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§1. INTRODUCTION

WE constDer a C ?-diffeomorphism ¢ : R" - R" with ¢(0) = 0. The differential deo | To(R™)
induces a sphtting To(RM) =T°@ T°@ T% where T°, T° and T are invariant under dg
and the eigenvalues of de, restricted to T¢, resp. T°, resp. T“ are, in absolute value,=1,
resp. <1, resp. > l. The fixed point 0 of ¢ is called Ayperbolic it dim(T¢) = 0. We shall con-
sider the partially hyperbolic case where dim(7T°) # 0 and dim(T* @ T*) # 0. Such partially
hyperbolic fixed points arise for example as fixed points of the time ¢ integral of a vectorfield
with a generic closed orbit with period 1.

A rather general example of a diffemorphism with a partially hyperbolic fixed point is
the following:

QXL o X M e Yy Thy e Z0)
=(p (X, oy Xy ey Xy, oy X,

Zali(xlﬂ "'*xc).yis ---;Zasi(xl"--yxc)'yiy
Zbu(xn X Zj Zbuj(xl, ey X T Zp)
I i

where:
(1) X, ooy X0, Yy ovos Yoy 24, - -, 2, ate coordinate functions on R"; n = ¢ + 5 + u;
{(2) all eigenvalues of (2—@') in (x, = -+ = x. = 0) have absolute value one;
(3) all eigenvalues of (aijzo, ..., 0)) have absolute value <1;

(4) ali eigenvalues of (6,0, ..., 0)) have absolute value >1.

Definition 1. If a diffeomorphism ¢ has the above form with respect to the coordinates

(x¢, ..., z,) we say that (p; x,, ..., 2,) is in standard form.
If @ has the above form, with respect to (x,, ..., z,), only in a neighbourhood of the
fixed point we say that (¢; x, ....z,) is locally in standard form.

Definition 2. Let ¢ : R" - R®" be a diffeomorphism with ¢(0) =0 and let Ty(R") =
T°®@ T°@® T" be the induced splitting. The eigenvalues of do|T°@ T* are denoted by
f1s ooy 45 We say that ¢ satisfies the Srernberg k-condition if
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[A71 24 A # L
forall (j;v,,...,v)withl<j<h v,>0and 2 < Zv, <k and
[ A ] A
forall (v, ..., ) with v, >0 and 2 < Zv, < k.
Our main result can be stated as follows:

THEOREM. Let ¢ : R"—> R" be a C™ diffeomorphism with ¢(0) = 0. If ¢ satisfies the
Sternberg 2((de), , k)-condition, then there are C*-coordinates (x|, ..., Xc, Y1y oory ¥or Zpr v es
z,) on R" such that (¢; x\, ..., z,) is locally in standard form; the function x is defined below.

The functions « and B. We first have to introduce some notation:

Let A, ..., 4, be the eigenvalues of do| T°@® T° and suppose [4,] < |4, < - < {4l <
P<llgnrl - < |4l we define M = |4,), N = |47 i = [A,,), A= A170

The integer valued function f§ is the function which assigns to a pair ((d¢),, k) the
smallest integer B((de),, k) for which N - M" - i" ~#(e)o%) | forall r < k (N, M and 7 are
functions of (dp),). Because @ > 1, B((de),, k) is always finite; also f((dp),, k) > k.

The function « assigns to a pair ((dg)g, k) the smallest integer a{(de),, k) for which
M - N7 - m"~x@elk) 1 for all r < B((d@),, k).

Remark. Suppose a splitting To(RY=T@T°@® T" is given. Consider the set
L(T¢, T¢, T*) of those linear automorphisms of R" which leave T, T* and T* invariant and
whose eigenvalues on T¢, T°and T" are, in absolute values, =1, <1 and > 1. For any given k,
the set of elements 4 € L(T¢, T, T*) which satisfy the Sternberg «((dA),, k)-condition is
open and dense. If, for some diffeomorphism ¢: (R", 0) - (R", 0), the derivative belongs to
that open and dense subset of LT, T, T*), then ¢ satisfies the assumptions of our theorem.
Hence one can say that *“ generically > the assumptions in our theorem are satisfied.

Remark. For the case where dim T¢ = 0, i.e. in the hyperbolic case, we get a weakened
form of Sternberg’s theorem [5). From Hartman’s theorem, generalized by Hirsch, Pugh
and Shub, it follows that for every partially hyperbolic fixed point there is a C°-change of
coordinates which brings it in normal form.

The main theorem will follow from the next three propositions:

ProPOSITION 1. Let ¢ : (R, 0) — (R", 0) be a C ® diffeomorphism satisfying the Sternberg
I-condition. Then, for any integer N, there is a neighbourhood U of 0 in R" and C" coordinate
Sfunctions x;'y ..., x vy Vs 2y o2, such that @|U=Sp|U+ Re|U (addition
with respect to x;, ..., z,/), where:

) (Se; x', ..., z,)) is in standard form;

(2) Ry, as well as its derivatives up to order I, are zero along {y,’ =" - =y, =2/ =
=z, = 0);
(3) the subspace {y,' = -+ =y, = 0} is invariant under Ro.

Remark. 1t is enough to prove the theorem for S¢ + Re obtained in Proposition 1.
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PROPOSITION 2. Let ¢ : (R, 0)— (R",0) be a CV diffeomorphism, N = x2({(do),, k).
Suppose that ¢ = S¢ + Ro as in the conclusion of Proposition [ (with respect to the
coordinates xi, ..., z,) with | = 2((dp)y, k). Then there is a CPU%" %\ _coordinate system
(x'y...,z,)) on R" such that, in a neighborhood of 0, we have ¢ = S'¢ + R'@ where:

() (S'e; x'. ..., z)) is in standard form;
(2) R, as well as its derivatives up to order B((dp),, k), are zero along {y," = =
ys =0}
PROPOSITION 3. Let ¢ : (R", 0) — (R", 0) be a CH'4" diffeomorphism. Suppose that,
with respect to the coordinates x,, ....z,, ¢ = S’ + R'o as in the conclusion of Proposition 2.
Then there are C*-coordinates x'. ..., z,/ such that (¢, x,’, ..., z,) is locally in standard

form.

The Propositions 1, 2 and 3 are proved in Sections 2 and 3. In Section 4 we formulate
the analogue of our main theorem for a partially hyperbolic zero point of a vectorfield and
indicate how the proof for that case can be obtained from the proof for diffeomorphisms.
In Section 5 we give an application to hyperbolic closed orbits. Our result there is that, in
a neighbourhood of a generic closed orbit of a vectorfield, the vectorfield is **linear™ with
respect to suitable C*-coordinates.

I would like to thank R. Thom for suggesting to me the problem treated in this paper.
In conversations with C. C. Pugh and M. Shub I learned about techniques which they
developed in treating similar problems [1], [2]; these techniques were basic for the proof of
the Propositions 2 and 3.

§2. THE PROOF OF PROPOSITION 1

By the invariant manifold theorems [2], we can choose coordinates x;, ..., X., ¥, .-,
Ys» 21, -+, Z, on R" such that the following submanifolds of R™ are locally invariant for ¢:
W*={x=0and z =0}
We = {z=0}
We={y=0and z =0}
we = {y =0}

W¢= {x=0and y=0}

(x,y, zstand for (x, ..., x.}, ()1, .., o), (24, - - -, 2,)) and such that T¢, resp. T, resp. T"are
tangent to W€, resp. W¥, resp. W* A submanifold, W, containing the origin, is locally
invariant for ¢ if there is a neighbourhood U of the origin such that (W) n U= W U =
@~ Y(W) n U. All coordinate systems on R" in this paragraph are supposed to have the above
property.

Remark. We may assume that the above coordinate system is C™ for any m < o0 here
it is enough to assume that m is large compared with N.

Definition 2.1 (the spaces V,). Let ¥, be the manifold of r-jets of embeddings (R", 0) —
(R", 0); h=dim(T°@® T*). ¥, is obtained from V, by the following identifications: o,
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and x, € V. are identified in V, if there is a linear map x: (R* 0)— (R* 0) such that
11 c A= 12 N

V, is clearly a manifold. ¢ induces on each V. a transformation @, : V. - V., which
assigns to the jet of « : (R*, 0) — (R", 0) the jet of ¢ » 2. Since @, commutes with the identifica-
tions, there is an induced transformation ¢, : ¥, — V,. There is also a natural projection
n,: V,— V,_,; the following diagram commutes:

N
-~

- T

——
——

@r
—_—
©r-1
—_—

N
=

~-1 -1
LEMMA 2.2. Under the assumption (as in Proposition 1) that ¢ satisfies the Sternberg

I-condition, there is for each | < r < [ a unique element {a}, € V, such that:

(i) [«], can be represented by an embedding (R",0)— (R" 0) with image tangent
o TP T
(i1) [2], is a hyperbolic fixed point of @, .
Proof. We shall prove the lemma by induction on r; first we do the induction step, then
we give the proof for r = [.

The induction step. Take I >r > 1 and assume that there is a unique [x),_, € V,_;
satisfying the conditions (i) and (ii). If there is an element [«], € V, satisfying the same two
conditions, it must lie in =7 '([«],~;). We may, and do, assume that our coordinates
(x,, ..., z,) in R"are such that [z],_, can be represented by the linear embedding 9 : (R*, 0) —
(R", 0) given by (w,, ..., w,) = (0,..., 0, w, ..., w,). Using this coordinate system, every
element in 77 ([«],-,) can be uniquely represented by a map (R*, 0) — (R", 0) of the form

Wy ooy WD (Dy,y oo Pes Wy Gy, ooy Wy Gy)
where p,, ..., p. and gy, ..., g, are homogeneous polynomials of degree r in w, ..., w,.
Because the set of homogeneous polynomials is a vector space we can give n, '([x],_,) the
structure of a vector space. We take [9], as the origin in 7] '([],-,) (8 is the linear embed-
ding).

@, maps n7'([x],_,) to itself; so we can define @,: n;'({z],—,) =, ([«],~1) by
3,081 = ©.[8] — ¢,[3], (“—=""is defined by means of the above vector space structure
in 7,7 Y({a),_,) ). We now only have to show that &, is linear and hyperbolic, because from
that it follows immediately that ¢, has exactly one hyperbolic fixed point in 7, '([2],_,).

First we introduce some notation: for [8]€ =, !([a],_,) the corresponding map of the
form (wy, ..., W)= (P1s .oy Pes Wi + 41y - .., Wy + g;) is denoted by B (p; and g, are homo-
geneous polynomials of degree r). The linear map A : (R”, 0)— (R 0) is such that the
(r — 1)-jet of @ o 3 o 4 and 3 are equal.

For any [8] € 7 *([a],-,) the jet ¢ [B] is represented by ¢ o o 4; §,.[f] is represented

by@oBoAd—podod+8(“+ and — refer here to the vector space structure in R" cor-
responding to the coordinates xy, ..., z,). Because the (r-1)-jets of f o A and 3 » A4 are equal,
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the r-jet of @ > f+ A — @ >3 > 4 + 3 depends linearly on the r-jet of 3, so p, is linear. We
now come to the hyperbolicity:

(a) Diagonal case. We first assume that, with respect to our coordinate system x,, ...,
z,, (dp)y is in diagonal form. This means that ¢ has the form

@(xy, oo n) = (2. ooy BeZes Ay Xy, -, AyZ,) + terms of order 22,

where u;/ =1 and 7, ..., ), are the hyperbolic eigenvalues of (d¢), which occur in
the Sternberg condition. In this case A:(R" 0)— (R* 0) is given by A(w,....w,) =
(27w, ..., A, 'w,). @, can now be computed; by straightforward calculation it follows
that @, is in diagonal form, i.e. we can find a basis of =7 '([¢],-,) consisting of eigenvectors
of @,. The elements of this basis are denoted by

Giigooodn] i=1ic i iy20 Y =r
v=1
and
nt
{Joie ..o i J=1 ., iy, .., i,=20 Yi=r
v=1
li; iy, ..., iy} is represented by (wy, ..., W) r=> (P, v\ Pov Wia -0, W) Withpy = Wi - - win

and p; =0 fori" £ i {j;i,..., 4} is represented by (w,, ..., w,)— (0. ..., 0, wy +4, ..,
wy +g,) with g;=w¥, .., wir and g;- =0 for j' #,. The eigenvalue corresponding to
lis iy oooy i) is py - 278 - -+ - 27 the eigenvalue corresponding to {j; iy, ..., i} is
Aje Ayt .o AT None of these eigenvalues has absolute value one because of the Stern-
berg condition, hence @, is hyperbolic.

(b) General case. We reduce the general case to the diagonal case by ** complexifying”.
We first remark that almost everything which has been done in the proof of the induction
step up to now also makes sense if we replace the reals everywhere by the complex numbers
(because we mainly worked with polynomials). The only thing which must be changed is
¢: we replace it by a polynomial map which has the right r-jet. The eigenvalues of @, are the
same for the two cases (real and complex), so it is enough to compute them for the complex
case. By the Jordan normal form theorem, there are, for every ¢ > 0, linear coordinate
transformations

X =

lIVM o

5 u
Xijx;, yizz)ijyj’ Zi=ZZij:j
i=1 i=1 =1

(X;; Yi; and Z;; € €), such that, with respect to X, ..., Z,, (d@), is in Jordan normal form
with gy, ..., ., A, ..., 4, on the diagonal and with off diagonal terms 0 and e.

The eigenvalues of @, are independent of such coordinate changes, so they are indepen-
dent of the above ¢; so we may assume ¢ = O (the eigenvalues of @, depend continuously on
{(d@), ). Now we are back in the ‘“ diagonal case” for which we proved hyperbolicity.

Proof for r = 1. There is only one element [a], € ¥, which can be represented by an
embedding with image tangent to T°@® T* The hyperbolicity of [x], as a fixed point of ¢,
is the only thing we have to prove.
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The elements of V| near [«]; can be represented in a unique way by the following type
of linear embeddings:

Wiy oo s W) (Bry o ov s Doy Wi, vy W)

where p, ..., p. are linear functions of wy, ..., w,. The hyperbolicity now follows just as in
the proof of the induction step.

Definition 2.3 (the space V,*). Let V.* be the manifold of r-jets of embeddings (R*, 0) —
(R", W<); k is the dimension of T°@® T* V.* is obtained from V.* by the identifications:

2, and «, € V.* are identified in V,* if there is a linear map « : (R", 0) —» (R*, 0) such that
A oo =y,

Remarks. 1t is clear that V, < V,*; there is a natural projection p: V,* - W which
assigns to each element x € V,* the “image of 0. p~}(0) = V,.

Because W€ is locally invariant, the map ¢, : ¥, — V, extends to a map ¢, * defined on a
neighbourhood of V, in V,*; ¢, *(x) is the jet of ¢ o «.

Construction of the required coordinate system (x’, ..., z,/). By Lemma 2.2 we have a
hyperbolic fixed point [«], of ¢, in V. [«], is of course also a fixed point for ¢*, but not a
hyperbolic fixed point (the set of eigenvalues of (d¢,*)p,;, is the union of the set of eigen-
values of (d¢,),;, and the set of eigenvalues of d(p| W),). Let W*° < V* be a center
manifold for [z), in V,*. We may assume that W*< js as differentiable as ¢,*; so we may
assume that the class of differentiability of W* is large, compared with N. p:V.* = W*
restricts to a map p, : W*° — W< which 1s, restricted to a small neighbourhood of [«],, a
diffeomorphism. This means that for every P in W, sufficiently close to the origin, we
have a class of /-jets of embeddings (R", 0) — (R", P) representing p] '(P). Now we choose
the coordinate system x,’, ..., z,” such that:

(1) It has the property described in the introduction of this paragraph (in par-

ticular {y,” = -+ =y, = 0} is locally invariant under ¢);
(2) for each P e W'¢, close enough to the origin, p.'(P) is represented by the affine em-
bedding (affine with respect to x,’, ..., z,/):
ey oz xSy vz z)
where
P=(x/,....,x/,0,...,0)
Because W*<is very differentiable we may assume that x,’, ..., z," is C¥.

By the local invariance of W* it follows that, for some neighborhood U, of the origin,
e|U, = Sp|U, + Re| U, where (Sp; x,’, ..., z,) is in standard form, and Re, as well as
its derivatives up to order /, are zero along W*. This proves Proposition 1.

§3. THE PROOF OF PROPOSITIONS 2 AND 3

We assume that the map ¢, the coordinates x,, ..., z, and the “splitting ¢ = Sp+ R ”
are as in the assumptions of Proposition 2.

Definition 3.1 (the transformation ®©, on J'(R", R"). The elements of J(R", R") can be
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represented by pairs [p, o)., where pe R" and ¢ 1s a C" map from a neighbourhood of p to
R". The transformation ®@,: J(R", R") - J'(R", R") maps the jet, represented by [p, ¢], to
the jet represented by [Se(p), ¢ = ¢ o (Sp)~'],, (we assume in this definition that ¢ is C7).

Remark 3.2. J(R", R") is fibered over J""Y(R", R"). 7, : J(R", R") —» J " YR", R") is the
projection. We clearly have ®,.; » %, = 7, o ®,. Each fiber of n, is an affine space; if
xeJ" YR, R") then the map of n () to ] Y(®,_,(x)). induced by ®,, is an affine map
(see also the proof of Lemma 2.2). One also has a projection =°:J°(R", R") — =" which
assigns to [p, ], the point p (¥, is not an affine map on fibers of 7).

Definition 3.3 (the fiber mertrics). We want to define in each fiber of n, r > | a metric.
For this purpose we first choose a (Euclidean) metric on R" (this metric will be specified
later). The distance p,([p, 6, ],, [p, 01].) between two jets, represented by {p, ¢,],and [p, 6,],,
in the same fiber of r, is then defined as follows:

(p, 0y, 0,) defines a map &, , : T,(R") - T,,,(R")
(6(p) = a1(p) = 02(p)):
&1, 2(X) = Expg,, © 0, » Exp,(X) — Expypy© 030 Exp,(X)
for X e T,(R"), where Exp, : T,(R") - R" is the usual exponential map. We take

plp, 5,1, [p, 02),) = lim( sup ('5'1. z(X)];))

a=o\|xj=a\ [XI7

where | | is the norm of a vector with respect to our Euclidean metric on R". The limit is
finite because [p, 6], and [p, 0,], are in the same fiber of 7, and hence the (r — 1)-jet of
3,5 1s zero. The limit is determined by the r-jet of &, , and hence determined by the r-jets
of ¢, and g, in p. The proof that p, is really a metric (triangle inequality etc.) is left to the
reader.

The metric p, on fibers of 7y 1s defined by po({p, 0,1y, [2, 0216) =p(p(5,), p(6y)); p is
the distance in R” defined by the Euclidean metric.

Lemua 3.4, Let [p, 6,], and [p, 9,), represent two jets which are in the same fiber of
nr’ rz I, and Ie[ Ul(p) = a-l(p) = q Then pr((br[p’ 61 }r’ (Dr[p’ O'z],. < ” d((SC.O)_l)Sc(p) Hr
) Hd@4n : pr([p) 0-l ]rv [P’ UZ]r)’ W'here

ide,ll = sup  {do(X)].
x5

LeMMA 3.4, Let {p, o, ]o and [p, 011y be given, the:: po(®ylp, 0,10, Polp, 0216) < sup
1(0,1]

“(d(/’)qt” “pol[p, o110, [Py 92)0), where q, =t o(p) + (1 — 1) - 0,(p).
Proof. Follows immediately from the definitions.
The metric on R". We define for p € W the following numbers:

i, = (dg), |
N, = [d(Se) ™),
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and
iy = [for p & W= p(Se(p), W) - (p(p, W)™
? " \forpe W= lim inf(m,).

o e Weu

p ¢ we

P —-p
(W<, W€ etc. have here the same meaning as in Section 2). They are, for p = origin, closely
related with the invariants M, N and #i, defined in Section 1, which depend only on the
eigenvalues of (dp), . In fact, for every £ > 0, we can choose our Euclidean metric on R" so
that My <M + ¢, Ny < N + ¢ and 1iiy > it — &. According to the definition of «((d¢),, k)
and B((dp)e, k) (Section 1) we know that M- N™ - mr =40 <1 for all r < B((de),, k).
Hence it follows that we can choose a metric on R”" such that M, - N,, - "~ 0k
for some fixed ¢ < | and all r < f((dp),, k). From now on we assume that our metric
on R"is fixed and is such that theabove inequalities are satisfied; the fiber metrics (Definition
3.3) are also assumed to be derived from this metric on R". From now on g will always

stand for the fixed constant in the above inequality.

Modification of ¢. Now we modify our diffeomorphism ¢ {outside a neighborhood of

0). Take v : {yy =" =y,=2z,=+--=2,=0} = W°—> R a non-negative partition func-
tion, 1 on a neighborhood of the origin and zero at distance > | from the origin. x, : W°— R
is defined, for 6> 0, by x,(x, ..., x.) =x{x//b, ..., x./b). We modify ¢ = Sp + Ry as
follows:

We replace S¢ by i, - S¢ + (1 — K,) - Lo and we replace Ry by ¥, - R, where

Ry(Xys eees Xy Vi enes Ver Zys v eny Zy) = K3p(Xq, o0, X0)
and Le is the linear (with respect to x,, ..., z,) map L, : (R", 0) - (R", 0) with d(Lg), =
(de)o -

It is clear that there is a small neighborhood of 0 in which ¢ is not changed. Also the
new ¢ satisfies the conditions in the assumptions of Proposition 2. We may, and do, assume
that b is so small that for any three points p, g and v in W€ and r < B((dp),, k) we have
M, - Nj - m7=00 <4 where u < 1 is the constant which occurred in the discussions
on the metric on R". From now on ¢, S¢ and Re will refer to the functions after the above
modification.

We define K; « W to be the closed & neighbourhood of W€ in W We can choose 8
so small that for all, p, g and v € K5 and r < f((de),, k) we have M, - N - " 724000 <y
i as above. From now § as above is fixed.

LemMa 3.5. Let [p, 6,), and [p, ¢,], be two jeis in the same fiber of n, with p, So(p),
o,(p), 6:(p) € Ky but p ¢ W<, and r < B((de)o, k); then:
pA@.Lp, 5.1, ©,[p, 521) - (p(Se(p), W)y ~=(@
<pu- pr([p, o), [p, o))" o(p, WC)r—d((dwo).k).

Proof. By the definition of ni, we have p(So(p), W¢) =11, p(p, W*) and by Lemmas
3.4 and 3.4’ we have
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This, together with the above property of K;, proves the lemma.

We are now in a position where we can prove Proposition 2 by giving a convergent
sequence of **jets of coordinates along W ™" the limit of which is invariant under ®.
Consider the map 3,: W - J((R", W), (R", W<)) defined by 3,(p) = [p, identity], for
all pe W< - 3, is a cross-section of the bundle

M=y ooy om tJUR W), (R, W) —» W

To a section of T1, we can apply the transformation ®, as follows: If x : W - J"((R", W),
(R", W) is a section of T1, then @, x is the section which assigns to p € W the jet (®, x)p =
®,(x(q)), where g = (Sp)™'(p).

We shall prove the following Proposition 2" and then derive Proposition 2 from it.

PROPOSITION 2. The sequence of secrions of T1,, defined by {(®,)'3,}7 | converges to a
continuous section of 11, for r < B((de),, k).

Proof. We shall prove that for some fixed 0 < &’ < 4 the above sections, restricted to
K., converge (under the above hypothesis). This is enough because the ** unrestricted limit ~
equals the iterated ** restricted limit ” (since if we apply (@,) to a section over K., we obtain
a section over (Sp)'(K,) and lim,_. ((Sp)K,) = W)

Let

C= Pol(@o 30)(p), 3o(p))
= . W
pewWe

C is finite because of the definition of @, and the fact that Re is zero up to order «((dgp), , k)
along /¢ and has compact support. Take D > C/1 — p (this is the same u which occurred in
Lemma 3.5) and take 0 < 6’ < § such that &' + D - (§')* @0k 5.

Definition 3.6 (THE SPACE F ). & , is the space of continuoussections x of T, defined on
K, for which po(x(p), 3o(p) < D-(p(p, W) 4% for all p e Ky.. The topology on F,is
given by the following metric: For xy, k, € #, o(k,, &,) is the smallest number such that
Polri(p), k2(P)) < Poly, K2) - (p(p, WYX for all p e K,

LemMma 3.7. @©y induces a map from &  into itself which is a contraction with respect to
the metric pg .

Proof. The map from &, to itself, induced by ®, is the following: Let ke #,, then
@, « is a section of IT, defined over (Sp)(K;) > K, ; in order to get again an element of &,
we restrict @yk to K. We call this induced map also ®@,. Now we show that ®, maps F,,
mto itself.

Let ke F, and peK, such that Se(p)e K, . Then py(k(p), 9o(p)) =p(x(p), p) <
D-(8'y U999 50 p(k(p), W€) < & (we used here x(p) also for the image point of p under the
Jet k(p)). Therefore we can apply Lemma 3.5 and obtain:
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Pol(DorX(q), (Do3a(q)) - (p(g, W)~ 00D
< i po(K(p), Bo(p)) - (p(p, W) X190 R <y - D,
where ¢ = S¢(p); we also have
Po((Py F0)(q), Bo(9)) - (p(q, W) >0 < C
(this is the same C we defined in the beginning of the proof of Proposition 2) so
Po(@ar)(q), 3o(q)) - (p(g, W))™*@* B < C 4 - D < D.
This shows that @, maps %, into itself.

The fact that @, is contracting follows from Lemma 3.5.

Remark 3.8. Because @, is a contraction on %, there is a unique k, € %, such that
for any k€ #,, lim,_ , (®,)'x = ry; in particular 3,| K, , and hence 3,, converges to a
continuous section of IT,.

Definition 3.9 (the spaces # ;). We first define sections S, : /"~ '(R", R™ = J(R", R") for
r> 1. Let [p, ¢),_, represent an element of /"~ }(R", R™). If we require that, for r > 2, ¢ be
a polynomial map of degree <r — 1, and, forr = I, ¢ be an affine translation, then the map
g is, for the given jet, unique. We then define 5 ([p, 6],_,) to be the r-jet, at p, represented by
this unique map o.

We now define the space F; of continuous sections Ky — JY((R", W), (R", W) by
induction (&, is already defined (Definition 3.6)): &, is the set of those continuous sections

G

x such that the corresponding (i — 1)-jet section n; o x is in % ;_,; and such that there is
a constant A(x) such that for all p € K,
piK(P), (S 7o K)(p)) < A(x) - (p(p, WY 71
The natural projection & ; — %, _, is denoted by IT;. In each fibre of I1; we define the fol-
lowing metric g;: If x| and &, are in the same fibre of IT; then p,(x, x,) is the smallest
number, such that for any p € K.
pi(k (), k2(P)) < By, K2) * p(p, WO O™

Lemma 3.10. For each i < B((dp)y, k), ®; induces a map from F, into itself; for any
k€ F,_,, the map induced by ®; from 77 (x) to #7(®,_,(x)) is a contraction with respect
to the fiber metric p;.

Proof. We first show that ®; induces a map from & into itself. We know that this is
true for i = 0 (Lemma 3.7) so we can apply induction. Suppose that ®;_; induces a map
from & ;_, into itself. Take v € &#;. Then:

(1) merneF
(i) p(R(p), (Si o m o K)(P)) < A(K) * (p(p, W)Y K71 for some A(x) and all
peR,.
We have to show that @, x, restricted to K., also satisfies the above two conditions. From
the induction hypothesis it follows that z; o (@, x) = ®@,_ (7, o k) € F,_,, s0 D, « satisfies (i).

To show that @, x satisfies condition (ii) we first observe that for p € K-, sufficiently
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far away from the origin we have (O (S; o 7; o K))(p) = (S; » 7;° (P; x))(p) because then ¢ and
S¢ are linear (see “ modification of ¢ ). This means that, for p far enough from the origin,

pi(®:k(p), (Sio 7o (B:))(p) < p + A(x) - (p(p, W07
(see Lemma 3.5).

Next we show that the images of 3; and @, &, as submanifolds of J((R", W), (R", W <))
have, along 3,(W°) = x(W¢) contact of order «((d¢),, &) — i. Because x € &, Im(x) and
Im(8,) have, along 3,(}¥ ), contact of order a({(dg),, k) — i (see (ii) above). Hence Im(®; 3))
and Im(®; ) have contact of order «({d¢), , k) — 1. Because Re is zero up to order a((d¢),, k)
along W<, Im(8,) and Im(®;83;) have contact of order ({de),, k) — i along 3(W°). Conse-
quently Im(8;) and Im(®; ) have contact of order ({(dp),, k) along (I °).

It follows that for any compact L = K. there is a constant 4(®;x, L) such that the
inequality in condition (ii) is satisfied for all p e L, with ®;« instead of x and A(®;«x, L)
instead of A(x). Combining this with the observation about *far away ™ points we see that
®,; x satisfies condition (ii). This proves that @, induces a map from & into itself.

The fact that the map is contracting on fibers follows from Lemma (3.5).
Lemma 3.11. For each i < f((d¢p),, k) there is a k; € F ; such that for any
ke, lim(@)Y«=«x,.
joar
Proof. For i =0 the lemma coincides with Remark 3.8. Suppose the lemma is true for
i — 1< p{(de)y, k). The lemma then follows for / from the ““fiber contraction theorem”
[1] applied to the map @, : #; - &, which preserves the fibers of IT;. The assumptions in the

fiber contraction theorem are satisfied because of Lemma 3.10 (and the trivial fact that all
the fibers of #; are isometric).

Conclusion of the proof of Proposition 2'. The convergence of {(®)'9;}7., for
i < B((d),, k) follows from Lemma 3.11 and the fact that 9,|K;. € #,. )

Proof of Proposition 2. From now on we shall write «, f instead of a((dg),, k) and
B((de),, k). We first define a sequence {F;};%, of Cf-maps (R", W™) = (R", W) such
that:

0) Filxy, oo z) =3 [ (X X, 2y, oo, 2,) -yt oo - Yl where the sum is

taken over all (j, ..., j;) with j, >0 and } j, <B; f% ., takes valuesin R",
o.0.....0 takes values in W<,

(ii) the jet of (©)'9, in p € W can be represented by [p, Fi],.

Such a sequence is constructed as follows: F, = identity; if F; is given then F; ., is obtained
from @ o F; o (Sp)~! by throwing away the terms of order >8 in y,, ..., y,. By Proposi-
tion 2', {F;}{~, has a limit which is of the form

F(xgyoosz) =2 fi iM%, s Xey 2y oy 2,)  yit eyl
where the summation is taken over the same indices (jy, ..., j,) as above, but now each
... is only a C®#~ % -function. According to Whitney’s extension theorem (see, for

example {4]) there is a C?-function F 1 (R", W=y - (R", W) such that, for each pPE W,
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(p, F 15 represents the jet of (lim;_ , ®;'%) in p. F induces a diffeomorphism from # to
itself; we may, and do, assume that F is a diffeomorphism of R" to itself. Clearly S¢ and
F~'o @ oF have the same f-jet along W<, so F defines the desired coordinate system.

This proves Proposition 2.

Proof of Proposition 3. This proof is completely analogous to the proof of Proposition 2
and hence will be omitted; here we only want to make this analogy precise. In the proof of
proposition 2 we started with the *“ good jet ” along W ¢ and ended with the *“ good jet " along
W<, making essential use of the fact that, in W, ¢ was ““expanding away” from W°. In
order to apply the same method in obtaining the “ good jet™ over all of R", we replace ¢
by ¢!, which is expanding away from W, This replacing ¢ by ¢! implies that M, 71, i, N
are replaced by N, i, i, M, which is reflected in the definitions of a((d¢), , k) and B((de), , k)
(see Section 1). Because in the proof of Proposition 2 we did not use the fact that de | To(W©)
has only eigenvalues of absolute value one, the analogy is complete.

§4. PARTIALLY HYPERBOLIC ZERO-POINTS OF VECTOR FIELDS
We consider a C ®-vectorfield X on R" which is zero at the origin. We say that
(X;Xys oy Xy Viv v vvs Yss Zis <« 5 Z,) I8 in standard form (x,, ..., z, are coordinates on R")
if

3 ?
2;_ Blj(xb ey xc)zj b—z-;’

i.j=1

< 0 s )
X=) Xxq, ..., x)5—+ Ai(Xqyoeu, Xy — +
;;1 (x4 X )6x, u};l i/(xl ).Vj ay

where:

(1) Ali eigenvalues of (0X,/dx,) in (x; = -*- = x, = 0) have real part zero;
(2) all eigenvalues of 4; 40, ..., 0) have real part <0;
(3) all eigenvalues of B; {0, ..., 0) have real part >0.

(X; %y, ..., 2,) is locally instandard form if X has, in some neighbourhood of the origin, the.
above form.

The integral of X will be denoted by @y : R” x R — R” (i.e. t > Dx(p, 1) is the integral
curve though p, D4(p, 0) = p; the domain of definition of 2y may be smaller than R” X R,
but certainly contains a neighbourhood of (origin x R)). Dy , is defined by Zx (p) =
gx(P: t)'

Notice that (X; x, ..., z,) is (locally) in standard form if and only if (@, ; X1, - - -, Z.)
is (locally) in standard form for all > 0. The eigenvalues of d(Dy, ), are of the form
et ..., e where 1, ..., A, are the eigenvalues of d(X),. Hence if 2y, , satisfies the
Sternberg k-condition for some f # 0, then it satisfies the Sternberg k-condition for all
t # 0. We say that X satisfies the Sternberg k-condition if 9, satisfies it for some 7 # 0. The
numbers «(d(Py, )o, k) and B(d(Px o, k), for t >0, do not depend on ?; we define
a(d(X),, k) and B(d(X),, k) to be equal to these numbers. Our main theorem for vector-
fields can now be formulated as follows:

THEOREM. Let X be a C® vectorfield on R which is zero at the origin. If X satisfies the
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Sternberg «(d(X),, k)-condition, then there are C*-coordinates x|, ...,X., Vi, Vs,
2y, ooy 2, 0n " such that (X; xy, ..., 2,) is locally in standard form.
Sketch of the proof. First we construct coordinates x,’, ..., z,” and vectorfields S and

RX with X} U =(SX + RX)| U, for some neighbourhood U of the origin, such that:

1y (SX;x,',...,2,)is in standard form;
(2) RX is zero up to order a(d(X )y, k) along {3 ==y =z"=--=z,/=0};
(3) RXis tangent to {y," =--- =y, =0}.

This is the analogue of Proposition 1. The proof of Proposition ! is essentially based on the
centermanifold theorem; this theorem also exists for vectorfields, so we can indeed find the
above coordinates x,’, ..., z,/ and vectorfields SX and RX. From now on SX + RX will be
denoted by X.

In the proof of Proposition 2 we modified ¢ (outside a neighbourhood of the origin) and
chose an Euclidean metric p on R" such that certain inequalities were satisfied. It is not
difficult to see that in the case when we have a vectorfield X, we can modify X (outside a
neighbourhood of the origin) and choose an Euclidean metric p on R" such that, for every
te(0, 1], Dy , has with respect to p the same properties as the modified ¢. The proof of
Proposition 2 then shows that, for every z € (0, 1], there is a unique S(d(X),, k)-jet of a

coordinate system F, along {»," = --- = y,/ = 0} which ““linearizes Zy , along
==y =0
in the z,', ..., z, directions”. Because for every positive integer m (2y /)" = Dy,, and

because F, is unique, F,,, = F,. Hence, for every rational number q € (0, 1], F, = F,
By continuity and unicity one then has F, = F, for all £e(0, []. But this means that £
“linearizes X along {y, = ---=yp/ =0} in the z,/,...,z, directions”. Hence we can

find CPF@Xo-k coordinates (x,”, ..., x,”) such that (the modified) X can be written as
X =5X+ R’ X with:

() (S'X; x,", ..., z,”) in standard form, and
(2) R X zero up to order S(d(X),, k) along {y," = -+ =y, = 0}.

This is the analogue of Proposition 2 for vectorfields. The theorem now follows from the
fact that ““linearizing in the y,”, ..., y," directions ' can be done by a procedure completely
analogous to the linearization in the z,', ..., z,” directions in {y," =" =y, = 0}.

§5. C“LINEARIZING HYPERBOLIC CLOSED ORBITS.

Let X be a C*-vectorfield on a manifold M and let y be a closed orbit of X with period
t, > 0, i.e. yis a subset of M such that for every mey, X,, # 0, Dy(m, (— 0, +©)) = y and
Dy(m, t) = mif and only if ¢ is a integral multiple of z,. We call y a hyperbolic closed orbit if
some (and hence each) m € y is a partially hyperbolic fixed point of @y , with dim(T¢) = |
(see Section 1 for the definition of T¢); note that because d(Zy . N X,)= X,,, always
dim (T9) > I.
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Definition 5.1 (the normal bundle of a hyperbolic closed orbit y). For each m € y we define
N(n) = T,(M) to be the direct sum of all eigenspaces of d(Zy, ,,) | T..(M ) corresponding to
cigenvalues with absolute value different from 1. N(3) = ..., N(m) is a smooth co-dimen-
sicn 1 subbundle of T,(M) which we call the normal bundle of 7.

X induces a vectorfield N(X') on N(y); N(X) can be defined by Zyx,,, = d( Py, ) | N(7)
for all ¢.

Definition 5.2. A C*-linearization of a hyperbolic closed orbit y is a C*-embedding
¢ : U— M, where U is a neighbourhood of the zero section in N(y), such that:

(1) for every mey, @ o so(m) = m, where s, is the zero section in N(y);
(2) dp(N(X)U) = X[ o(U).

THEOREM. Let y be a hyperbolic closed orbit of the C *-vectorfield X on M with period ¢,.
If for some (and hence for all) m € y, APy, ) satisfies the Sternberg (d(Zx ()m, k)-condi-
tion, then there is a C*-linearization of y.

Remark. CP%-linearizations were obtained by Irwin [3].

Proof. By our main theorem there is a neighborhood W of m in M and C*-coordinates
Xis Y15 +-+» Vs» Z15 -+ Z, ON W such that:
1-m=(0,0,...,0);
2 o near m, (9,(_,‘,; Xty V1s - -3 ¥s» 215 -« -5 2Z,) 15 In standard form, i.e.

Dy, ry(xu vy 2) = (X ((xy), iZIAm(Xl) Vi e 'Z].AS‘ i(x1) " yi,
_ZlBl.i(xl) T Zis s .ZlB“' xy) - 20

Near m,y = {y, ==y, =z =+ =2,=0}; y consists of fixed points of Dy ,,, so
X,(x;) = 1. One can also choose the coordinates so that 4; /(x,) and B, ;(x;) become inde-
pendent of x; (we shall however not use this).

We first define the map ¢ on a neighbourhood of the origin in the fiber N(m): The
elements of N(m) are vectors in T,(M) of the form

Z‘ J@z

such a vector will be denoted by (%, ..., «,, B, ..., B.). We now take

i; 5}' i
(p(ab“‘:as’ ﬂl""vﬂn)=(x1 =09.Vl Uy e Vs T Uy Zy =ﬁh "'»zu=ﬂu)
if this is defined (which is the case for («y, ..., B,) close to the origin).
Note that with this definition of ¢ | N(m) we have, near the origin of N(m),
Dy, ¢, ° (I Nm) =po Drexy, ty | N(m).

The requirement dp(N(X) | U) = X o(U) now fixes the C"-linearization ¢, in a unique way,
on a neighbourhood of the zero section.



w oW

PARTIALLY HYPERBOLIC FIXED POINTS 147

REFERENCES

M. HirscH and C. PucH: Stable manifolds and hyperbolic sets, in: Proceedings of the A. M. S. Summer
Institute on Global Analysis, University Press, Berkeley (1967).

. M. HirscH, C. PuGH and M. SHUB: Invariant Manifolds (to appear).

. M. C. Irwin: A classification of elementary cycles, Topology 9 (1970), 35-48.

. B. MALGRANGE: Jdeals of Differentiable Functions, Oxford University Press, Oxford (1966).

. S. STERNBERG: On the structure of local homeomorphisms of euclidean n-space—I{. 4m. J. Aarh. 80,
(1958) 623-631.

Institut des Hautes Etudes Scientifiques
a Bures-sur- Yvette (France), and
Mathematisch Instituut, Universiteit van
Amsterdam, Holland



