
Theoretical Computer Science 88 (1991) 99-116

Elsevier

99

Finite-automaton aperiodicity is
PSPACE-complete*

Sang Cho and Dung T. Huynh
Computer Science Program, University of Texas at Dallas, Richardson, Texas 75083, USA

Communicated by D. Perrin

Received March 1989

Revised July 1989

Abstract

Cho, S. and D.T. Huynh, Finite-automaton aperiodicity is PSPACE-complete, Theoretical Com-

puter Science 88 (1991) 99-116.

In this paper, we solve an open problem raised by Stern (1985) - “Is finite-automaton aperiodicity

PSPACE-complete?” - by providing an affirmative answer. We also characterize the exact complex-

ity of two other problems considered by Stern: (1) dot-depth-one language recognition and

(2) piecewise testable language recognition. We show that these two problems are logspace-

complete for NL (the class of languages accepted by nondeterministic logspace-bounded Turing

machines.

0. Introduction

In a paper [9] entitled “Complexity of some problems from the theory of auto-
mata,” Stern investigated the complexity of three problems: (1) finite-automaton
aperiodicity, (2) dot-depth-one language recognition and (3) piecewise testable lan-
guage recognition. In that paper, one can find polynomial-time algorithms for (2), (3),
a polynomial-space algorithm for (l), and a proof that (1) is CoNP-hard. Since there is
a gap between the upper and lower bounds of finite-automaton aperiodicity, the
author raised the question “Is finite-automaton aperiodicity PSPACE-complete?“.
We will show that finite-automaton aperiodicity is indeed PSPACE-complete. We
will also characterize the exact complexity of (2) and (3) by showing that these two
problems are logspace-complete for NL. (The reader is assumed to be familiar with
basic complexity-theoretic notions that can be found in [3].)

*This research was partially supported by the National Science Foundation under Grant DCR-8696097

and by the Organized Research Awards Program of the University of Texas at Dallas.

0304-3975/91/$03.50 0 1991-Elsevier Science Publishers B.V.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82662203?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

100 S. Cho, D.T. Huynh

In the sequel we provide the necessary definitions. Given a finite alphabet C, the
regular languages over C are those accepted by a finite-state automata. Regular
languages can be constructed from the finite sets of strings by Boolean operations
(union and complement) together with concatenation and *-operation. Star-free
languages are constructed like regular languages from the finite sets of strings but with
the restriction that the *-operation is not allowed; languages of dot-depth-one and
piecewise testable languages are star-free of a simple form and are defined as follows.

A language is of dot-depth one if it is a Boolean combination of languages

wJ*wlc* . . . w,_ic*w,,

where wo, wi, . . . , w, are strings over C.
A language is piecewise testable if it is a Boolean combination of languages

C*aIC*a2 . . . Z*a,C*,

where al, a2, . . . , a, are elements of C.
We now introduce the formal definitions of the three problems (l), (2) and (3)

mentioned above. Finite-automaton aperiodicity is defined as follows:

Instance. A minimum-state deterministic finite-state automaton DFA
M with input alphabet C.

Question. Does M recognize a star-free event?

Dot-depth-one language recognition is defined as follows:

Instance. A minimum-state DFA M with input alphabet Z.
Question. Does M recognize a language of dot-depth one?

Piecewise testable language recognition is defined as follows:

Instance. A minimum-state DFA M with input alphabet C.
Question. Does M recognize a piecewise testable language?

1. Finite-automaton aperiodicity is PSPACE-complete

In this section we will show the main result of this paper; namely, that finite-
automaton aperiodicity is PSPACE-complete. We first introduce a condition that
characterizes the star-free languages.

Proposition 1.1(a) (Schhtzenberger [7]). A regular language WsC* is star-free ijfs
W is aperiodic, i.e. for all element x of the syntactic monoid there is some integer n such
that x”+ I= 2’.

Thus, a regular language W is not star-free iff some element x of the syntactic
monoid has a nontrivial period, i.e. for all n, x”+l # x”. This condition can be stated in
terms of minimum-state DFAs as follows.

Finite-automaton aperiodicity is PSPACE-complete 101

Proposition 1.1(b). A regular language accepted by a minimum-state DFA M is not
star-free ifs there is a word UEC* and a state p such that u de&es a nontrivial cycle
starting at p, i.e. (1) 6(p, u)#p and (2)s or some positive integer r, 6(p, u*)=p.

The following problem is the complement of finite-automaton aperiodicity.

Definition 1.2. Finite-automaton cycle existence is defined as follows:

Instance. A minimum-state DFA M with input alphabet C.

Question. Is there a word u of C* that defines a nontrivial cycle of M?

Next we introduce a PSPACE-complete problem which we use to prove the

PSPACE-hardness of finite-automaton cycle existence.

Definition 1.3. Finite-state automata intersection is the following problem:

Instance. A sequence Al, AZ, . . . , A, of DFAs having the same input

alphabet C.

Question. Is there a string XEC* accepted by each of Ai, 1 ,<i,<n?

It was shown in [S] that finite-state automata intersection is PSPACE-complete.

Since the details of the construction will be needed later in our proof of the PSPACE-

hardness of finite-automaton cycle existence, we reproduce them here.

Lemma 1.4. [S] Finite-state automata intersection is PSPACE-complete.

Proof. It is easy to see that finite-state automata intersection is in nondeterministic

linear space. Thus, by Savitch’s result [6], the problem is in PSPACE. Next we reduce

an arbitrary problem in PSPACE to finite-state automata intersection. To this end, let

M =(Q, Z, r, 6, qo, B, F) be a single-tape deterministic p(n) space bounded Turing

machine, where p is some fixed polynomial and BEG denotes the blank symbol.

Let xeC* be an input string and let n=jxl. Let A=(Qu{~))x(Zur). A string

VALCOMP, = # ID, # ID, # ... # ID, # # l (d u{ # })* represents a valid compu-

tation of M on input x if the following conditions are satisfied:

(1) each IDi is an instantaneous description of M consisting of M’s tape content

(padded out to length p(n) with B’s), the position of M’s head, and the state of M;
(2) each IDi+ 1 follows from 1Di in one step according to the transition rules of M;
(3) ID, is the start configuration of M on input x and ID, is an accepting

configuration.

Clearly, M accepts xeC* if and only if there is a valid computation

VALCOMP, = # ID, # ID, # . ..#ID.##~(du{#})*ofMoninputx.Wecan

construct a collection of DFAs with input alphabet Au{ # > so that the intersection of

the languages accepted by these DFAs will be the singleton set consisting of the string

VALCOMP, if it exists, and fl otherwise.

102 S. Cho, D.T. Huynh

Without loss of generality, assume that M always takes an even number of steps,
and has a unique accepting state q_. Further, M erases its tape before accepting and
has the head at the left end of the tape in an accepting configuration. We construct
a DFA Arn which checks that each IDi is indeed an instantaneous description, i.e.
Ain accepts the set of strings in (# PC”) # LIP(“))* # #, so that each string dP(“) is of the

form [E, X,][E, X2] . ..[P. Xi-,][q, Xi][E, Xi+,] . ..[E. Xp(,,J, where XiECUT,
1 d id p(n) and ~EQ. In other words, Ain checks that there are an even number of ID’s
each of length p(n) and that there is exactly one cell which contains the position of the
head and the current state of M among the p(n) cells for each ID.

Next we construct two groups of DFAs to check that each ID,+ 1 follows from ID,
in one step according to the transition rules of M. Recall that given the (i- l)st, ith
and (i+ 1)st symbols of ID, the ith symbol of ID,+ 1 can be determined from the
transition rules of M. We construct a DFA Af”” which accepts strings in sets of the
form (# di-2ala2a3~P’“‘-i-1# di-2blb2b3dp(“)-i-1)* # # so that b2 follow from
ala2a3 according to the transition rule of M, where ak, bke A, 1 <k < 3. Ap”“” checks
whether the ith symbol of ID,+ 1 follows from the (i- l)st, ith and (i + 1)st symbols of
ID, for even j’s. For i= 2, A?‘” checks that the 1st and 2nd symbols of ID,+ r follow
from the lst, 2nd and 3rd symbols of ID, for even j’s. For i=p(n)- 1, A;$_ 1 checks
that the (p(n)-1)st and p(n)th symbols of ID,+1 follow from the (p(n)-2)nd,
(p(n)- 1)st and p(n)th symbols Of IDj for evenj’s. The structure of Afven is illustrated
in Fig. 1, where the states of A;“” are numbered in such a way that the number
assigned to a state indicates its “distance” from state Si. Further, di denotes the dead
state and5 the final state of A?‘“. (Note that only states with the same distance can be
equivalent.) From the simple structure of A;“‘“, one can easily see that the minimum-
state DFA Af”” can be constructed by a deterministic logspace-bounded Turing
machine.

Similarly, we construct a DFA Apdd which accepts strings in sets of the form
Ap’“)(# Ai-2a,a2a,AP(“)-i-1 # Ai-2blb2b3AP(“)-i-1)* # Ap(“)# #, so that b,

Fig. 1

Finite-automaton aperiodicity is PSPACE-complete 103

follows from ulazu.3 according to the transition rules of M, i.e. the Apdd do the same as
the A;““, except that they check the even ID’s following from the odd ID’s immedi-
ately preceding them. The structure of Ai Odd is illustrated in Fig. 2, where the states are
numbered in such a way that the number assigned to a state indicates its “distance”
mod 2p(n) + 1 from si. Note again that we can easily construct a minimum-state DFA
for Apdd by a deterministic logspace-bounded Turing machine because of the simple
structure of Apdd.

Finally, we construct a DFA Aen& which checks that ID,, is the start configuration
of the machine M and the last instantaneous description ID,,, is an accepting config-
uration of M which is of the form [qacc, B] [E, B] . . . [E, B]. It is not hard to see that
~(&)n&&.nds)n r)~~~-‘(L(Afve”)nL(Apdd)). 1s nonempty iff M accepts x. Note that
the above reduction can be easily carried out by a deterministic logspace-bounded
Turing machine. This completes the proof of Lemma 1.4. q

As observed in [9], it is straightforward to see that finite-automaton cycle existence
is in PSPACE.

Lemma 1.5 (Stern [9]). Finite-automaton cycle existence in in PSPACE.

We now proceed to prove that finite-automaton cycle existence is PSPACE-hard
by reducing finite-state automata intersection to finite-automaton cycle existence.
More precisely, we will reduce the outputs of the logspace-reduction of Lemma 1.4 to

Fig. 2

104 5’. Cho, D.T. Huynh

finite-automaton cycle existence. To this end, we reconsider the DFAs constructed in
the proof of Lemma 1.4. Let

AI=&lds=(QI, c, 61, Sl, {A))>

~~=&=(Q~r~,&>~~> (.h)),

and for 26idp(n)-1

Azi-1=Apdd=(Q2i-1,~,b2i-1,S2i-1r (hi-,}),

Azi=ATe"=(Qzi> z, 62i, szi, (hi}).

Without loss of generality, assume that QinQj = 8 if i #j and all Als are minimum-
state DFAs. We construct a DFA A =(Q, C, 6, s, {f}) as follows:

2Pb) - 2

Q={dIu iyl (Qi-(diIL

where di is the unique dead state of Ai,

and 6 is

(1)
(2)
(3)

s=s,,f=.fi, C=du{ #},

defined by

d(q, a)=hi(q, U) for qEQi_(ri}, UEC except when defined by (2),

s(A9 #)=Si+ 1 for 1 did2p(n)-3, w&I-2, #)=Slr

6(q, a)=d for all (q, a) not defined by (1) and (2),

where d is the dead state of A. The structure of A is depicted in Fig. 3.

. . . $&__ . . .

A 2p(n)-3 Ai A4

Fig. 3

Finite-automaton aperiodicity is PSPACE-complete 105

Recall that in the DFA A, two states p, q are inequivalent iff there is a string w so

that exactly one of 6(p, w), 6(q, w) is the final statef: We can easily verify that every

pair of states in A are inequivalent. Thus, the DFA A is a minimum-state DFA.

Now observe that if there is a string XEC* accepted by A,, AZ, ...rA2p(n)_2

simultaneously, then the string x# defines a nontrivial cycle for A. However, the

converse is not necessarily true. In fact, if there is a string w that defines a nontrivial

cycle for A, we cannot conclude that there is some string accepted by all Ai’s. Indeed

any one of Ai may have nontrivial cycle by itself. The problem is how to eliminate

nontrivial cycle from each component Ai. The solution is quite simple. To illustrate

the idea, let us consider the following example.

Example 1.6. Consider a DFA M = (Q, C, 6, ql, { q1)), where Q = { ql, q2, q3, q4, q5 >,

C = {a, b} and 6 is defined as

&41, u)=q2, 6(q,, b)=q,, 6(q,, u)=q4, 6(q,, b)=q,,

eL 4=q5 for all (q, c) not defined above, where q5 is the dead state.

Clearly, M is a minimum-state DFA and the string ab defines a nontrivial cycle for M.
However, we can modify M by expanding its input alphabet so that there is no

nontrivial cycle for the modified DFA.

Let M’=(Q,C’,6’,ql,(ql)) h w ere C’=C x (0, 1,2,3j and 6’ is defined by

6’(q, (c, i))=p, where 6(q, c)=p and i is the distance of q from ql, i.e. i is the length of

some shortest string x such that 6(q,, x) = q; otherwise, 6’(q, (c, i)) = q5. Then, clearly,

M’ is a minimum-state DFA and there is no nontrivial cycle for M’. (The construction

of M’ is illustrated in Fig. 4.)

We apply the above idea to eliminate nontrivial cycles from each DFA Ai. Note

that all the cycles in Ai are of length 2p(n)+2 except loops at the dead states di’s.

Therefore, we expand the alphabet C to C x {O, . . , 2p(n) + 11, Before modifying Ai’S

we need the following definition.

The distance of a state q in the DFA Ai is defined to be 1x1 mod 2p(n) + 2, where x is

a shortest string such that Gi(si, X) = q.

Fig. 4

106 S. Cho, D.T. Huynh

For the minimum-state DFA Ai = (Qi, C, &, si, { fi‘)), we construct a minimum-state
DFA Bi=(Qi, C’, Si, si, (X}) as follows:

C’ = c x (0, . . .) 2p(n) + l}

and S; is defined by

4(q, (a>)= p
if 6i(q, a) =p and j is the distance of q,

di otherwise, where di is the dead state of Bi.

Before proving that there is no nontrivial cycle within Bi, for technical convenience,
we want to classify &‘s into two classes. The first class contains exactly all B;s with
even i and is called the even class. The second class contains all B;s with odd i and is
called the odd class. We can easily verify the following facts.

Fact 1.7. If Bi belongs to the even class, then si is the only state with distance 0.

Fact 1.8. Zf Bi belongs to the odd class, then there is only one state ti with distance

p(n)+ 1.

We now show that there is no nontrivial cycle within Bi.

Lemma 1.9. There is no nontrivial cycle within Bi.

Proof. Suppose there is a nontrivial cycle within Bi. Let &(p, x)=q, pfq and
6i(p, xr)=p. By construction of Bi from Ai using the extension of C, the distance of
p and the distance of q are identical. Thus, 1 x 1 mod 2p(n) + 2 = 0. If Bi belongs to the
even class, then there are strings x 1, ~2 SO that X=X~X~ and 6{(p, xl)=si, 6j(si, x2)=4
since lx(>O. Clearly, 6i(q, xl)=si and 6j(si, xzxl)=si. Then, 6i(p, x’)=&(P,
Xl(XzXi)‘-‘Xz)=Si(Si, (XzX1)*-r x~) = 6:(si, x2) = q, which is a contradiction. Sim-
ilarly, if Bi belongs to the odd class, then there are strings xi, x2 so that x=x1 x2 and
6i(P, X1)= ti, s{(ti, Xz)=q. Clearly, 6j(q, XI)= ti and di(ti, x2x1)= ti. Then,
&(p, x’)=&(p, xl(xzxl)l-l x2)=6i(ti, (xZxl)*-lx2)=8:(ti, x2)=q, which is again
a contradiction. Thus, there is no nontrivial cycle for Bi. 0

The outline of the proof of Lemma 1.11 follows the argument in [9]. Let
Bi=(Qi,C’,oi, si, {A}) and di be the unique dead state of Bi, l<id2p(n)-2. Let
PRIME be the smallest prime number which is greater than 2p(n)-2. The following
proposition is well known.

Proposition 1.10 (Hardy [2]). For any positiue integer n there is at least one prime
number p such that n <pG2n. Furthermore, p can be computed in log n space.

Finite-automaton aperiodicity is PSPACE-complete 107

NOW for each I< id 2p(n) - 2, let BZp(,,) _ z + i be a new copy Of Bi such that the sets of
states are all pairwise disjoint. We construct a new DFA B =(Q, C’, 8, s, {f}) as
follows:

and 6’ is

(1)

PRIME

Q=(dIu i!l (Qi-{di}L S=Sl, f=_h,

C’=Cx{0,...,2p(n)+l}

defined as follows:

6’(q, (a,j))=&(q, (a,j)) for all afzC,

where qEQi_{di) except when defined by (2);

(2) s’(A, (#,2))=si+l, l<idPRIME-1,

~'(h=RIMEr <#,2))=s,;

(3) 6’(q, (a, j)) =d if not defined by (1) and (2),

where d is the dead state of B.
Clearly, the DFA B is a minimum-state DFA. We now prove the following lemma.

Lemma 1.11. If B has a nontrivial cycle, then there is a string x accepted by all Bi’s and,

hence, a string y accepted by all Ai’s.

Proof. Suppose there is a nontrivial cycle for B. By Lemma 1.9, this cannot be a cycle
within any Bi. Let S’(p, u)=q, p#q and 6’(p, u’)=p. Further, let r be the smallest
number satisfying the condition. Let

pEQi-(di} and qEQj_{dj}.

Fact 1.12. i#j and the distance of p in Bi and the distance of q in Bj are the same.

Proof of Fact 1.12. Clearly, the distance of p in Bi and that of q in Ej are equal. NOW

assume, by way of contradiction, that i=j. If the computation path of u from p to
q does not leave Bi, then the computation path of a’-’ from q to p cannot leave Bi
either. This cannot happen by Lemma 1.9. Thus, the computation path of u from p to
q must leave Bi and reenter through si. By the same reason, the computation path of
u*-i from q to p must leave Bi and reenter through si. First consider the case i is even.
Let u be the shortest suffix of u such that 6’(Si, u)= q. Let w be the shortest suffix of u’-r
such that 6’(si, w) = p. Then 1 VI =) w) and q = p, which is a contradiction. If i is odd, we
can select the shortest suffix which starts at ti instead, and argue as before. q

Let DELTA = (j- i) mod PRIME, 0 <DELTA <PRIME. Let p,, = p and pk+ 1 =
d'(pk, U) for O<k<r-1. Thus, q=pl and p=p,. Let pkEQi,-(ri,) for O<k<r.

108 S. Cho, D.T. Huynh

Claim 1.13. For all OGkGr-1, DELTA=(ik+l-i,) mod PRIME.

proof of Claim 1.13. Actually, we have that DELTA=(the number of substring

(#,0>(#,1)(#,2) in U) modPRIME, and by <#,0)<#,1)<#,2) we can
mOVeinBfrOm&tOBi+i. Cl

Claim 1.14. r = PRIME.

Proof of Claim 1.14. If r <PRIME, then Y x DELTA mod PRIME#O. Thus i0 #ik,
i.e. p =po fp, for all 1 d k c PRIME. Since r is the least number satisfying the
condition, we conclude that r = PRIME. 0

Proof of Lemma 1.11 (conclusion). Observe that DELTA is a generator of the cyclic
group ZPRIME. Therefore, the sequence i,, i,, . . . , iPRIME_ I is a cyclic permutation of
1,2,..., PRIME. Now, let u1 be the shortest prefix of u such that 6’(pk, ai) = si,+ 1, and
u3 be the shortest suffix of u such that 8(sik+, , u3) =pk+ 1

Then u=ulu2u3 for some a2 and it holds that 8’(sil,+ 1, u2)=sik+ I. Consider u3ul.
Clearly, S’(sirUgUl)=si+l for all i=l,...,PRIME-1. Further, ~Y(s~~~~~,u~u~)=s~.

Let x be such that u3ul =x(# ,2). Then, x is accepted by all Bi’s. Let

x=<%,0><az, 1>..~<%, 2p(n)+l)(#,O)(#, 1) and define y=alaz...a,# #.
Then, clearly, y is accepted by all Ai’s. This completes the proof of Lemma 1.11. Cl

The remaining problem is that we have a variable-size input alphabet instead of
a fixed-size alphabet. The idea is to encode such input symbols by binary strings of the
same length that depends on the size of the input alphabet. Let B = (Q, C’, 8, s, {f}) be
the DFA constructed above. We construct a DFA B’= (Q’, (0, 1>,8’, s’, { fl)) as
follows:

Q'=Qx (0, ljsk-‘, where k= r log, (C’(1 ,

s‘=(s, E), f’=<Lc>

and 6” is so defined that

6”(<4, E), X,)‘<P, E),

where 6’(q, a)=p and x,=aluz... &&{O, l}* is a binary string which encodes the

symbol UEC’. Therefore, all intermediate transitions are defined as follows:

S”(<% E), al)=<% a,>,

fi”((4,~,),~,)=<q,~l~,),

. . .

Finite-automaton aperiodicity is PSPACE-complete 109

For all ((q, x), b) not defined by the above rule, we set

a”((q, x>, b)=(d, E),

where d is the dead state of I?‘. Now, we can easily see that if there is a nontrivial cycle

within B, then there is a nontrivial cycle within B’. However, the converse is not

necessarily true, as shown in the following example.

Example 1.15. Let us consider a cycle qoaIq5a2q,oa3q0 in the DFA in Example 1.6,

where all qi’s and aj’s are distinct. Let us encode aI as 00100, a2 as 10010, a3 as 01001.

The cycle in the modified DFA becomes: qoOq,0q2 lq30q,0q, lq,Oq,Oq, lq90q,,

Oq,, lq,20q,30q,41qo, where all qis are distinct, and all qi’s except qo, q5 and qlo are

intermediate states. Obviously, qo, 001 and (001)5 define a nontrivial cycle in the

modified DFA, whereas there is no nontrivial cycle in the original DFA.

We need the following encoding schema to avoid the above possibility. We encode

0 by 01 and 1 by 10. Thus, 00100 becomes y=0101100101. We also concatenate

x=111111111100withywhichgivesxy=1111111111000101100101,wherethenum-

ber of l’s in x is equal to jyj. Let q, U, r define a nontrivial cycle in the modified DFA.

Then, (~1 must be a multiple of Ixy(, and u can be written as u = vwx such that w is

a concatenation of encodings of ai’s. Then U’ = wxu is a concatenation of encodings of

ai’s and S(q, v), U’ and r defines a nontrivial cycle. Now it is not hard to see that if there

is a nontrivial cycle in the modified DFA, then there is a nontrivial cycle in the original

DFA.

We apply the above idea as follows. The form of the encodings of ais is

1 2k00{01, 10jk, where k is the length of the binary encodings of symbols in the original

DFA B’. By an argument similar to the one in Example 1.12, the length of u must be

a multiple of 4k + 2, and for u there is u’ which is a concatenation of encodings of ais

and defines a nontrivial cycle. Thus, if there is a nontrivial cycle in B’, then there is

a nontrivial cycle in B.
Thus, we have proved the following lemma.

Lemma 1.16. Finite-automaton cycle existence with input alphabet C= (0, 1) is log-
space-complete for PSPACE.

From Lemma 1.16, we obtain the following theorem as a corollary.

Theorem 1.17. Finite-automaton uperiodicity is logspace-complete for PSPACE.

2. The complexity of dot-depth-one language recognition and piecewise testable

language recognition

In this section we characterize the complexity of two other problems; namely,

dot-depth-one language recognition and piecewise testable language recognition. We

110 S. Cho, D.T. Huynh

show that these two problems are logspace-complete for NL, where NL is the class of
languages accepted by nondeterministic logspace-bounded Turing machines. The
following result is used.

Proposition 2.1. (Immerman [4]). NL is closed under complement.

We now introduce a condition which characterizes piecewise testable languages.

Definition 2.2. Given a DFA M=(Q, C, 6, qo, F), we denote its transition diagram by
G(M). We also define G(M, r) by considering only transitions labeled by symbols in
r, where ~zZ. Let p be a vertex of G. The component defined by p, written C(p), is

C(p)={p}u{ql there is a path from p to q}.

Proposition 2.3(a) (Simon [S]). Let W be a regular language and M be the minimum-
state DFA accepting W. W is piecewise testable ifl(l) G(M) is acyclic and (2) for any
subset P of C, each component of G(M, P) has a unique maximal state, where a state is
said to be maximal zffrom that state there is no outgoing transition labeled by P.

Thus, W is not piecewise testable iff either (1) G(M) is cyclic or (2) there is one
component of G(M, P) having two distinct maximal states.

Observation (Stern [9]). If G(M) is acyclic, then q is a maximal state of a component
C of G(M, P) ifs(l) qeC and (2) PcC(q)={aEC(G(q, a)=q).

From the above observation if q, q’ are distinct maximal states of C, then they
are also distinct maximal states of some component of G(M, C(q)nC(q’)). Hence,
Proposition 2.3(a) can be restated as follows.

Proposition 2.3(b). W is not piecewise testable ifleither (1) G(M) is cyclic or (2) there
are 3 distinct states p, q, q’ so that there are paths from p to q and p to q’ in the graph

G(M, C(q) nC(q’)).

From Proposition 2.3(b) we have the following NL-algorithm which solves the
piecewise testable language recognition problem.

Lemma 2.4. Piecewise testable language recognition is in NL.

Proof. Let M = (Q, C, 6, qo, F) be a minimum state DFA.
(1) if there is a cycle in G(M) then return (‘yes’);

(2) guess P, 4, 4’;
s,:=p; s,:=p;

111 Finite-automaton aperiodicity is PSPACE-complete

repeat guess a, bEZ(q)nC(q’);

s1:=6(sl, a);

s,:=Q,, b);

until s1 = q and s2 = q’;

return (‘yes’);

Obviously, the above algorithm is in NL and gives a positive answer when M does
not accept a piecewise testable language. Since NL is closed under complement [4],
piecewise testable language recognition is in NL. 0

Lemma 2.5. Piecewise testable language recognition is NL-hard.

Proof. We reduce graph accessibility (GAP for short), a well-known NL-complete
problem, to piecewise testable language recognition. A special case of GAP is mono-
tone 2GAP where out-degree of each vertex is bounded by 2 and for all edges
e = (u, u), v is greater than u (the vertices are linearly ordered). It is not hard to see
that monotone 2GAP is also logspace-complete for NL. Let (G, s, g) be an instance of
monotone 2GAP, where G = (V, E), V= { 1,2, . . . , n}, s = 1 and g = n.

We construct a minimum-state DFA M=(Q, C, 6, pl, {f}), where Q = Vu{f}u

{pi 1 1 < i < n} u (qi 1 1 Q i 6 n}, C = (0, 1,2} and 6 is defined as follows (see Fig. 5):

6(pi, 2)=i for 1 <iQn,

6(Pi, a)=Pi+l for all a~(0, l} and 1 di<n-1,

6(p,, a)=n for ~(0, l}.

For all iE V- {n} we have the following cases:

outdegree(i)=2: let j, k (j< k) be two vertices adjacent to i. In this case

6(i, 0) =j, 6(i, l)= k, 6(i, 2)=qi;

outdegree (i)= 1: let j be the vertex adjacent to i. In this case

6(i, a)=j for UE{O, l}, 6(i, 2)=qi;

Fig. 5

112 S. Cho, LIT. Huynh

outdegree = 0:

6(i, a)=f for aE(O, l}, s(i, 2)=qi,

6(n, O)= 1, 6(n, l)=f, W, 2)=&l.

For all UEC and 1 di<n-- 1

6(qi, a)=qi+l, 4%, a)=f, S(f, a)=$

(Note that the states pi’s and qi’s are introduced in order to obtain the minimality of
the resulting DFA.)

Observe that if there is a path from s to g, then there is a cycle in G(M). Further,
f is the only state q such that C(q) #$. Therefore, if we can show that M is
a minimum-state DFA, then we can conclude that (G, s, g) belongs to monotone
2GAP iff L(M) is not a piecewise testable language.

Claim. M is a minimum-state DFA.

Proof of Claim. First, observe that all p;s are pairwise inequivalent since if i <j, then
6(pi, 0”-j23) Zfand 6(pj, 0’-j23)=f. Next, one can easily see that all 4;s are pairwise
inequivalent by a similar argument. Also, all states i= 1, . . . , n are pairwise in-
equivalent since if i <j, then S(i, 20”-j+ ‘) #f and 6(j, 20”-j+ l) =J:

Note that for all 1 <i, j<n 6(p~,0’-i+220”-1)#~ but 6(qj,0”-it220”-1)=f: Thus,
all pairs pi’s and qj’s are pairwise inequivalent. Also, all the pairs pi’s and j’s are
pairwise inequivalent since if i&j+l, then 6(pi, 21”-j)=f, but S(j, 21”-j)#f; if
i <j + 1, then 6(j, 2”-j+‘) =f, but 6(pi, 2n-j+2) #t By a similar argument, all the pairs
4;s and j’s are pairwise inequivalent. Thus, we conclude that M is minimal. 0

Proof of Lemma 2.5 (conclusion). From the above claim, it follows that M does not
recognize a piecewise testable language iff there is a path from s to g in G. The above
reduction can be easily carried out by a deterministic logspace-bounded Turing
machine. This completes the proof of Lemma 2.5. 0

From Lemmas 2.4 and 2.5, we obtain the following theorem.

Theorem 2.6. Piecewise testable language recognition is logspuce-complete for NL.

Next we introduce a condition that characterizes the dot-depth-one languages.

Definition 2.7. Let k be an integer. A DFA M is k-stable if for any two states p, q and
any word w of length k, whenever p, q, 6(p, w), 6(q, w) belong to the same strongly
connected component, then 6(p, w) = 6 (q, w).

Thus, a DFA M is not k-stable if there are states p, q and a word w of length k such
that p, q, 6(p, w) and d(q, w) belong to the same strongly connected component and

qp, 4#6(q, 4.

Finite-automaton aperiodicity is PSPACE-complete 113

Definition 2.8. Two words U, u are k-coinitial if they have the same first k letters; we
write cL(u, u) if u and u are k-coinitial.

A fork(k) of type I is a diagram of the form described by Fig. 6, where u, u are
k-coinitial words and A, A’ are two distinct strongly connected components.

A fork(k) of type II is defined as in Fig. 7, with cL(u, x), ck(v, y) and A #A' are two
distinct strongly connected components.

Proposition 2.9 (Stern [9]). A regular language is of dot-depth one @for some k, its
minimum-state DFA M is k-stable and admits no fork(k) of type I and type II. Further,
k can be taken to be 1 Q[3, where Q is the set of states of M.

Thus, a regular language is not of dot-depth one iff its minimum state DFA M is not
k-stable or admits fork(k) of type I or type II, where k =) Q I3 and Q is the set of states
of M. From Proposition 2.9, we have the following NL algorithm for dot-depth-one
language recognition.

Lemma 2.10. Dot-depth-one language recognition is in NL.

Proof. Let M = (Q, C, 6, qO, F) be a minimum-state DFA.
(1) /* Test whether M is not k-stable for k=IQI”*/

guess P, 4;

if p, q belong to the same strongly connected component then

Fig. 6

” V

Fig. I

114 S. Cho, D.T. Huynh

begin

s1:= p; s2 := q;

for i:= 1 to k do

begin

guess EC;

s,:=qs,, a);

s2:=&, a);

end;

if s1 #s2 then return (‘yes’);
end

(2) /* Test whether A4 admits fork(k) of type I*/

guess P, 4, y, s, t;
if q, r and s, t constitute two different strongly connected components then

begin

s,:=p; s2:=r

’

sj:=.Y >

for i:= 1 to k do

begin

guess aeC;
s1:= 6(s,) a);

s2:= 6(s,, a);

s3 := 6 (S3) a);

end;

if sl=q and s2=q and s3=t then

begin

s, := p; s2 := t’

for i:=l to kdo’

sg:=q;

begin

guess aE:C;
s,:=d(sl, a);
s2 := 6(SZ) a);

s3 := 6 (s3) a);

end;

if s1 =s and s2 =s and s3 =r then

return (‘yes’);

end

end

(3) /* Test whether M admits fork (k) of type II*/
Similar to that of fork (k) of type I.

Note that computing strongly connected components and checking that the connected
components are distinct are both in NL. Therefore, the above algorithm is in NL and
gives a positive answer when M does not accept a dot-depth-one language. Since NL
is closed under complement [4], dot-depth-one language recognition is in NL. 0

Finite-automaton aperiodicity is PSPACE-complete 115

Lemma 2.11. Dot-depth-one language recognition is NL-hard.

Proof. The proof is essentially similar to that of Lemma 2.5. We reduce monotone
2GAP to dot-depth-one language recognition. Actually, we reduce monotone 2GAP
to the problem of checking whether a given minimum-state DFA M is k-stable or not.
The details are left to the reader as an exercise. 0

From Lemmas 2.10 and 2.11 we obtain the following theorem.

Theorem 2.12. Dot-depth-one language recognition is logspace-complete for NL.

3. Conclusions

In this paper we have characterized the exact complexity of three problems:
(1) finite-automaton aperiodicity, (2) dot-depth-one language recognition and
(3) piecewise testable language recognition. For all the three problems, the DFAs in
the input are assumed to be minimum-state DFAs. Since testing whether a given DFA
is minimal is known to be in P, finite-automaton aperiodicity remains PSPACE-
complete even without the minimality assumption. In [l] we showed that minimiz-
ation of DFAs is NL-complete. Therefore, dot-depth-one language recognition and
piecewise testable language recognition remain NL-complete even when the DFAs in
the input are not assumed to be minimal.

Acknowledgment

The authors thank an anonymous referee for some helpful remarks that improve
the presentation of this paper.

References

[I] S. Cho and D.T. Huynh, The parallel complexity of finite state automata problems, Tech. Report

UTDCS-22-88, Univ. of Texas, Dallas, 1988.

[Z] G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers (Oxford University Press,

London, 3rd ed., 1954) 343.

[3] J. Hopcroft and J. Ullman, Zntroduction to Automata Theory, Languages, and Computation (Addison-

Wesley, Reading, MA, 1979).

[4] N. Immerman, Nondeterministic space is closed under complement, SIAM J. Comput. 17 (1988)

935-938.

[S] D. Kozen, Lower bounds for natural proof systems, in: Proc. 18th IEEE Ann. Symp. on Foundations of

Comput. Sci. (1977) 254-266.

116 S. Cho, D.T. Huynh

[6] W.J. Savitch, Relationship between nondeterministic and deterministic tape complexities, J. Comput.
System. Sci. 4 (1970) 177-192.

[7] M.P. Schiitzenberger, On finite monoids having only trivial subgroups, Inform. and Control 8 (1965)

19G194.

[S] I. Simon, Piecewise testable events, Lecture Notes in Computer Science, Vol. 33 (Springer, Berlin, 1975)

214222.

[9] J. Stern, Complexity of some problems from the theory of automata, Inform. and Control 66 (1985)

163-176.

