
PARTIALLY HYPERBOLIC FIXED POINTS 

FLORIS TAKENS~ 

IRecciwd 25 J~r[,v 1970) 

51. INTRODUCTIOK 

WE COSSIDER 3 C”-diffeomorphism 10 : W” 432” with r?(O) = 0. The differential dq ( T,(W) 

induces a splitting T,(P) = T’ @ T’ @ T”, where T’. T’ and T” are invariant under dq 

and the eigenvalues of dq, restricted to T’, resp. T”, resp. T”, are, in absolute value,= 1, 

resp. < 1, resp. > 1. The fixed point 0 of IJJ is called hyperbolic if dim(T’) = 0. We shall con- 

sider the parfiall,v h,vperbolic case where dim(T’) # 0 and dim(T’ @ T”) # 0. Such partially 

hyperbolic fixed points arise for example as fixed points of the time t integral of a vectorfield 

Lvith a generic closed orbit with period f. 

A rather general example of a diffemorphism with a partially hyperbolic fixed point is 

the following: 

cp(x,, > .y,, .i’[, 1 _Y,, -1, 1 z,) 
= (f?i(S,, ) x,), , cp,(x,, , xc), 

1 a[i(*u,3 7 xc) )‘i 1 1 1 a,yi(sYlr f xc> ’ Yi 7 

i b,,(x,, , x,) Zj’ , i: b,,(Xl, . , x,) Zj) 
i I 

where : 

(I) .~r, . . , x,, y,, . . , y,, z,, , z, are coordinate functions on R”; n = c + s + u; 

‘Vi’ 
(2) all eigenvalues of _ 

i 1 &Yi 
in (or = . = x, = 0) have absolute value one; 

(3) all eigenvalues of (aij(O, , 0)) have absolute value < 1; 

(4) all eigenvalues of (6,,(0, . , 0)) have absolute value > 1. 

Definition I. If a diffeomorphism cp has the above form with respect to the coordinates 

(-x1, . ..> -J we say that (q; x,, . ~ z,) is in standurrijkm. 

If cp has the above form, with respect to (x1, . . . , z,,), only in a neighbourhood of the 

fixed point we say that (9; x,, . . 2,) is locally in standardform. 

Definition 2. Let q~ : R” --* 2’ be a diffeomorphism with (p(O) = 0 and let T&2”) = 

T’O T”O T” be the induced splitting. The eigenvalues of dq 1 T’@ T” are denoted by 

i. I, ..‘7 i., . We say that cp satisfies the Sternberg k-condition if 
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( j.,T ’ . j-1’. . . . . j.;;" 1 # 1 

for all (j; v,, . . . , v,)with 1 _<jrh, vi>Oand2< Cv,<kand 

I ,-;‘- ... *qq # 1 

for all (vr, . . . , v,,) with vi 2 0 and 2 5 Xv, 5 k. 

Our main result can be stated as follows: 

THEOREM. Let cp: R”-+ w be a Cm dtreomorphism with q(O) = 0. If cp satisfies the 

Srernberg x((dp)O, k)-condition, then there are Ck-coordinates (x,, . . . , x,, yl, . . . , _I’~, zI, . . , 

I,) on R” such that (q ; x,, . . . , z,) is locally in standard form ; the flrnction r is dejiued belobt. 

Thefunctions ri and p. We first have to introduce some notation: 

Let A,, . . , , AL be the eigenvalues of dq 1 T’@ T” and suppose I&( I I&] < ‘. . 5 (,Q < 

1 <]l.s+I( < ... < I,‘_,,]; we define 37 = ]&,I, m = ]A1]-‘, E = ]&+l], E = Ii,]-‘. 

The integer valued function /I is the function which assigns to a pair ((dq),, , k) the 
-- 

smallest integer p((dq),, , k) for which IV . W * iir-8((dv)o.k) < 1 for all r I k (Iv’, XI and ,i are 

functions of (dq),). Because E > I, B((dq),, , k) is always finite; also j?((dp), , k) > k. 

The function CL assigns to a pair ((dq)O, k) the smallest integer a((dp)O, k) for which 

R . I? . Z-a((dr)o~k) < 1 for all r < o((dq), , k). 

Remark. Suppose a splitting To(W) = T” @ T” @ T” is given. Consider the set 

L(T’, T”, T”) of those linear automorphisms of [w” which leave T’, T’ and T” invariant and 

whose eigenvalues on T’, T”and T” are, in absolute values, = I, < 1 and > I. For any given k, 

the set of elements A E L(TC, T”, T”) which satisfy the Sternberg cc((dA), , k)-condition is 

open and dense. If, for some diffeomorphism cp: (R”, 0) -+ (5X”, 0), the derivative belongs to 

that open and dense subset of L(T’, T’, T”), then 43 satisfies the assumptions of our theorem. 

Hence one can say that “generically” the assumptions in our theorem are satisfied. 

Remark. For the case where dim T’ = 0, i.e. in the hyperbolic case, we get a weakened 

form of Sternberg’s theorem [j]. From Hartman’s theorem, generalized by Hirsch, Pugh 

and Shub, it follows that for every partially hyperbolic fixed point there is a CO-change of 

coordinates which brings it in normal form. 

The main theorem will follow from the next three propositions: 

PROPOSITION 1. Let q~ : (R”, 0) -+ (R”, 0) be a C w diffeomorphism satisfying the Sternberg 

I-condition, Then, for any integer AJ, there is a neighbourhood U of 0 in iw” and C N coordinate 

functions Xl',__., Xi', yl’, . . . . ys’, Z1', . . . . Zu( such that cp IU = Sq 1 U + Rql U (addition 

with respect to x1’, . . . , z,,‘), where: 

(1) (Sp;x,‘, ...> z,‘) is in standard form ; 

(2) Rp, as well as its derivatives up to order 1, are zero along {y,’ = ’ . . = _I~~’ = z,’ = 

*--=z “’ = O}; 

(3) the subspace {yI’ = . . . = y,’ = 0} is invariant under Rq. 

Remark. It is enough to prove the theorem for Sq + Rq obtained in Proposition 1. 
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PROPOSITION 2. Let cp : (IF’, 0) -+ (R”, 0) be a C” diffeomorphism, N 2 r((dp),, , k). 

Suppose that cp = Sq + Rq as in the conclusion of Proposition I (with respect to the 

coordinates xl, . . , zu) with I = r((dcp),, k). Then there is a CB”dW’l.“-coordinate system 

(x,‘, . . ..z.‘) on W” such that, in a neighborhood of 0, 1r.e hac.e q = S’q + R’cp rchere: 

(I ) (S ‘q ; xl ‘. . . . , z,‘) is in standardform ; 

(2) R’q, as weii as its derir:atices trp to order /I((dq)O, k). are zero along {yl’ = . . = 

)Is’ = 0). 

PROPOSITIOX 3. Let cp : (I%?“, 0) + (R”, 0) be a CB’tdw’o,k’ -dt~eomorphism. Suppose that, 

with respect to the coordinates xi, . , zo, cp = S ‘cp + R’p as in the conclusion ofProposition 2. 

Then there are CL-coordinates _Y[‘. . , z,’ such rhar (cp, x,‘, , z,‘) is locall~~ itt standard 

form. 

The Propositions 1, 2 and 3 are proved in Sections 2 and 3. In Section 4 we formulate 

the analogue of our main theorem for a partially hyperbolic zero point of a vectorfield and 

indicate how the proof for that case can be obtained from the proof for diffeomorphisms. 

In Section 5 we give an application to hyperbolic closed orbits. Our result there is that, in 

a neighbourhood of a generic closed orbit of a vectorfield, the \,ectorfield is “linear” with 

respect to suitable Ck-coordinates. 

I would like to thank R. Thorn for suggesting to me the problem treated in this paper. 

In conversations with C. C. Pugh and M. Shub I learned about techniques which they 

developed in treating similar problems [I], [2]; these techniques were basic for the proof of 

the Propositions 2 and 3. 

92. THE PROOF OF PROPOSITIOX 1 

By the invariant manifold theorems [2], we can choose coordinates x1, . . . x, , Yl, .‘.1 

?‘, > z1, . . . . z, on iw” such that the following submanifolds of F?” are locally invariant for cp: 

W’ = {x = 0 and I = O> 

WCS = {z = O} 

WC= {y=Oandz=OJ 

WC"= {y=O} 

W” = {x = 0 and y = 0) 

(x,y,zstandfor(x, ,..., x,>,(yl . . . . . y,),(r, ,..., zJ) and such that 7’. resp. T”, resp. T”are 

tangent to W/‘, resp. W’, resp. W”. A submanifold, W, containing the origin, is locally 

invariant for cp if there is a neighbourhood U of the origin such that qD( W) n U = W n U = 

cp-‘( 8’) n U. All coordinate systems on W” in this paragraph are supposed to have the above 

property. 

Remark. We may assume that the above coordinate system is Cm for any m < co; here 

it is enough to assume that m is large compared with N. 

Definition 2.1 (the spaces V,). Let v? be the manifold of r-jets of embeddings (I@', 0) -+ 

(W, 0); h = dim(T’@ T”). V, is obtained from i- ‘, by the following identifications: c(~ 
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and r2 E p, are identified in 

3, c x = x1. 

V, if there is a linear map r : (Rk, 0) + (Rk, 0) such that 

V, is clearly a manifold. Q induces on each v, a transformation @, : vr -+ pr, which 

assigns to the jet of g : (R”, 0) -+ (W”, 0) the jet of cp 3 Y. Since I$?,, commutes with the identifica- 

tions, there is an induced transformation po, : V, -+ V,. There is also a natural projection 

. iI, . v,--+ v,_*; the following diagram commutes : 

rD, 
v, -v P 

L vr-l j. 

q-1 -vr-1 
LEMMA 2.2. Under the assumption (as in Proposition 1) 

l-condition, there is for each 1 I r I I a unique element [a], E 

that I+O satisjes the Sternberg 

V, such that: 

(i) [a], can be represented by an embedding (R”, 0) + (W. 0) with image tangent 

to 7-‘@ T”; 

(ii) [z], is a hyperbolicfived point of cpr. 

Proof. We shall prove the lemma by induction on r; first we do the induction step, then 

we give the proof for r = 1. 

The induction step. Take 12 r > 1 and assume that there is a unique [z],_r E V,_r 

satisfying the conditions (i) and (ii). If there is an element [lw], E V, satisfying the same two 

conditions, it must lie in n;‘([r],_l). We may, and do, assume that our coordinates 

(x,, . . . , z,) in R” are such that [xl,_, can be represented by the linear embedding9 : (R”, 0) + 

(W”, 0) given by Q(tvr, . . . , w,,) = (0, . . . , 0, ~‘r, . . . , ~9~). Using this coordinate system, every 

element in i7;‘( 1~ Jr-r) can be uniquely represented by a map (Rh, 0) -+ (R”, 0) of the form 

(N’r, . . . ) Wk)H(P1,...pcrW1+ql,...,li.,,+qk) 

where p,, . , pC and ql, . . . , q,, are homogeneous polynomials of degree r in ~3,. . . . , wk. 

Because the set of homogeneous polynomials is a vector space we can give n;‘( [xl,_,) the 

structure of a vector space. We take [S], as the origin in TC;~([X(]~_~) (3 is the linear embed- 

ding). 

cp, maps n;‘([r],_r) to itself; so we can define @,: n;‘([r],_,)~rr;‘([r],_,) by 

6IBl = cp,[Bl - (P,Plr (“ - ” is defined by means of the above vector space structure 

in n;‘([CL],_r)). W e now only have to show that @i-, is linear and hyperbolic, because from 

that it follows immediately that cp, has exactly one hyperbolic fixed point in n,*(b],_r). 

First we introduce some notation: for [fl] E XL’ ([a],_,) the corresponding map of the 

form (WI, . . . . w,)r-+(pr, . . . . PC, w1 +qr, . . . . w,, + q,,) is denoted by p (pi and qj are homo- 

geneous polynomials of degree r). The linear map A : (R”, 0) + (Rh, 0) is such that the 

(r - I)-jet of cp 0 9 0 A and 3 are equal. 

For any [p] E n;‘([~],_,) the jet rp,[B] is represented by cp 0 .fI 0 A; qj,[,L?] is represented 

by q 0 B o A - cp o 9 0 A + 9 (“+ and -” refer here to the vector space structure in R” cor- 

responding to the coordinates x1, . . . , q,). B ecause the (r-I)-jets of /3 0 A and 3 0 A are equal, 
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the r-jet of cp 3 /I 3 A - cp = 3 0 ‘4 +- 3 depends linearly on the r-jet of /I, so Cp, is linear. We 

now come to the hyperbolicity: 

(a) Diagonal case. We first assume that, with respect to our coordinate system sI, . . , 

z,, (dq), is in diagonal form. This means that cp has the form 

cp(X,, . . . . -_J = (plz,. . . , p,z,, i,x,, . . . i.,z,,) + terms of order 22, 

where ]kli] = 1 and i,, . . ., I.,, are the hyperbolic eigenvalues of (dq), which occur in 

the Sternberg condition. In this case A : (Rh, 0) --t (Rh, 0) is given by A(w,, . . . M’h) = 

(1.;’ w, , . . . , ;.h ’ wh). Gi, can now be computed: by straightforward calculation it follows 

that CpI is in diagonal form, i.e. we can find a basis of n;‘([r],_,) consisting of eigenvectors 

of Cp,. The elements of this basis are denoted by 

and 

[i: i,. . . ( ih] i=I ,...( r i, (.... iv20 f-;.; = r 

[i; i,, . . . , ih] is represented by (IV,, , IL*,,) H (pl, . . , pc. I\‘,, . . 1.1’~) with pi = )v’,’ . . M(J 

andp,. = 0 for i’ # i. {j; i,, . . . , i,,) is represented by (~‘r, , w,,)~(0. . . . , 0, M’~ + ql, . . , 

lvh+qh) with qj=wi/, . . . . wt and q,, = 0 for j’ #j. The eigenvalue corresponding to 

[i; i,, . . , f,,] is /li . j.;'l . . . . . j_hih, the eigenvalue corresponding to {j; i,, . , i,,} is 
l-j . j.;it . . . . . j_;ih. None of these eigenvalues has absolute value one because of the Stern- 

berg condition, hence Cp, is hyperbolic. 

(6) General cnse. We reduce the general case to the diagonal case by “complexifying”. 

We first remark that almost everything which has been done in the proof of the induction 

step up to now also makes sense if we replace the reals everywhere by the complex numbers 

(because we mainly worked with polynomials). The only thing which must be changed is 

cp: we replace it by a polynomial map which has the right r-jet. The eigenvalues of q!Fr are the 

same for the two cases (real and complex), so it is enough to compute them for the complex 

case. By the Jordan normal form theorem, there are, for every E > 0, linear coordinate 

transformations 

.‘ci = i: xii Xj, ji = i YijJj ) Ti = u 
j= I j=l 

J, zij ‘j 

(Xii Yij and Zij E C), such that, with respect to X,, . . . , 2,) (dq), is in Jordan normal form 

with pI, . . . , pC, I.,, . , E., on the diagonal and with off diagonal terms 0 and E. 

The eigenvalues of Cp, are independent of such coordinate changes, so they are indepen- 

dent of the above E; so we may assume E = 0 (the eigenvalues of (Pk depend continuously on 

(dq), ). Now we are back in the “diagonal case” for which we proved hyperbolicity. 

Proof for r = 1. There is only one element [r]r E VI which can be represented by an 

embedding with image tangent to T’@ T”. The hyperbolicity of [rl]r as a fixed point of p, 

is the only thing we have to prove. 



138 FLORJS TAKESS 

The elements of V, near [z]r can be represented in a unique way by the following type 

of linear embeddings: 

(WI, . ..f W&++(Pr, . . . , PC. 11’1, . . . ) lVh) 

where pI, . . , pc are linear functions of ~‘t, . . , w,, The hyperbolicity now follows just as in 

the proof of the induction step. 

Definition 2.3 (tile space V,.*). Let ?,* be the manifold of r-jets of embeddings (Wh, 0) - 

(R”, I+“); h is the dimension of T’@ T”. V,* is obtained from p,* by the identifications: 

cur and t(2 E v,* are identified in V,* if there is a linear map rl : (Rh, 0) -+ (R”, 0) such that 

r, 2 1 = X2. 

Remarks. It is clear that V’, t V, *; there is a natural projection p : V,* -+ WC which 

assigns to each element x E V,* the “image of 0 “. p-‘(O) = V,. 

Because WC is locally invariant, the map y, : V, --$ V’, extends to a map cp,* defined on a 

neighbourhood of V, in V,.*; P,*(X) is the jet of cp 0 Z. 

Construction of the required coordinate sJ,stem (xl‘, _ . _ , z,,‘). By Lemma 2.2 we have a 

hyperbolic fixed point [a][ of ‘pl in VI. [c(]~ is of course also a fixed point for ‘p!*, but not a 

hyperbolic fixed point (the set of eigenvalues of (d<P1*)raIr is the union of the set of eigen- 

values of (dqr)t,,, and the set of eigenvalues of d(cp 1 WC),,). Let W*’ c VL* be a center 

manifold for [z][ in Vl*. We may assume that W*’ is as differentiable as ql*; so we may 

assume that the class of differentiability of CF is large, compared with N. p : V,* -+ WC 

restricts to a map pc : W*’ --) WC which is, restricted to a small neighbourhood of [I][, a 

diffeomorphism. This means that for every P in WC, sufficiently close to the origin, we 

have a class of /-jets of embeddings (W”, 0) ---*(R”, P) representing p;‘(P). Now we choose 

the coordinate system x1’, . . . , z,’ such that: 

(1) It has the property described in the introduction of this paragraph (in par- 

ticular ()‘t’ = . . . = yS’ = 0) is locally invariant under cp); 

(2) for each P E W’, close enough to the origin, p;‘(P) is represented by the affine em- 

bedding (affine with respect to x1’, . . , I,‘): 

(JQ’, . . , ) y,‘, Z[ ‘, . . ) z,‘) b+ (x,‘, . . ) x,‘, YI’, . , ys’, q’, . . . ) z,‘) 

where 

P = (Xl’, . . ) xc’, 0, . .) 0). 

Because W*’ is very differentiable we may assume that x1’, . , z,’ is CN. 

By the local invariance of W *c it follows that, for some neighborhood U, of the origin, 

~oIU,=Sqo[U,+R~(U,where(Sqo;x~‘,..., z,‘) is in standard form, and Rqo, as well as 

its derivatives up to order 1, are zero along WC. This proves Proposition 1. 

43. THE PROOF OF PROPOSITIONS 2 AND 3 

We assume that the map cp, the coordinates x1, . . . , z, and the “ splitting cp = &p + Rv ” 

are as in the assumptions of Proposition 2. 

Definition 3. I (the transformation a, on J’(Iw”, &Y). The elements of Jr@“, R”) can be 
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represented by pairs [p, a], , where p E IF!” and G is a C’ map from a neighbourhood of p to 

R”. The transformation Q,,: J’(R”, R”) + Jr(R”, KY) maps the jet, represented by [p, a], to 

the jet represented by [S&D), cp 2 G 0 (Sp)- ' I,, ( we assume in this definition that Q is Cl). 

Remark 3.2. Y(G”, R”) is fibered over .I’-‘(R”. w). n, : J’(R”, Q”) --t Jr-‘(W, R”) is the 

projection. We clearly have a,_ 1 3 TT, = n, o CD,. Each fiber of 7-r, is an affine space; if 

r EJ’-‘(W”, R”) then the map of K;‘(Y) to rc;‘(@,_r(~)), induced by O,, is an affine map 

(see also the proof of Lemma 2.2). One also has a projection 71’ : J”(V, W”) -+ 2” which 

assigns to [p, ~1~ the point p (Q. is not an affrnc map on fibers of no). 

Dejitlition 3.3 (thefiber metrics). We want to define in each fiber of rrr r 2 I a metric. 

For this purpose we first choose a (Euclidean) metric on W” (this metric will be specified 

later). The distance p,([p, or], , [p, ~~1~) between two jets, represented by [p, a,], and [p. u21r, 

in the same fiber of T(, is then defined as follows: 

@, @r, crZ) defines a map a,, 2 : T,(lnl”) -+ T.&R”) 

(+‘) = Gi(P) = Gdf’)) : 

a,,?(X) = Exp& 0 GI 0 ExpJX) - Exp,;, 0 G?. 0 Exp,(A’) 

for X E T#Y), where Exp, : T,(W) -+ R” is the usual exponential map. We take 

where / ( is the norm of a vector with respect to our Euclidean metric on R”. The limit is 

finite because [p, a,], and [p, az], are in the same fiber of 7-r, and hence the (r - I)-jet of 

3 1. z is zero. The limit is determined by the r-jet of 8,. z and hence determined by the r-jets 

of Go and c2 in p. The proof that p, is really a metric (triangle inequality etc.) is left to the 

reader. 

The metric p. on fibers of n, is defined by p,([p, a, lo, [p, G&J =p(p(Gl), ~(a~)); p is 

the distance in R” defined by the Euclidean metric. 

LEMMA 3.4. Let [p, o,], and [p, g2], represent two jets which are in the same fiber of 

n,, r 2 1, ad /et G,(P) = a&> = q. Th P,(@~[P, cl I,, @h, a211. 5 II d(C.%)-‘),,c,, II’ 
. iIdvJ . P,([P, nI I,, by ~~1,)~ where 

IlkII = SUP IddWl. 
IX/ = 1 

XE T4(Wn) 

LEMMA 3.4'. Let [p, CT~]~ and [p, crrlo be giuen, the;:; po(@O[p, G,]~, D,Cp, G&J I sup 

MO.11 

ll(d~lJ . po(b allo, [P, a210>, where a = f . nib> + (1 - t> . HAP). 

Proof. Follows immediately from the definitions. 

The metric on iw”. We define for p E W’” the following numbers: 

fi, = II(d~)Jl 

‘VP = IId((G4-‘),I1 
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and 

(for p # )V’ = p(Sq(p), rvy (p(p, Iv))-’ 

“, = \for p E WC = lim inf(fi,,). 
;:;ry C 
P'_P 

(W"', WC etc. have here the same meaning as in Section 2). They are, forp = origin, closely 

related with the invariants R, m and Gi, defined in Section 1, which depend only on the 

eigenvalues of (d(p),-, . In fact, for every E > 0, we can choose our Euclidean metric on R” so 

that fiO < l%? + E, lq,, < m + E and ZI, > rii - E. According to the definition of z((dp),, k) 

and j?((dq), , k) (Section 1) we know that I%?- ,, . Eir*((d’P)o~k) < 1 for all r < P((dq),, , k). 

Hence it follows that we can choose a metric on KY such that fi, . Nor . fi’-‘f(d~)o~k) <p 

for some fixed 1’ < 1 and all r 5 ~((d~&, , k). From now on we assume that our metric 

on R”is fixed and is such that theabove inequalities are satisfied; the fiber metrics (Definition 

3.3) are also assumed to be derived from this metric on w”. From now on /L will always 

stand for the fixed constant in the above inequality. 

Mod$cation ofq. Now we modify our diffeomorphism cp (outside a neighborhood of 
0). Take ~~ : (y, = . . . = ys = zI = . . . = z, = O> = @” -3 R a non-negative partition func- 

tion, 1 on a neighborhood of the origin and zero at distance 2 1 from the origin. ICY : WC --t R 

is defined, for b > 0, by JQ,(x,, . . , x,) = til(xl/b, . . . , x,/b). We modify q = &p + RC+D as 

follows : 

We replace SC+J by 17~ . Sy, + (1 - 17~) . Lq and we replace Rq by Zb . Rq, where 

&(x*, . . . , xc, I’l, . . . , ys ) z1, . . . , Z”) = A-*(x*, . . . , x,) 

and Lq is the linear (with respect to x,, . . . , z,) map L, : (ET, 0) --t (R”, 0) with d(Lp), = 

(dq), . 

It is clear that there is a small neighborhood of 0 in which cp is not changed. Also the 

new CJI satisfies the conditions in the assumptions of Proposition 2. We may, and do, assume 

that b is so small that for any three points p, q and v in WC and r 5 /?((dq), , k) we have 

iii P . hi’ . f~~-~((“+‘)~*~) <p where p < 1 is the constant which occurred in the discussions 4 
on the metric on KY. From now on cp, .Scp and Rq will refer to the functions after the above 

modification. 

We define I?, c WC” to be the closed 6 neighbourhood of WC in WC”. We can choose 6 

so small that for all, p, q and c’ E x, and r I p((dp)O, k) we have ii?, . fl, . 6ir-‘((dq)o*k) <p; 

p as above. From now 6 as above is fixed. 

LEMht.4 3.5. Let [p, a,], and [p, 02’Jr be two jers in the same fiber of’ 71, with p, Q(p), 

a,(p), CT&) E 17, but p q! W’, and r < fi((dq),, , k); then: 

P,(Q’,CP? OIL > WP> ad,) . ww(P), w)r-a((drp)o* k, 

< /J . P,(CP, u,l, L-P, g21) . P(P, Wc)r--.((dqo)* Ir). 

Proof: By the definition of 6, we have p(Sq(p), WC) = 6,. p(p, WC) and by Lemmas 

3.4 and 3.4’ we have 
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This, together with the above property of R,, proves the lemma. 

We are now in a position where we can prove Proposition 2 by giving a convergent 

sequence of ‘*jets of coordinates along IV’“” the limit of which is invariant under CD. 

Consider the map 3, : WC” -Jr((W, WC”), (R”, WC”)) defined by 3,(p) = [p, identity], for 

all p E WC” . 3, is a cross-section of the bundle 

n, = i?g 3 . . . 3 7r,_1 0 71, : r((R”, WC”), (R”, WC”)) -+ WC”. 

TO a section of l7, we can apply the transformation a’, as follows: If K : WC” -+ J’((Q”, WC’). 

(W”, W”)) is a section of II, then a’, I; is the section which assigns to p E B’/‘” the jet (0, K)P = 

@‘,(h-(q)), where q = (.Sy)-l(p). 

We shall prove the following Proposition 2’ and then derive Proposition 2 from it. 

PROPOSITION 2'. Tile sequence of secrions ofn,, dejtled b.r* ((Q,,)‘3,]xZ i cortcerges lo a 

continuous set/ion of n, for r I /3((dq)e, k) 

Proof. We shall prove that for some fixed 0 < 2’ < d the above sections, restricted to 

R,. , converge (under the above hypothesis). This is enough because the ‘. unrestricted limit” 

equals the iterated “restricted limit” (since if we apply (D,)’ to a section over &. , we obtain 

a section over (.Sq)‘(R,.) and lim,, ,((Sq)‘R,.) = WC”). 

Let 

c= SLIP 
P0((%%3)(P)> WP)) 

PE&I 
/+, ~=)W+'b.~:) ' 

PdWC 

C is finite because of the definition of a0 and the fact that Rrp is zero up to order cc((dp), , k) 

along W" and has compact support. Take D > C/ 1 -p (this is the same ,U which occurred in 

Lemma 3.5) and take 0 < 6’ < 6 such that (5’ + D . (d’)“(Cdq103kJ<6. 

Definition 3.6 (THE SPACE.~~). 9;,is the space of continuoussections K ofII, defined on 

R,. for which pO(~(p), 3,(p) _< D.(p(p, WC))z((d’+‘)o~k’, for all p E R,. . The topology on F,, is 

given by the following metric: For xi, K~ E F;, , bO(~l, h.?) is the smallest number such that 

pe(h.i(p), K?(P)) I pO(.xi, ~~)+(p(p, Wc)s((dp)o.kl for all p E r7,. 

LEMMA 3.7. a0 indrces a mapfrom F, into itself which is n contraction +cith respect to 

the metric PO. 

Proof. The map from 9,, to itself, induced by @, is the following: Let K E Se, then 

(Do K is a section of II, defined over (Sq)(l?,.) 3 R,.; in order to get again an element of F0 

we restrict QOh. to R”. We call this induced map also a,. Now we show that a0 maps F0 

into itself. 

Let K E 9,, and p E R,. such that Sq(p) E K,. . Then pJh--(p), D,(D)) =p(x[p), p) 5 
D . @‘)=(@a).& so P(K(~), WC) < 6 (we used here K(P) also for the image point of p under the 

jet x(p)). Therefore we can apply Lemma 3.5 and obtain: 
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PottaJ4(4L t@,wY)) (p(q, w)-z’(dv)o~k) 
< ,n . p,(h(p), 3,(p)) (p(p, V))-=((dVO*k) I /’ . D? 

where q = .Sp(p); we also have 

PO((@” &A(4), 3,(q)) MCI, v)-*(‘*‘qlo~k) < c 

(this is the same C we defined in the beginning of the proof of Proposition 2’) so 

P~(($K)(~), 3,(q)) . (p(q, W”c))-=((dp)os ‘) < C + cc . D < D. 

This shows that QO maps 4, into itself. 

The fact that QO is contracting follows from Lemma 3.5. 

Remark 3.8. Because a0 is a contraction on 9,, , there is a unique x0 E FO such that 

for any K E SO, lim,_ I) (@,,)i~ = K,,; in particular 3, ( I?,. , and hence 3,, converges to a 

continuous section of IT,. 

Definition 3.9 (rhe spaces Si). We first define sections S, : J’-l(R”, Wn) -+ Jr@“, UT’) for 

r 2 1. Let [p, 01,-i represent an element ofJ’-‘(R”, R”). If we require that, for r 2 2, 0 be 

a polynomial map of degree I r - 1, and, for r = 1, o be an affine translation, then the map 

0 is, for the given jet, unique. We then define ?,([p, a],_ ,) to be the r-jet, at p, represented by 

this unique map CT. 

We now define the space Yi of continuous sections R,. -+Ji((Rn, PVC”), (RR, WC”)) by 

induction (YO is already defined (Definition 3.4)): Pi is the set of those continuous sections 

h: such that the corresponding (i - I)-jet section rri o K is in Fi_i and such that there is 

a constant A(K) such that for all p E z,. 

pi(+), (Si 0 Tii 0 K)(P)) < A(K) . (p(p, wc)~(‘d’~~o*k)-i. 

The natural projection 9i + Fi_, is denoted by II i. In each fibre of D i we define the fol- 

lowing metric pi: If K, and K* are in the same fibre of ITi then bi(til, x2) is the smallest 

number, such that for any p E R,. 

LEMMA 3.10. For each i 5 /?((dq), , k), ai induces a map from Fi into itself; for any 
K E gi_l, the map inducedby Qi,from jifl(~) to Ef’(@i_l(~)) is a contraction with respecf 

to the fiber metric pi. 

Pro@ We first show that Oi induces a map from gi into itself. We know that this is 

true for i = 0 (Lemma 3.7) so we can apply induction. Suppose that Qi_, induces a map 

from Fi_r into itself. Take K E Yi. Then: 

(i) lr,OKE.P. 1-l 

(4 PiCK(P>9 Csi ’ ni ’ K)(P)) 5 A(K) ’ (P(P* w9> z((d~)o,k)-i for some A(K) and all 

p E R,. . 

We have to show that Qi K, restricted to A?,, , also satisfies the above two conditions. From 

the induction hypothesis it follows that xi 0 (Di K) = cDi_l(ni 0 K) E Fi-,, SO @i K satisfies (i). 

To show that Oi K satisfies condition (ii) we first observe that for p E R,, , sufficiently 
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far away from the origin we have (~i(Si 0 rt, 0 K))(P) = (Si Q Xi0 (@i K))(J) because then V, and 

.!+ are linear (see “ modification of p “). This means that, for p far enough from the origin, 

Pi( K(P), (‘i ’ ni ’ (a$ K))(P) 5 p * ‘4(K) . (p(p, wC))2((d~)O~ k)- i 

(see Lemma 3.5). 

Next we show that the images of 3, and Di K, as submanifolds ofJ’((R”, WC”). ([w”, WC”)) 

have, along 3i( WC) = K( WC) contact of order x((dp),, , k) - i. Because K E Fi, Im(ic) and 

Im(Gi) have, along Si( WC), contact of order a((dp)O, k) - i (see (ii) above). Hence Im(Oi Si) 

and Im(Qi K) have contact of order a((dq), , k) - i. Because Rq is zero up to order a((dq),, , k) 

along WC, Im(si) and In1(@~3,) have contact of order ((dq)O, k) - i along Si( WC). Conse- 

quently Im(3i) and Im(Qi ti) have contact of order ((dq)O, k) along 3i( WC). 

It follows that for any compact L c R,. there is a constant A(~i K, L) such that the 

inequality in condition (ii) is satisfied for all p E L, with pi K instead of K and A(~i K, L) 

instead of A(K). Combining this with the observation about “far away” points we see that 

Qi K satisfies condition (ii). This proves that Oi induces a map from Fi into itself. 

The fact that the map is contracting on fibers follows from Lemma (3.5). 

LEMMA 3. Il. For each i I p((dq)O, k) there is a ~~ E Fi such that fir any 

KEF. ‘9 lim (#i)j~ = Ki. 

j-3 aI 

Proof. For i = 0 the lemma coincides with Remark 3.8. Suppose the lemma is true for 

i - 1 < p((dq)O, X-1. The lemma then follows for i from the “fiber contraction theorem” 

[ 1 ] applied to the map Qi : Pi + pi which preserves the fibers of II i. The assumptions in the 

fiber contraction theorem are satisfied because of Lemma 3.10 (and the trivial fact that all 

the fibers of Ei are isometric). 

Conclusion of the proof of Proposition 2’. The convergence of {(@i)j9i}r’l for 

i I #I((dq)O, k) follows from Lemma 3.11 and the fact that ,!Ji 1 R,, E Si. 

Proof of Proposition 2. From now on we shall write a, /I instead of a((dq), , k) and 

p((dq), , k). We first define a sequence (Fi}i=“, of CB-maps (IR”, W”) + (IX”, We”) such 

that: 

(i) F.(x~,...,z)= ta’ken Over “,ll (F f j,. . . .j,(Xi, . . . , x,, ~1, . . . , zy) . yr” . . * * . vc’. where the sum is 
.,, . . . , j,) with j, 2 0 and 2 j, I fl; fi,. _. , j, takes values in Iw”, 

f b, ,,, . . . , ,, takes values in WC”; 

(ii) the jet of (aj,)%, in p E WC” can be represented by [p, Fila. 

Such a sequence is constructed as follows: F,, = identity; if Fi is given then Fi,, is obtained 

from cp 0 Fi 0 (Sq)-’ by throwing away the terms of order >/Y in y,, . . . , y,. By Proposi- 

tion 2’, {Fi}zO has a limit which is of the form 

F(x 1, ‘..I Z”) = c j. (Xi, . . . , x,, zi, . . . ) 2”) . y{l . . . . . y;’ , ,I. .-..,r 

where the summation is taken over the same indices [jl, . . _, j,> as above, but now each 

fjl,....j. is 00 a C 8-“iV-function. According to Whitney’s extension theorem (see, for 

example [4]) there is a CB-function F : (W, WN) -+ (R”, W-) such that, for each p E W”, 
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[p, F lB represents the jet of (lim i, m 08i38) in p. F induces a diffeomorphism from VU to 

itself; we may, and do, assume that i: is a diffeomorphism of W” to itself. Clearly Scp and 

F -’ 0 cp 0 F have the same p-jet along W’“, so F defines the desired coordinate system. 

This proves Proposition 2. 

Proof of Proposition 3. This proof is completely analogous to the proof of Proposition 2 

and hence will be omitted; here we only want to make this analogy precise. In the proof of 

proposition 2 we started with the “ good jet” along WC and ended with the “ good jet ” along 

WC”, making essential use of the fact that, in WC”, cp was “expanding away” from WC. In 

order to apply the same method in obtaining the “ good jet ” over all of R”, we replace 40 

by p-l, which is expanding away from W”. This replacing 40 by cp-’ implies that R, Z, fi, m 

are replaced by m, ii, Fi, R, which is reflected in the definitions of a((dq)O, k) and fl((dq)O, k) 

(see Section 1). Because in the proof of Proposition 2 we did not use the fact that drp 1 To( WC) 

has only eigenvalues of absolute value one, the analogy is complete. 

$4. PARTIALLY HYPERBOLIC ZERO-POINTS OF VECTOR FIELDS 

We consider a C”-vectorfield X on R” which is zero at the origin. We say that 

(X; x i, . . . , x, , y,, . . . , y,, zI, . . . , z,) is in standardform (x,, . . . , z, are coordinates on Rn) 

if 

x = i: X,(x 
f= 1 

laaa**xC)&+ 
1 

i A,j(x19-*.,X,)yj$+ 
i.j=l I 

i B,j(Xl,...,X,)Zjd$, 
i. j=l I 

where : 

(1) All eigenvalues of (aX,/ax,) in (x1 = . -. = x, = 0) have real part zero; 

(2) all eigenvalues of Ai, j(O, . . . , 0) have real part <O; 

(3) all eigenvalues of B,, ,(O, . . . , 0) have real part >O. 

(x;x 1, . . . , zy) is ?ocalIy instandardform if X has, in some neighbourhood of the origin, the. 

above form. 

The integral of X will be denoted by gx : R” x R -+ W (i.e. t -+ Qx(p, t) is the integral 

curve though p, Q,(p, 0) = p; the domain of definition of Qx may be smaller than R” x R, 

but certainly contains a neighbourhood of (origin x W)). Qx,, is defined by 9r,,(p) = 

%(PI t ). 
Notice that (X; x,, . . . , z,) is (locally) in standard form if and only if (gx, t; xi, . . . , z,) 

is (locally) in standard form for all t > 0. The eigenvalues of d@,_,), are of the form 
,rr L , *-*, etrn where A,, . . . , I, are the eigenvalues of d(X), . Hence if 9x,, satisfies the 

Stemberg k-condition for some t # 0, then it satisfies the Stemberg k-condition for all 

t # 0. We say that X satisfies the Sternberg k-condition if 9x,t satisfies it for some t # 0. The 

numbers a(d(5?x.,)o, k) and &d(5?~,,),-, , k), for t > 0, do not depend on 1; we define 

a(d(X), , k) and B(d(X), , k) to be equal to these numbers. Our main theorem for vector- 

fields can now be formuiated as follows: 

THEOREM. Let X be a COD vectorfield on 13%” which is zero at the origin. If X sat@% the 
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Sternberg z(d(X), , k)-condition, rhen there are C’-coordinates xl, . . . , x,, yl, . ys. 

zl, . . . . 2, on tq ’ such that (X; x1, . . , z,) is locally in standard form. 

Sketch ofthe proof: First we construct coordinates .yI’, . . , z,’ and vectotields SX and 

RX with XI CJ = (SX + RX) ) U, for some neighbourhood U of the origin, such that: 

(I) (SX; x1’, . . . ) z,‘) is in standard form; 

(2) RX is zero up to order r(d(X), , k) along (~9~ = .. = J,’ = zI = ... = z,’ = 0: ; 

(3) RX is tangent to {yl’ = . . . = y,’ = 0). 

This is the analogue of Proposition 1. The proof of Proposition 1 is essentially based on the 

centermanifold theorem; this theorem also exists for vectorfields, so we can indeed find the 

above coordinates .Y~‘, . . . , z,,’ and vectorfields SX and RX. From now on SX + RX will be 

denoted by X. 

Tn the proof of Proposition 2 we modified v, (outside a neighbourhood of the origin) and 

chose an Euclidean metric p on R” such that certain inequalities were satisfied. It is not 

difficult to see that in the case when we have a vectorfield X, we can modify X (outside a 

neighbourhood of the origin) and choose an Euclidean metric p on R” such that, for every 

t E (0, 113 9x. I has with respect to p the same properties as the modified cp. The proof of 

Proposition 2 then shows that, for every t E (0, 11, there is a unique fl(d(X), , k)-jet of a 

coordinate system F, along (yl‘ = . = ys’ = 0) which “ linearizes 9,Y,r along 

{JI = . . . =_y,‘=O} 

in the zI’, . . . , z,’ directions”. Because for every positive integer m (gx, t,,)m = gx, t and 

because F, is unique, F,!,,, = F,. Hence, for every rational number 9 E (0, 11, F, = FL 

By continuity and unicity one then has F, = FL for all I E (0, I]. But this means that FL’ 

“linearizes X along {rl’ = . . . = y,’ = 0} in the zl’, _ . , z,’ directions “. Hence we can 

find CP(d’X)o, ‘-coordinates (x,“, . . . , x,“) such that (the modified) X can be written as 

X = S’X+ R’X with: 

(I) (S’X; xlV, . . .) z,“) in standard form, and 

(2) R’X zero up to order /?(d(X), , k) along {yl” = . . = y,” = 0). 

This is the analogue of Proposition 2 for vectorfields. The theorem now follows from the 

fact that “ linearizing in the y,“. . . , y,” directions ” can be done by a procedure completely 

analogous to the linearization in the zl’, . . , z,’ directions in {yl’ = . . = y,’ = O}. 

$5. C’-LINEARIZING HYPERBOLIC CLOSED ORBITS. 

Let X be a C”-vectorfield on a manifold M and let y be a closed orbit of Xwith period 

2, > 0, i.e. ‘/ is a subset of M such that for every m E y, X, # 0, 9,(m, (-co, + co)) = y and 

O,(m, t) = m if and only if t is a integral multiple oft, . We call y a hyperbolic closed orbit if 

some (and hence each) m E 7 is a partially hyperbolic fixed point of ga,, (_, with dim(Y) = I 

(see Section 1 for the definition of T’); note that because d(g,,, )(A’,,) = X,,,, always 
dim (T’) 2 I. 
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Definition 5.1 (the normal bundle of a hyperbolic closed orbit 7). For each m E y we define 

;v(;n) c T,(M) to be the direct sum of all eigenspaces of d(9,Y, ,,) 1 7’,‘,(M) corresponding to 

cigenvalues with absolute value different from 1. NC?) = Urn E y N(m) is a smooth co-dimen- 

sion 1 subbundle of 71,(M) which we call the normal bundle of 7. 

X induces a vectorfield N(X) on N(y); iv(X) can be defined by GZ..+(,~),, = d(9,Y.,) I A’(Y) 

for all t. 

Definition 5.2. A Ck-linearization of a hyperbolic closed orbit y is a C’-embedding 

$0 : U-+ M, where U is a neighbourhood of the zero section in N(y), such that: 

(1) for every m E y, p 0 so(m) = m, where s,, is the zero section in N(y); 

(2) d&V(X) I u) = XI cp(W 

THEOREM. Let y be a hyperbolic closed orbit of the C *- cectorfeld X on M rtnitlz period I:, 

lffor some (and hence for al) m E y, d(9%,, ,,,), satisfies the Sternberg $d(S?:,, ,.,), , k)-cod- 
tiorz, then there is a Ck-linearization of 7. 

Remark. Co-linearizations were obtained by Irwin [3]. 

Proof. By our main theorem there is a neighborhood W of m in &I and Ck-coordinates 

111 Yl, ..a, YSf 21, ***, z, on W such that: 

1 sm=(O,O,...,O); 

:! 0 near m, (gx, ,,; x1, yI, . . . , y,, zl, . . , , z,) is in standard form, i.e. 

Yi, 

iglBl, Ax11 . zi 3 . . . 9 iglBu, iCxl) . zi>, 

Near m, y = {y, = *. . = y, = z1 = . . . = z, = 0) ; y consists of fixed points of dX, ,y, so 

X,(x1) E 1. One can also choose the coordinates so that A i, j(X,) and BI, j(X,) become inde- 

pendent of x1 (we shall however not use this). 

We first define the map cp on a neighbourhood of the origin in the fiber N(m): The 

elements of N(m) are vectors in T,(M) of the form 

such a vector will be denoted by (?I, . . . , as, [II, . . , p,). We now take 

‘p(a, ,..., cLs,pr ,...I B~)=(~~=~,~~=ccl,...,Y,=~~,~,=B~~...~~~=B”) 

if this is defined (which is the case for (a,, . . . , p,) close to the origin). 

Note that with this definition of cp ) N( m we have, near the origin of N(m), ) 

9 x. l.l 0 (P I Mm)) = CP 0 gNcXj, ly I W4. 

The requirement dq(N( X) I U) = XI q(U) now fixes the C’-linearization cp, in a unique way, 

on a neighbourhood of the zero section. 
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