eff, as a function of m5. The green full and dashed horizontal lines denote 

the current upper bound and the expected future sensitivity [37]; blue and red points correspond to NH and IH solutions, 
respectively, and pass all imposed constraints (oscillation data, NSI, Br(μ → eγ ) and laboratory direct searches), while 
grey points are excluded by laboratory bounds. Scan details as in Fig. 7.

m5+m6+m7+m8
4 , one can easily identify the three distinct regimes discussed in Section 4.1.5 for 

the “(2, 2) ISS” scenario. Especially in regimes of heavier sterile masses (i.e., m5 � 1 GeV), the 
model is fairly predictive regarding the 0ν2β decays: the value of the effective mass in “(2, 3)

ISS” scenario lies just below the current experimental bound and within the future sensitivity of 
ongoing experiments [37]. Somewhat lighter sterile masses could also account for an effective 
mass within experimental reach, but these solutions are already excluded by the recent MEG 
bound and by laboratory constraints.

5. Conclusions and future prospects

In this work we proposed a methodological approach to identify the most minimal inverse see-
saw realisations fulfilling all phenomenological requirements. By adding extra sterile fermions 
to the SM (right-handed neutrinos, νR , and sterile singlets, s) whose number of generations were 
not fixed (#νR not necessarily equal to #s), we showed that it is possible to construct several 
distinct ISS models that can reproduce the correct neutrino mass spectrum.

Our general analysis has shown that the mass spectrum of an ISS model is characterised by 
either 2 or 3 different mass scales, corresponding to the one of the light active neutrinos, that 
corresponding to the heavy states, and an intermediate scale associated to #s − #νR sterile states 
(only relevant when #s > #νR).

The approach we followed was based on time-independent perturbation theory for linear op-
erators, which allowed to diagonalise the neutrino mass matrix analytically. One can thus obtain 
analytic expressions for the neutrino eigenstates and associated masses as a power series of the 
small parameters that violate the total lepton number.

As a result, we were able to identify two classes of truly minimal ISS realisations that can suc-
cessfully account for neutrino data. The first, here denoted “(2, 2) ISS” model, corresponds to the 
SM extended by two RH neutrinos and two sterile states. It leads to a 3-flavour mixing scheme, 
and requires only two scales (the light neutrino masses, mν and the RH neutrino masses, MR). 
Although considerably fine tuned, this ISS configuration still complies with all phenomenologi-
cal constraints, and systematically leads to a Normal Hierarchy for the light neutrinos. The model 



672 A. Abada, M. Lucente / Nuclear Physics B 885 (2014) 651–678
could marginally give rise to an effective mass for 0ν2β within experimental reach, but all these 
regions turn out to be excluded by current laboratory constraints and MEG bounds on μ → eγ

decays.
The second, the “(2, 3) ISS” realisation, corresponds to an extension of the SM by two RH 

neutrinos and three sterile states. This class allows to accommodate both hierarchies for the light 
spectrum (although the IH is only marginally allowed), in a 3 + 1-mixing scheme. The mass of 
the lightest sterile neutrino can vary over a large interval: depending on its regime, the “(2, 3)

ISS” realisation can offer an explanation for the reactor anomaly (in this case, m4 ∼ eV), or 
provide a Warm Dark Matter candidate (for a mass of the lightest sterile state around the keV). 
However, the detailed study of the latter possibility is beyond the scope of this work and requires 
a complete and comprehensive analysis that will be conducted in a subsequent study. Finally, 
concerning 0ν2β decays, the “(2, 3) ISS” scenario leads to effective masses close to the current 
experimental bound and within future sensitivity of coming experiments [37].

In this work, we have focused on the determination of the truly minimal inverse seesaw 
realisations. Our approach can be easily generalised to probe the phenomenological viability 
and impact of any ISS extension of the SM (for an arbitrary number of RH states and sterile 
fermions).
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Appendix A. Perturbative determination of the neutrino masses and of the leptonic 
mixing matrix

In the one generation ISS model, and in the basis defined by nL ≡ (νL, νc
R, s)T , the neutrino 

mass matrix can be written as

M =
⎛⎝ 0 d 0

d m n

0 n μ

⎞⎠ , (A.1)

where d, m, n, μ are complex numbers. This symmetric matrix can be diagonalised via [22]

UT MU = diag(m0,m1,m2), (A.2)

where U is a unitary matrix and m0,1,2 are the physical masses. To obtain U , we use the hermitian 
combination M†M (or MM†),

diag
(
m2

0,m
2
1,m

2
2

) = (
UT MU

)†(
UT MU

) = U†M†MU, (A.3)

so that the matrix U diagonalising M† M is the same as the one in Eq. (A.2).
In the following, we proceed to diagonalise the one-generation squared mass matrix M† M

of Eq. (A.1), using perturbation theory for linear operators. We also discuss the validity of the 
perturbative approach. The mass matrix M can be decomposed as
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M =
⎛⎝ 0 d 0

d 0 n

0 n 0

⎞⎠
︸ ︷︷ ︸

M0

+
⎛⎝ 0 0 0

0 m 0
0 0 μ

⎞⎠
︸ ︷︷ ︸

�M

, (A.4)

where M0 is the zeroth order matrix and �M is the perturbation (which violates lepton number 
by two units). One can write M†M as

M†M = M
†
0M0︸ ︷︷ ︸
M2

0

+�M†M0 + M
†
0 �M︸ ︷︷ ︸

M2
I

+�M†�M︸ ︷︷ ︸
M2

II

, (A.5)

where M2
I and M2

II are the components of the perturbation that are homogeneous functions of 
first and second order in the small parameters m and μ (|m|, |μ| 	 |d|, |n|).

The perturbativity condition ‖�M‖ 	 ‖M0‖ translates into conditions for the M2
0 , M2

I and 
M2

II matrices

‖M2
I ‖

‖M2
0‖ ≤ 2|m||d| + 2|m||n| + 2|μ||n|

|d|2 + |n|2 	 1,

‖M2
II‖

‖M2
I ‖ ≤ |m|2 + |μ|2

|m||n| 	 1. (A.6)

The perturbative determination of the mass eigenvalues is thus ensuring, provided that |m|, |μ| 	
|n|.

For completeness, one must also determine perturbatively the matrix U of Eqs. (A.2), (A.3), 
i.e. the leptonic mixing matrix (corresponding to the UPMNS). The eigenvalues of M2

0 are given 
by

m2
0
(0) = 0, m2

1,2
(0) = |d|2 + |n|2. (A.7)

Denoting by x(0)
0 the normalised eigenvector associated to the null eigenvalue and by x(0)

1

and x(0)
2 , an orthonormal combination of eigenvectors associated to the degenerate eigenvalue 

|d|2 + |n|2, the first order correction to x(0)
0 is given by

x(1)
0 =

∑
j=1,2

−x(0)
j

†
M2

I x(0)
0

|d|2 + |n|2 x(0)
j . (A.8)

Since |μ|, |m| 	 |n|, the coefficients in Eq. (A.8) verify

∣∣∣∣x(0)
j

†
M2

I x(0)
0

|d|2 + |n|2
∣∣∣∣ ≤ ‖x(0)

j ‖‖M2
I x(0)

0 ‖
|d|2 + |n|2 	 1. (A.9)

Similar arguments apply to the first order corrections to x(0)
j=1,2; the second order eigenvector 

corrections are still subdominant, thus confirming the validity of the perturbative approach.
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The lightest neutrino mass arises from perturbative corrections to the m = 0 eigenvalue, while 
the two other states are massive and degenerate (pseudo-Dirac heavy neutrinos). The correction 
to m2

0
(0)

at second order is

m2
0
(2) = |d|4|μ|2

(|d|2 + |n|2)2
, (A.10)

which reduces to the usual inverse seesaw result once the condition |d| 	 |n| is assumed. As 
discussed in Section 2, in this approach the only assumption on the magnitude of the physical 
parameters is driven by the naturalness requirement, i.e. |m|, |μ| 	 |d|, |n|.

The eigenvector associated to m2
0
(2)

is given at zeroth order in the perturbative expansion by4

x(0)
0 = eiα0

⎛⎜⎝ − nd∗
|d|√|d|2+|n|2

0
|d|√|d|2+|n|2

⎞⎟⎠ , (A.11)

and its first order correction is

x(1)
0 = eiα0

⎛⎜⎝ 0
− μ|d|n∗√

(|d|2+|n|2)3

0

⎞⎟⎠ . (A.12)

The first order corrections to m2
1,2

(0)
lift the degeneracy of the states and are given by

m2
1
(1) = −|μ∗n2 + m|d|2 + m|n|2|√|d|2 + |n|2 , m2

2
(1) = |μ∗n2 + m|d|2 + m|n|2|√|d|2 + |n|2 , (A.13)

with zeroth order eigenstates

x(0)
1 = eiα1

⎛⎜⎜⎜⎜⎝
− d∗(m|d|2+m|n|2+n2μ∗)√

2
√|d|2+|n|2|n∗2μ+m|d|2+m|n|2|

1√
2

− n∗(m|d|2+m|n|2+n2μ∗)√
2
√|d|2+|n|2|n∗2μ+m|d|2+m|n|2|

⎞⎟⎟⎟⎟⎠ , (A.14)

x(0)
2 = eiα2

⎛⎜⎜⎜⎜⎝
d∗(m|d|2+m|n|2+n2μ∗)√

2
√|d|2+|n|2|n∗2μ+m|d|2+m|n|2|

1√
2

n∗(m|d|2+m|n|2+n2μ∗)√
2
√|d|2+|n|2|n∗2μ+m|d|2+m|n|2|

⎞⎟⎟⎟⎟⎠ . (A.15)

4 The phases αi cannot be fixed by diagonalising M†M in (A.3). In fact, given an orthonormal basis of vectors, one 
can freely change their phases and still have an orthonormal basis. They must be fixed using Eq. (A.2) and imposing that 
mi ≥ 0 for all i.
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Table 5
Example of a basis in which the number of parameters matches the number of 
physical parameters.

Matrix # of moduli # of phases Total

Diagonal and real m 3 0 3
d with one real column 6 3 9
m 3 3 6
Real and diagonal n 2 0 2
μ with real diagonal 3 1 4

Total 17 7 24

Appendix B. Study of the “(2, 2) ISS” realisation

Here, we use the perturbative approach described above to determine the neutrino spectrum 
and the leptonic mixing matrix. In this minimal model, the neutrino mass terms in the Lagrangian 
are

−Lmν = nT
L C M nL + h.c., (B.1)

where

nL ≡ (
ν1
L, ν2

L, ν3
L, ν

c,1
R , ν

c,2
R , s1, s2)T

, and C = iγ 2γ 0. (B.2)

The “(2, 2) ISS” mass matrix M is given by

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 d1,1 d1,2 0 0
0 0 0 d2,1 d2,2 0 0
0 0 0 d3,1 d3,2 0 0

d1,1 d2,1 d3,1 m1,1 m1,2 n1,1 n1,2
d1,2 d2,2 d3,2 m1,2 m2,2 n2,1 n2,2

0 0 0 n1,1 n2,1 μ1,1 μ1,2
0 0 0 n1,2 n2,2 μ1,2 μ2,2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (B.3)

Using Eq. (24), the number np of physical parameters is 24. In the following we choose5 a basis 
in which one has exactly 24 free parameters, as shown in Table 5.

In the chosen basis, the mass matrices M0 and �M (M = M0 + �M) are given by

M0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 d1,1 d1,2 0 0
0 0 0 d2,1 d2,2 0 0
0 0 0 d3,1 d3,2 0 0

d1,1 d2,1 d3,1 0 0 n1 0
d1,2 d2,2 d3,2 0 0 0 n2

0 0 0 n1 0 0 0
0 0 0 0 n2 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

5 The mass matrix of Eq. (B.3) can be cast in such a form through the following procedure: via a combination of 
the transformations in Eqs. (20) and (21), one can always choose a basis in which the charged leptonic mass matrix 
m is diagonal and real. With a combined transformation of Eqs. (22) and (23) the matrix n can be rendered real and 
diagonal; similar transformations allow to eliminate two phases form the matrix μ (for example those in the diagonal) 
while keeping n real. Finally, another combined transformation of Eqs. (20) and (21), allows to make one column of the 
Dirac mass matrix, d , real (the first one, for example), while keeping m real.
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�M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 m1,1 m1,2 0 0
0 0 0 m1,2 m2,2 0 0
0 0 0 0 0 μ1,1 μ1,2
0 0 0 0 0 μ1,2 μ2,2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (B.4)

where (di,1, ni, μi,i ) are real and (di,2, μ1,2, mi,j ) are complex numbers.

B.1. Massless eigenstate

Having a massless eigenstate is an unavoidable feature of the minimal “(2, 2) ISS” and “(2, 3)

ISS” realisations. In the minimal “(2, 2) ISS” realisation, the massless eigenstate is given by

v1 = ei(α1−φ3)(�̃1,−�̃2, �̃3,0,0,0,0)T ,

�̃i = �i√|�1|2 + |�2|2 + |�3|2
= |�̃i |eiφi , (B.5)

with

�1 = d2,1d3,2 − d2,2d3,1, �2 = d1,1d3,2 − d1,2d3,1,

�3 = d1,1d2,2 − d1,2d2,1, (B.6)

which is compatible with the constraints on the UPMNS matrix, in both cases of normal and 
inverted hierarchy.

B.2. Perturbative diagonalisation

At zeroth order, the (squared) masses of the system are given by the following set of eigen-
values of the matrix M0 of Eq. (B.4)

λ =
{

0,0,0,
f − √

f 2 − 4g

2
,
f − √

f 2 − 4g

2
,
f + √

f 2 − 4g

2
,
f + √

f 2 − 4g

2

}
, (B.7)

where

f = |d1,2|2 + |d2,2|2 + |d3,2|2 + d2
1,1 + d2

2,1 + d2
3,1 + n2

1,1 + n2
2,2,

and g = |d1,2|2
(
d2

2,1 + d2
3,1 + n2

1,1

) + |d3,2|2
(
d2

1,1 + d2
2,1 + n2

1,1

)
+ |d2,2|2

(
d2

1,1 + d2
3,1 + n2

1,1

) − d1,1d2,1d2,2d
∗
1,2 − d1,1d1,2d3,1d

∗
3,2

− d2,1d2,2d3,1d
∗
3,2 − d1,1d3,1d3,2d

∗
1,2 − d2,1(d1,1d1,2 + d3,1d3,2)d

∗
2,2

+ d2
1,1n

2
2,2 + d2

2,1n
2
2,2 + d2

3,1n
2
2,2 + n2

1,1n
2
2,2. (B.8)

Two of the three massless states receive perturbative contributions from �M of Eq. (B.4) and, at 
second order in the perturbative expansion, the light neutrino spectrum is given by

m2
1
(2) = 0, m2

2
(2) = b − √

b2 + 4c
, m2

3
(2) = b + √

b2 + 4c
, (B.9)
2 2
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where the parameters b and c are expressed in terms of the entries of the (2, 2) mass matrix 
given in Eq. (B.3) (b and c do not depend on the submatrix mi,j ). Due to the long and involved 
expressions for both parameters b and c, we refrain from displaying the corresponding formulae 
here. Nevertheless, the compact expressions above allow to extract important information: the 
“(2, 2) ISS” scenario strongly prefers the NH scheme.
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