Finite-automaton aperiodicity is PSPACE-complete*

Sang Cho and Dung T. Huynh
Computer Science Program, University of Texas at Dallas, Richardson, Texas 75083, USA
Communicated by D. Perrin
Received March 1989
Revised July 1989

Abstract

Cho, S. and D.T. Huynh, Finite-automaton aperiodicity is PSPACE-complete, Theoretical Computer Science 88 (1991) 99-116.

In this paper, we solve an open problem raised by Stern (1985) - "Is finite-automaton aperiodicity PSPACE-complete?" - by providing an affirmative answer. We also characterize the exact complexity of two other problems considered by Stern: (1) dot-depth-one language recognition and (2) piecewise testable language recognition. We show that these two problems are logspacecomplete for NL (the class of languages accepted by nondeterministic logspace-bounded Turing machines.

0. Introduction

In a paper [9] entitled "Complexity of some problems from the theory of automata," Stern investigated the complexity of three problems: (1) finite-automaton aperiodicity, (2) dot-depth-one language recognition and (3) piecewise testable language recognition. In that paper, one can find polynomial-time algorithms for (2), (3), a polynomial-space algorithm for (1), and a proof that (1) is CoNP-hard. Since there is a gap between the upper and lower bounds of finite-automaton aperiodicity, the author raised the question "Is finite-automaton aperiodicity PSPACE-complete?". We will show that finite-automaton aperiodicity is indeed PSPACE-complete. We will also characterize the exact complexity of (2) and (3) by showing that these two problems are logspace-complete for NL. (The reader is assumed to be familiar with basic complexity-theoretic notions that can be found in [3].)

[^0]In the sequel we provide the necessary definitions. Given a finite alphabet Σ, the regular languages over Σ are those accepted by a finite-state automata. Regular languages can be constructed from the finite sets of strings by Boolean operations (union and complement) together with concatenation and *-operation. Star-free languages are constructed like regular languages from the finite sets of strings but with the restriction that the $*$-operation is not allowed; languages of dot-depth-one and piecewise testable languages are star-free of a simple form and are defined as follows.

A language is of dot-depth one if it is a Boolean combination of languages

$$
w_{0} \Sigma^{*} w_{1} \Sigma^{*} \ldots w_{n-1} \Sigma^{*} w_{n}
$$

where $w_{0}, w_{1}, \ldots, w_{n}$ are strings over Σ.
A language is piecewise testable if it is a Boolean combination of languages

$$
\Sigma^{*} a_{1} \Sigma^{*} a_{2} \ldots \Sigma^{*} a_{n} \Sigma^{*}
$$

where $a_{1}, a_{2}, \ldots, a_{n}$ are elements of Σ.
We now introduce the formal definitions of the three problems (1), (2) and (3) mentioned above. Finite-automaton aperiodicity is defined as follows:

Instance. A minimum-state deterministic finite-state automaton DFA M with input alphabet Σ.
Question. Does M recognize a star-free event?
Dot-depth-one language recognition is defined as follows:
Instance. A minimum-state DFA M with input alphabet Σ.
Question. Does M recognize a language of dot-depth one?
Piecewise testable language recognition is defined as follows:
Instance. A minimum-state DFA M with input alphabet Σ.
Question. Does M recognize a piecewise testable language?

1. Finite-automaton aperiodicity is PSPACE-complete

In this section we will show the main result of this paper; namely, that finiteautomaton aperiodicity is PSPACE-complete. We first introduce a condition that characterizes the star-free languages.

Proposition 1.1(a) (Schützenberger [7]). A regular language $W \subseteq \Sigma^{*}$ is star-free iff W is aperiodic, i.e. for all element x of the syntactic monoid there is some integer n such that $x^{n+1}=x^{n}$.

Thus, a regular language W is not star-free iff some element x of the syntactic monoid has a nontrivial period, i.e. for all $n, x^{n+1} \neq x^{n}$. This condition can be stated in terms of minimum-state DFAs as follows.

Proposition 1.1(b). A regular language accepted by a minimum-state DFA M is not star-free iff there is a word $u \in \Sigma^{*}$ and a state p such that u defines a nontrivial cycle starting at p, i.e. (1) $\delta(p, u) \neq p$ and (2) for some positive integer $r, \delta\left(p, u^{r}\right)=p$.

The following problem is the complement of finite-automaton aperiodicity.
Definition 1.2. Finite-automaton cycle existence is defined as follows:
Instance. A minimum-state DFA M with input alphabet Σ.
Question. Is there a word u of Σ^{*} that defines a nontrivial cycle of M ?
Next we introduce a PSPACE-complete problem which we use to prove the PSPACE-hardness of finite-automaton cycle existence.

Definition 1.3. Finite-state automata intersection is the following problem:
Instance. A sequence $A_{1}, A_{2}, \ldots, A_{n}$ of DFAs having the same input alphabet Σ.
Question. Is there a string $x \in \Sigma^{*}$ accepted by each of $A_{i}, 1 \leqslant i \leqslant n$?
It was shown in [5] that finite-state automata intersection is PSPACE-complete. Since the details of the construction will be needed later in our proof of the PSPACEhardness of finite-automaton cycle existence, we reproduce them here.

Lemma 1.4. [5] Finite-state automata intersection is PSPACE-complete.
Proof. It is easy to see that finite-state automata intersection is in nondeterministic linear space. Thus, by Savitch's result [6], the problem is in PSPACE. Next we reduce an arbitrary problem in PSPACE to finite-state automata intersection. To this end, let $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, B, F\right)$ be a single-tape deterministic $p(n)$ space bounded Turing machine, where p is some fixed polynomial and $B \in \Gamma$ denotes the blank symbol. Let $x \in \Sigma^{*}$ be an input string and let $n=|x|$. Let $\Delta=(Q \cup\{\varepsilon\}) \times(\Sigma \cup \Gamma)$. A string $\operatorname{VALCOMP}_{x}=\# \mathrm{ID}_{0} \# \mathrm{ID}_{1} \# \cdots \# \mathrm{ID}_{m} \# \# \in(\Delta \cup\{\#\})^{*}$ represents a valid computation of M on input x if the following conditions are satisfied:
(1) each ID_{i} is an instantaneous description of M consisting of M 's tape content (padded out to length $p(n)$ with B 's), the position of M 's head, and the state of M;
(2) each ID_{i+1} follows from ID_{i} in one step according to the transition rules of M;
(3) ID_{0} is the start configuration of M on input x and ID_{m} is an accepting configuration.

Clearly, M accepts $x \in \Sigma^{*}$ if and only if there is a valid computation $\operatorname{VALCOMP}_{x}=\# \mathrm{ID}_{0} \# \mathrm{ID}_{1} \# \cdots$ ID $_{m} \# \# \in(\Delta \cup\{\#\})^{*}$ of M on input x. We can construct a collection of DFAs with input alphabet $\Delta \cup\{\#\}$ so that the intersection of the languages accepted by these DFAs will be the singleton set consisting of the string VALCOMP $_{x}$ if it exists, and \emptyset otherwise.

Without loss of generality, assume that M always takes an even number of steps, and has a unique accepting state $q_{\text {acc }}$. Further, M erases its tape before accepting and has the head at the left end of the tape in an accepting configuration. We construct a DFA A_{ID} which checks that each ID_{i} is indeed an instantaneous description, i.e. A_{ID} accepts the set of strings in $\left(\# \Delta^{p(n)} \# \Delta^{p(n)}\right)^{*} \# \#$, so that each string $\Delta^{p(n)}$ is of the form $\left[\varepsilon, X_{1}\right]\left[\varepsilon, X_{2}\right] \ldots\left[\varepsilon, X_{i-1}\right]\left[q, X_{i}\right]\left[\varepsilon, X_{i+1}\right] \ldots\left[\varepsilon, X_{p(n)}\right]$, where $X_{i} \in \Sigma \cup \Gamma$, $1 \leqslant i \leqslant p(n)$ and $q \in Q$. In other words, $A_{\text {ID }}$ checks that there are an even number of ID's each of length $p(n)$ and that there is exactly one cell which contains the position of the head and the current state of M among the $p(n)$ cells for each ID.

Next we construct two groups of DFAs to check that each ID_{j+1} follows from ID_{j} in one step according to the transition rules of M. Recall that given the ($i-1$) st, i th and $(i+1)$ st symbols of ID_{j} the i th symbol of ID_{j+1} can be determined from the transition rules of M. We construct a DFA $A_{i}^{\text {even }}$ which accepts strings in sets of the form (\# $\left.\Delta^{i-2} a_{1} a_{2} a_{3} \Delta^{p(n)-i-1} \# \Delta^{i-2} b_{1} b_{2} b_{3} \Delta^{p(n)-i-1}\right)^{*} \# \#$ so that b_{2} follow from $a_{1} a_{2} a_{3}$ according to the transition rule of M, where $a_{k}, b_{k} \in \Delta, 1 \leqslant k \leqslant 3$. $A_{i}^{\text {even }}$ checks whether the i th symbol of ID_{j+1} follows from the $(i-1)$ st, i th and $(i+1)$ st symbols of ID_{j} for even j 's. For $i=2, A_{2}^{\text {even }}$ checks that the 1 st and 2 nd symbols of ID_{j+1} follow from the 1 st, 2 nd and 3 rd symbols of ID_{j} for even j 's. For $i=p(n)-1, A_{p(n)-1}^{\text {even }}$ checks that the $(p(n)-1)$ st and $p(n)$ th symbols of ID_{j+1} follow from the $(p(n)-2)$ nd, $(p(n)-1)$ st and $p(n)$ th symbols of ID_{j} for even j 's. The structure of $A_{i}^{\text {even }}$ is illustrated in Fig. 1, where the states of $A_{i}^{\text {even }}$ are numbered in such a way that the number assigned to a state indicates its "distance" from state s_{i}. Further, d_{i} denotes the dead state and f_{i} the final state of $A_{i}^{\text {even }}$. (Note that only states with the same distance can be equivalent.) From the simple structure of $A_{i}^{\text {even }}$, one can easily see that the minimumstate DFA $A_{i}^{\text {even }}$ can be constructed by a deterministic logspace-bounded Turing machine.

Similarly, we construct a DFA $A_{i}^{\text {odd }}$ which accepts strings in sets of the form $\# \Delta^{p(n)}\left(\# \Delta^{i-2} a_{1} a_{2} a_{3} \Delta^{p(n)-i-1} \# \Delta^{i-2} b_{1} b_{2} b_{3} \Delta^{p(n)-i-1}\right)^{*} \# \Delta^{p(n)} \# \#$, so that b_{2}

Fig. 1
follows from $a_{1} a_{2} a_{3}$ according to the transition rules of M, i.e. the $A_{i}^{\text {odd }}$ do the same as the $A_{i}^{\text {even }}$, except that they check the even ID's following from the odd ID's immediately preceding them. The structure of $A_{i}^{\text {odd }}$ is illustrated in Fig. 2, where the states are numbered in such a way that the number assigned to a state indicates its "distance" $\bmod 2 p(n)+1$ from s_{i}. Note again that we can easily construct a minimum-state DFA for $A_{i}^{\text {odd }}$ by a deterministic logspace-bounded Turing machine because of the simple structure of $A_{i}^{\text {udd }}$.

Finally, we construct a DFA $A_{\text {ends }}$ which checks that ID_{0} is the start configuration of the machine M and the last instantaneous description ID_{m} is an accepting configuration of M which is of the form $\left[q_{\text {acc }}, B\right][\varepsilon, B] \ldots[\varepsilon, B]$. It is not hard to see that $L\left(A_{\mathrm{lD}}\right) \cap L\left(A_{\text {ends }}\right) \cap \bigcap_{i=2}^{P^{(n)}-1}\left(L\left(A_{i}^{\text {even }}\right) \cap L\left(A_{i}^{\text {odd }}\right)\right)$ is nonempty iff M accepts x. Note that the above reduction can be easily carried out by a deterministic logspace-bounded Turing machine. This completes the proof of Lemma 1.4.

As observed in [9], it is straightforward to see that finite-automaton cycle existence is in PSPACE.

Lemma 1.5 (Stern [9]). Finite-automaton cycle existence in in PSPACE.
We now proceed to prove that finite-automaton cycle existence is PSPACE-hard by reducing finite-state automata intersection to finite-automaton cycle existence. More precisely, we will reduce the outputs of the logspace-reduction of Lemma 1.4 to

Fig. 2
finite-automaton cycle existence. To this end, we reconsider the DFAs constructed in the proof of Lemma 1.4. Let

$$
\begin{aligned}
& A_{1}=A_{\mathrm{ends}}=\left(Q_{1}, \Sigma, \delta_{1}, s_{1},\left\{f_{1}\right\}\right), \\
& A_{2}=A_{\mathrm{ID}}=\left(Q_{2}, \Sigma, \delta_{2}, s_{2},\left\{f_{2}\right\}\right),
\end{aligned}
$$

and for $2 \leqslant i \leqslant p(n)-1$

$$
\begin{aligned}
& A_{2 i-1}=A_{i}^{\text {odd }}=\left(Q_{2 i-1}, \Sigma, \delta_{2 i-1}, s_{2 i-1},\left\{f_{2 i-1}\right\}\right), \\
& A_{2 i}=A_{i}^{\text {even }}=\left(Q_{2 i}, \Sigma, \delta_{2 i}, s_{2 i},\left\{f_{2 i}\right\}\right) .
\end{aligned}
$$

Without loss of generality, assume that $Q_{i} \cap Q_{j}=\emptyset$ if $i \neq j$ and all A_{i} 's are minimumstate DFAs. We construct a DFA $A=(Q, \Sigma, \delta, s,\{f\})$ as follows:

$$
Q=\{d\} \cup \bigcup_{i=1}^{2 p(n)-2}\left(Q_{i}-\left\{d_{i}\right\}\right),
$$

where d_{i} is the unique dead state of A_{i},

$$
s=s_{1}, f=f_{1}, \Sigma=\Delta \cup\{\#\},
$$

and δ is defined by
(1) $\delta(q, a)=\delta_{i}(q, a)$ for $q \in Q_{i}-\left\{r_{i}\right\}, \quad a \in \Sigma$ except when defined by (2),
(2) $\delta\left(f_{i}, \#\right)=s_{i+1}$ for $1 \leqslant i \leqslant 2 p(n)-3, \quad \delta\left(f_{2 p(n)-2}, \#\right)=s_{1}$,
(3) $\delta(q, a)=d$ for all ($q, a)$ not defined by (1) and (2),
where d is the dead state of A. The structure of A is depicted in Fig. 3.

Fig. 3

Recall that in the DFA A, two states p, q are inequivalent iff there is a string w so that exactly one of $\delta(p, w), \delta(q, w)$ is the final state f. We can easily verify that every pair of states in A are inequivalent. Thus, the DFA A is a minimum-state DFA.

Now observe that if there is a string $x \in \Sigma^{*}$ accepted by $A_{1}, A_{2}, \ldots, A_{2 p(n)-2}$ simultaneously, then the string x \# defines a nontrivial cycle for A. However, the converse is not necessarily true. In fact, if there is a string w that defines a nontrivial cycle for A, we cannot conclude that there is some string accepted by all A_{i} 's. Indeed any one of A_{i} may have nontrivial cycle by itself. The problem is how to eliminate nontrivial cycle from each component A_{i}. The solution is quite simple. To illustrate the idea, let us consider the following example.

Example 1.6. Consider a DFA $M=\left(Q, \Sigma, \delta, q_{1},\left\{q_{1}\right\}\right)$, where $Q=\left\{q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\right\}$, $\Sigma=\{a, b\}$ and δ is defined as

$$
\delta\left(q_{1}, a\right)=q_{2}, \quad \delta\left(q_{2}, b\right)=q_{3}, \quad \delta\left(q_{3}, a\right)=q_{4}, \quad \delta\left(q_{4}, b\right)=q_{1},
$$

$\delta(q, c)=q_{5}$ for all (q, c) not defined above, where q_{5} is the dead state.
Clearly, M is a minimum-state DFA and the string $a b$ defines a nontrivial cycle for M. However, we can modify M by expanding its input alphabet so that there is no nontrivial cycle for the modified DFA.

Let $M^{\prime}=\left(Q, \Sigma^{\prime}, \delta^{\prime}, q_{1},\left\{q_{1}\right\}\right)$ where $\Sigma^{\prime}=\Sigma \times\{0,1,2,3\}$ and δ^{\prime} is defined by $\delta^{\prime}(q,\langle c, i\rangle)=p$, where $\delta(q, c)=p$ and i is the distance of q from q_{1}, i.e. i is the length of some shortest string x such that $\delta\left(q_{1}, x\right)=q$; otherwise, $\delta^{\prime}(q,\langle c, i\rangle)=q_{5}$. Then, clearly, M^{\prime} is a minimum-state DFA and there is no nontrivial cycle for M^{\prime}. (The construction of M^{\prime} is illustrated in Fig. 4.)

We apply the above idea to eliminate nontrivial cycles from each DFA A_{i}. Note that all the cycles in A_{i} are of length $2 p(n)+2$ except loops at the dead states d_{i} 's. Therefore, we expand the alphabet Σ to $\Sigma \times\{0, \ldots, 2 p(n)+1\}$. Before modifying A_{i} 's we need the following definition.

The distance of a state q in the DFA A_{i} is defined to be $|x| \bmod 2 p(n)+2$, where x is a shortest string such that $\delta_{i}\left(s_{i}, x\right)=q$.

Fig. 4

For the minimum-state DFA $A_{i}=\left(Q_{i}, \Sigma, \delta_{i}, s_{i},\left\{f_{i}\right\}\right)$, we construct a minimum-state DFA $B_{i}=\left(Q_{i}, \Sigma^{\prime}, \delta_{i}^{\prime}, s_{i},\left\{f_{i}\right\}\right)$ as follows:

$$
\Sigma^{\prime}=\Sigma \times\{0, \ldots, 2 p(n)+1\}
$$

and δ_{i}^{\prime} is defined by

$$
\delta_{i}^{\prime}(q,\langle a, j\rangle)= \begin{cases}p & \text { if } \delta_{i}(q, a)=p \text { and } j \text { is the distance of } q \\ d_{i} & \text { otherwise, where } d_{i} \text { is the dead state of } B_{i} .\end{cases}
$$

Before proving that there is no nontrivial cycle within B_{i}, for technical convenience, we want to classify B_{i} 's into two classes. The first class contains exactly all B_{i} 's with even i and is called the even class. The second class contains all B_{i} 's with odd i and is called the odd class. We can easily verify the following facts.

Fact 1.7. If B_{i} belongs to the even class, then s_{i} is the only state with distance 0 .

Fact 1.8. If B_{i} belongs to the odd class, then there is only one state t_{i} with distance $p(n)+1$.

We now show that there is no nontrivial cycle within B_{i}.
Lemma 1.9. There is no nontrivial cycle within B_{i}.
Proof. Suppose there is a nontrivial cycle within B_{i}. Let $\delta_{i}^{\prime}(p, x)=q, p \neq q$ and $\delta_{i}^{\prime}\left(p, x^{r}\right)=p$. By construction of B_{i} from A_{i} using the extension of Σ, the distance of p and the distance of q are identical. Thus, $|x| \bmod 2 p(n)+2=0$. If B_{i} belongs to the even class, then there are strings x_{1}, x_{2} so that $x=x_{1} x_{2}$ and $\delta_{i}^{\prime}\left(p, x_{1}\right)=s_{i}, \delta_{i}^{\prime}\left(s_{i}, x_{2}\right)=q$ since $|x|>0$. Clearly, $\delta_{i}^{\prime}\left(q, x_{1}\right)=s_{i}$ and $\delta_{i}^{\prime}\left(s_{i}, x_{2} x_{1}\right)=s_{i}$. Then, $\delta_{i}^{\prime}\left(p, x^{r}\right)=\delta_{i}^{\prime}(p$, $\left.x_{1}\left(x_{2} x_{1}\right)^{r-1} x_{2}\right)=\delta_{i}^{\prime}\left(s_{i},\left(x_{2} x_{1}\right)^{r-1} x_{2}\right)=\delta_{i}^{\prime}\left(s_{i}, x_{2}\right)=q$, which is a contradiction. Similarly, if B_{i} belongs to the odd class, then there are strings x_{1}, x_{2} so that $x=x_{1} x_{2}$ and $\delta_{i}^{\prime}\left(p, x_{1}\right)=t_{i}, \quad \delta_{i}^{\prime}\left(t_{i}, x_{2}\right)=q$. Clearly, $\quad \delta_{i}^{\prime}\left(q, x_{1}\right)=t_{i} \quad$ and $\quad \delta_{i}^{\prime}\left(t_{i}, x_{2} x_{1}\right)=t_{i}$. Then, $\delta_{i}^{\prime}\left(p, x^{r}\right)=\delta_{i}^{\prime}\left(p, x_{1}\left(x_{2} x_{1}\right)^{r-1} x_{2}\right)=\delta_{i}^{\prime}\left(t_{i},\left(x_{2} x_{1}\right)^{r-1} x_{2}\right)=\delta_{i}^{\prime}\left(t_{i}, x_{2}\right)=q$, which is again a contradiction. Thus, there is no nontrivial cycle for B_{i}.

The outline of the proof of Lemma 1.11 follows the argument in [9]. Let $B_{i}=\left(Q_{i}, \Sigma^{\prime}, \delta_{i}^{\prime}, s_{i},\left\{f_{i}\right\}\right)$ and d_{i} be the unique dead state of $B_{i}, 1 \leqslant i \leqslant 2 p(n)-2$. Let PRIME be the smallest prime number which is greater than $2 p(n)-2$. The following proposition is well known.

Proposition 1.10 (Hardy [2]). For any positive integer n there is at least one prime number p such that $n<p \leqslant 2 n$. Furthermore, p can be computed in $\log n$ space.

Now for each $1 \leqslant i \leqslant 2 p(n)-2$, let $B_{2 p(n)-2+i}$ be a new copy of B_{i} such that the sets of states are all pairwise disjoint. We construct a new DFA $B=\left(Q, \Sigma^{\prime}, \delta^{\prime}, s,\{f\}\right)$ as follows:

$$
\begin{aligned}
& Q=(d\} \cup \bigcup_{i=1}^{\text {PRIME }}\left(Q_{i}-\left\{d_{i}\right\}\right), \quad s=s_{1}, \quad f=f_{1}, \\
& \Sigma^{\prime}=\Sigma \times\{0, \ldots, 2 p(n)+1\}
\end{aligned}
$$

and δ^{\prime} is defined as follows:
(1) $\delta^{\prime}(q,\langle a, j\rangle)=\delta_{i}^{\prime}(q,\langle a, j\rangle)$ for all $a \in \Sigma$,
where $q \in Q_{i}-\left\{d_{i}\right\}$ except when defined by (2);
(2) $\quad \delta^{\prime}\left(f_{i},\langle \#, 2\rangle\right)=s_{i+1}, \quad 1 \leqslant i \leqslant$ PRIME-1,

$$
\delta^{\prime}\left(f_{\text {PRIME }},\langle \#, 2\rangle\right)=s_{1} ;
$$

(3) $\quad \delta^{\prime}(q,\langle a, j\rangle)=d \quad$ if not defined by (1) and (2),
where d is the dead state of B.
Clearly, the DFA B is a minimum-state DFA. We now prove the following lemma.
Lemma 1.11. If B has a nontrivial cycle, then there is a string x accepted by all B_{i} 's and, hence, a string y accepted by all A_{i} 's.

Proof. Suppose there is a nontrivial cycle for B. By Lemma 1.9, this cannot be a cycle within any B_{i}. Let $\delta^{\prime}(p, u)=q, p \neq q$ and $\delta^{\prime}\left(p, u^{r}\right)=p$. Further, let r be the smallest number satisfying the condition. Let

$$
p \in Q_{i}-\left\{d_{i}\right\} \quad \text { and } \quad q \in Q_{j}-\left\{d_{j}\right\}
$$

Fact 1.12. $i \neq j$ and the distance of p in B_{i} and the distance of q in B_{j} are the same.
Proof of Fact 1.12. Clearly, the distance of p in B_{i} and that of q in B_{j} are equal. Now assume, by way of contradiction, that $i=j$. If the computation path of u from p to q does not leave B_{i}, then the computation path of u^{r-1} from q to p cannot leave B_{i} either. This cannot happen by Lemma 1.9. Thus, the computation path of u from p to q must leave B_{i} and reenter through s_{i}. By the same reason, the computation path of u^{r-1} from q to p must leave B_{i} and reenter through s_{i}. First consider the case i is even. Let v be the shortest suffix of u such that $\delta^{\prime}\left(s_{i}, v\right)=q$. Let w be the shortest suffix of u^{r-1} such that $\delta^{\prime}\left(s_{i}, w\right)=p$. Then $|v|=|w|$ and $q=p$, which is a contradiction. If i is odd, we can select the shortest suffix which starts at t_{i} instead, and argue as before.

Let DELTA $=(j-i) \bmod$ PRIME, $0<$ DELTA $<$ PRIME. Let $p_{0}=p$ and $p_{k+1}=$ $\delta^{\prime}\left(p_{k}, u\right)$ for $0 \leqslant k \leqslant r-1$. Thus, $q=p_{1}$ and $p=p_{r}$. Let $p_{k} \in Q_{i_{k}}-\left\{r_{i_{k}}\right\}$ for $0 \leqslant k \leqslant r$.

Claim 1.13. For all $0 \leqslant k \leqslant r-1$, DELTA $=\left(i_{k+1}-i_{k}\right) \bmod$ PRIME.
Proof of Claim 1.13. Actually, we have that DELTA $=$ (the number of substring $\langle \#, 0\rangle\langle \#, 1\rangle\langle \#, 2\rangle$ in $u) \bmod$ PRIME, and by $\langle \#, 0\rangle\langle \#, 1\rangle\langle \#, 2\rangle$ we can move in B from B_{i} to B_{i+1}.

Claim 1.14. $r=$ PRIME.
Proof of Claim 1.14. If $r<$ PRIME, then $r \times$ DELTA mod PRIME $\neq 0$. Thus $i_{0} \neq i_{k}$, i.e. $p=p_{0} \neq p_{k}$ for all $1 \leqslant k<$ PRIME. Since r is the least number satisfying the condition, we conclude that $r=$ PRIME.

Proof of Lemma 1.11 (conclusion). Observe that DELTA is a generator of the cyclic group $Z_{\text {PRIME }}$. Therefore, the sequence $i_{0}, i_{1}, \ldots, i_{\text {PRIME }-1}$ is a cyclic permutation of $1,2, \ldots$, PRIME. Now, let u_{1} be the shortest prefix of u such that $\delta^{\prime}\left(p_{k}, u_{1}\right)=s_{i_{k}+1}$, and u_{3} be the shortest suffix of u such that $\delta^{\prime}\left(s_{i_{k+1}}, u_{3}\right)=p_{k+1}$

$$
\rightarrow s_{i_{k}}-u_{3} \rightarrow p_{k}-u_{1} \rightarrow s_{i_{k}+1}-u_{2} \rightarrow s_{i_{k+1}}-u_{3} \rightarrow p_{k+1}-u_{1} \rightarrow s_{i_{k+1}+1} \rightarrow
$$

Then $u=u_{1} u_{2} u_{3}$ for some u_{2} and it holds that $\delta^{\prime}\left(s_{i_{k}+1}, u_{2}\right)=s_{i_{k+1}}$. Consider $u_{3} u_{1}$. Clearly, $\delta^{\prime}\left(s_{i}, u_{3} u_{1}\right)=s_{i+1}$ for all $i=1, \ldots$, PRIME -1 . Further, $\delta^{\prime}\left(s_{\text {PRIME }}, u_{3} u_{1}\right)=s_{1}$. Let x be such that $u_{3} u_{1}=x\langle \#, 2\rangle$. Then, x is accepted by all B_{i} 's. Let $x=\left\langle a_{1}, 0\right\rangle\left\langle a_{2}, 1\right\rangle \cdots\left\langle a_{m}, 2 p(n)+1\right\rangle\langle \#, 0\rangle\langle \#, 1\rangle$ and define $y=a_{1} a_{2} \ldots a_{m} \# \#$. Then, clearly, y is accepted by all A_{i} 's. This completes the proof of Lemma 1.11.

The remaining problem is that we have a variable-size input alphabet instead of a fixed-size alphabet. The idea is to encode such input symbols by binary strings of the same length that depends on the size of the input alphabet. Let $B=\left(Q, \Sigma^{\prime}, \delta^{\prime}, s,\{f\}\right)$ be the DFA constructed above. We construct a DFA $B^{\prime}=\left(Q^{\prime},\{0,1\}, \delta^{\prime \prime}, s^{\prime},\left\{f^{\prime}\right\}\right)$ as follows:

$$
\begin{aligned}
& Q^{\prime}=Q \times\{0,1\}^{\leqslant k-1}, \text { where } k=\left\lceil\log _{2}\left|\Sigma^{\prime}\right|\right\rceil, \\
& s^{\prime}=\langle s, \varepsilon\rangle, \quad f^{\prime}=\langle f, \varepsilon\rangle
\end{aligned}
$$

and $\delta^{\prime \prime}$ is so defined that

$$
\delta^{\prime \prime}\left(\langle q, \varepsilon\rangle, x_{a}\right)=\langle p, \varepsilon\rangle,
$$

where $\delta^{\prime}(q, a)=p$ and $x_{a}=a_{1} a_{2} \ldots a_{k} \in\{0,1\}^{*}$ is a binary string which encodes the symbol $a \in \Sigma^{\prime}$. Therefore, all intermediate transitions are defined as follows:

$$
\begin{aligned}
& \delta^{\prime \prime}\left(\langle q, \varepsilon\rangle, a_{1}\right)=\left\langle q, a_{1}\right\rangle, \\
& \delta^{\prime \prime}\left(\left\langle q, a_{1}\right\rangle, a_{2}\right)=\left\langle q, a_{1} a_{2}\right\rangle, \\
& \ldots \\
& \delta^{\prime \prime}\left(\left\langle q, a_{1} \ldots a_{k-2}\right\rangle, a_{k-1}\right)=\left\langle q, a_{1} \ldots a_{k-1}\right\rangle, \\
& \delta^{\prime \prime}\left(\left\langle q, a_{1} \ldots a_{k-1}\right\rangle, a_{k}\right)=\langle p, \varepsilon\rangle .
\end{aligned}
$$

For all ($\langle q, x\rangle, b$) not defined by the above rule, we set

$$
\delta^{\prime \prime}(\langle q, x\rangle, b)=\langle d, \varepsilon\rangle
$$

where d is the dead state of B^{\prime}. Now, we can easily see that if there is a nontrivial cycle within B, then there is a nontrivial cycle within B^{\prime}. However, the converse is not necessarily true, as shown in the following example.

Example 1.15. Let us consider a cycle $q_{0} a_{1} q_{5} a_{2} q_{10} a_{3} q_{0}$ in the DFA in Example 1.6, where all q_{i} 's and a_{j} 's are distinct. Let us encode a_{1} as 00100, a_{2} as 10010, a_{3} as 01001 . The cycle in the modified DFA becomes: $q_{0} 0 q_{1} 0 q_{2} 1 q_{3} 0 q_{4} 0 q_{5} 1 q_{6} 0 q_{7} 0 q_{8} 1 q_{9} 0 q_{10}$ $0 q_{11} 1 q_{12} 0 q_{13} 0 q_{14} 1 q_{0}$, where all q_{i} 's are distinct, and all q_{i} 's except q_{0}, q_{5} and q_{10} are intermediate states. Obviously, $q_{0}, 001$ and $(001)^{5}$ define a nontrivial cycle in the modified DFA, whereas there is no nontrivial cycle in the original DFA.

We need the following encoding schema to avoid the above possibility. We encode 0 by 01 and 1 by 10 . Thus, 00100 becomes $y=0101100101$. We also concatenate $x=111111111100$ with y which gives $x y=1111111111000101100101$, where the number of 1's in x is equal to $|y|$. Let q, u, r define a nontrivial cycle in the modified DFA. Then, $|u|$ must be a multiple of $|x y|$, and u can be written as $u=v w x$ such that w is a concatenation of encodings of a_{i} 's. Then $u^{\prime}=w x v$ is a concatenation of encodings of a_{i} 's and $\delta(q, v), u^{\prime}$ and r defines a nontrivial cycle. Now it is not hard to see that if there is a nontrivial cycle in the modified DFA, then there is a nontrivial cycle in the original DFA.

We apply the above idea as follows. The form of the encodings of a_{i} 's is $1^{2 k} 00\{01,10\}^{k}$, where k is the length of the binary encodings of symbols in the original DFA B^{\prime}. By an argument similar to the one in Example 1.12, the length of u must be a multiple of $4 k+2$, and for u there is u^{\prime} which is a concatenation of encodings of a_{i} 's and defines a nontrivial cycle. Thus, if there is a nontrivial cycle in B^{\prime}, then there is a nontrivial cycle in B.

Thus, we have proved the following lemma.
Lemma 1.16. Finite-automaton cycle existence with input alphabet $\Sigma=\{0,1\}$ is \log -space-complete for PSPACE.

From Lemma 1.16, we obtain the following theorem as a corollary.
Theorem 1.17. Finite-automaton aperiodicity is logspace-complete for PSPACE.

2. The complexity of dot-depth-one language recognition and piecewise testable language recognition

In this section we characterize the complexity of two other problems; namely, dot-depth-one language recognition and piecewise testable language recognition. We
show that these two problems are logspace-complete for NL, where NL is the class of languages accepted by nondeterministic logspace-bounded Turing machines. The following result is used.

Proposition 2.1. (Immerman [4]). NL is closed under complement.
We now introduce a condition which characterizes piecewise testable languages.

Definition 2.2. Given a DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$, we denote its transition diagram by $G(M)$. We also define $G(M, \Gamma)$ by considering only transitions labeled by symbols in Γ, where $\Gamma \subseteq \Sigma$. Let p be a vertex of G. The component defined by p, written $C(p)$, is

$$
C(p)=\{p\} \cup\{q \mid \text { there is a path from } p \text { to } q\} .
$$

Proposition 2.3(a) (Simon [8]). Let W be a regular language and M be the minimumstate DFA accepting W. W is piecewise testable iff (1) $G(M)$ is acyclic and (2) for any subset Γ of Σ, each component of $G(M, \Gamma)$ has a unique maximal state, where a state is said to be maximal if from that state there is no outgoing transition labeled by Γ.

Thus, W is not piecewise testable iff either (1) $G(M)$ is cyclic or (2) there is one component of $G(M, \Gamma)$ having two distinct maximal states.

Observation (Stern [9]). If $G(M)$ is acyclic, then q is a maximal state of a component C of $G(M, \Gamma)$ iff (1) $q \in C$ and (2) $\Gamma \subseteq \Sigma(q)=\{a \in \Sigma \mid \delta(q, a)=q\}$.

From the above observation if q, q^{\prime} are distinct maximal states of C, then they are also distinct maximal states of some component of $G\left(M, \Sigma(q) \cap \Sigma\left(q^{\prime}\right)\right)$. Hence, Proposition 2.3(a) can be restated as follows.

Proposition 2.3(b). W is not piecewise testable iff either (1) $G(M)$ is cyclic or (2) there are 3 distinct states p, q, q^{\prime} so that there are paths from p to q and p to q^{\prime} in the graph $G\left(M, \Sigma(q) \cap \Sigma\left(q^{\prime}\right)\right)$.

From Proposition 2.3(b) we have the following NL-algorithm which solves the piecewise testable language recognition probiem.

Lemma 2.4. Piecewise testable language recognition is in NL.
Proof. Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a minimum state DFA.
(1) if there is a cycle in $G(M)$ then return ('yes');
(2) guess p, q, q^{\prime};

$$
s_{1}:=p ; \quad s_{2}:=p ;
$$

repeat guess $a, b \in \Sigma(q) \cap \Sigma\left(q^{\prime}\right)$;

$$
\begin{aligned}
& s_{1}:=\delta\left(s_{1}, a\right) ; \\
& s_{2}:=\delta\left(s_{2}, b\right) ; \\
& \text { until } s_{1}=q \text { and } s_{2}=q^{\prime} ; \\
& \text { return ('yes'); }
\end{aligned}
$$

Obviously, the above algorithm is in NL and gives a positive answer when M does not accept a piecewise testable language. Since NL is closed under complement [4], piecewise testable language recognition is in NL.

Lemma 2.5. Piecewise testable language recognition is NL-hard.
Proof. We reduce graph accessibility (GAP for short), a well-known NL-complete problem, to piecewise testable language recognition. A special case of GAP is monotone 2GAP where out-degree of each vertex is bounded by 2 and for all edges $e=\langle u, v\rangle, v$ is greater than u (the vertices are linearly ordered). It is not hard to see that monotone 2GAP is also logspace-complete for NL. Let (G, s, g) be an instance of monotone 2 GAP , where $G=(V, E), V=\{1,2, \ldots, n\}, s=1$ and $g=n$.

We construct a minimum-state DFA $M=\left(Q, \Sigma, \delta, p_{1},\{f\}\right)$, where $Q=V \cup\{f\} \cup$ $\left\{p_{i} \mid 1 \leqslant i \leqslant n\right\} \cup\left\{q_{i} \mid 1 \leqslant i \leqslant n\right\}, \Sigma=\{0,1,2\}$ and δ is defined as follows (see Fig. 5):

$$
\begin{aligned}
& \delta\left(p_{i}, 2\right)=i \text { for } 1 \leqslant i \leqslant n, \\
& \delta\left(p_{i}, a\right)=p_{i+1} \text { for all } a \in\{0,1\} \text { and } 1 \leqslant i \leqslant n-1, \\
& \delta\left(p_{n}, a\right)=n \text { for } a \in\{0,1\} .
\end{aligned}
$$

For all $i \in V-\{n\}$ we have the following cases:
outdegree $(i)=2$: let $j, k(j<k)$ be two vertices adjacent to i. In this case

$$
\delta(i, 0)=j, \quad \delta(i, 1)=k, \quad \delta(i, 2)=q_{i} ;
$$

outdegree $(i)=1$: let j be the vertex adjacent to i. In this case

$$
\delta(i, a)=j \text { for } a \in\{0,1\}, \quad \delta(i, 2)=q_{i}
$$

Fig. 5

```
outdegree \((i)=0\) :
\(\delta(i, a)=f\) for \(a \in\{0,1\}, \quad \delta(i, 2)=q_{i}\),
\(\delta(n, 0)=1, \quad \delta(n, 1)=f, \quad \delta(n, 2)=q_{n}\).
```

For all $a \in \sum$ and $1 \leqslant i \leqslant n-1$

$$
\delta\left(q_{i}, a\right)=q_{i+1}, \quad \delta\left(q_{n}, a\right)=f, \quad \delta(f, a)=f .
$$

(Note that the states p_{i} 's and q_{i} 's are introduced in order to obtain the minimality of the resulting DFA.)

Observe that if there is a path from s to g, then there is a cycle in $G(M)$. Further, f is the only state q such that $\Sigma(q) \neq \emptyset$. Therefore, if we can show that M is a minimum-state DFA, then we can conclude that (G, s, g) belongs to monotone 2 GAP iff $L(M)$ is not a piecewise testable language.

Claim. M is a minimum-state $D F A$.
Proof of Claim. First, observe that all p_{i} 's are pairwise inequivalent since if $i<j$, then $\delta\left(p_{i}, 0^{n-j} 2^{3}\right) \neq f$ and $\delta\left(p_{j}, 0^{n-j} 2^{3}\right)=f$. Next, one can easily see that all q_{i} 's are pairwise inequivalent by a similar argument. Also, all states $i=1, \ldots, n$ are pairwise inequivalent since if $i<j$, then $\delta\left(i, 20^{n-j+1}\right) \neq f$ and $\delta\left(j, 20^{n-j+1}\right)=f$.

Note that for all $1 \leqslant i, j \leqslant n \delta\left(p_{i}, 0^{n-i+2} 20^{n-1}\right) \neq f$, but $\delta\left(q_{j}, 0^{n-i+2} 20^{n-1}\right)=f$. Thus, all pairs p_{i} 's and q_{j} 's are pairwise inequivalent. Also, all the pairs p_{i} 's and j 's are pairwise inequivalent since if $i \geqslant j+1$, then $\delta\left(p_{i}, 21^{n-j}\right)=f$, but $\delta\left(j, 21^{n-j}\right) \neq f$; if $i<j+1$, then $\delta\left(j, 2^{n-j+2}\right)=f$, but $\delta\left(p_{i}, 2^{n-j+2}\right) \neq f$. By a similar argument, all the pairs q_{i} 's and j 's are pairwise inequivalent. Thus, we conclude that M is minimal.

Proof of Lemma 2.5 (conclusion). From the above claim, it follows that M does not recognize a piecewisc testable language iff there is a path from s to g in G. The above reduction can be easily carried out by a deterministic logspace-bounded Turing machine. This completes the proof of Lemma 2.5.

From Lemmas 2.4 and 2.5, we obtain the following theorem.
Theorem 2.6. Piecewise testable language recognition is logspace-complete for NL.
Next we introduce a condition that characterizes the dot-depth-one languages.
Definition 2.7. Let k be an integer. A DFA M is k-stable if for any two states p, q and any word w of length k, whenever $p, q, \delta(p, w), \delta(q, w)$ belong to the same strongly connected component, then $\delta(p, w)=\delta(q, w)$.

Thus, a DFA M is not k-stable if there are states p, q and a word w of length k such that $p, q, \delta(p, w)$ and $\delta(q, w)$ belong to the same strongly connected component and $\delta(p, w) \neq \delta(q, w)$.

Definition 2.8. Two words u, v are k-coinitial if they have the same first k letters; we write $c_{k}(u, v)$ if u and v are k-coinitial.

A fork (k) of type I is a diagram of the form described by Fig. 6, where u, v are k-coinitial words and A, A^{\prime} are two distinct strongly connected components.

A fork (k) of type $I I$ is defined as in Fig. 7 , with $c_{k}(u, x), c_{k}(v, y)$ and $A \neq A^{\prime}$ are two distinct strongly connected components.

Proposition 2.9 (Stern [9]). A regular language is of dot-depth one iff for some k, its minimum-state DFA M is k-stable and admits no fork (k) of type I and type II. Further, k can be taken to be $|Q|^{3}$, where Q is the set of states of M.

Thus, a regular language is not of dot-depth one iff its minimum state DFA M is not k-stable or admits fork (k) of type I or type II, where $k=|Q|^{3}$ and Q is the set of states of M. From Proposition 2.9, we have the following NL algorithm for dot-depth-one language recognition.

Lemma 2.10. Dot-depth-one language recognition is in NL.
Proof. Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a minimum-state DFA.
(1) $/^{*}$ Test whether M is not k-stable for $k=|Q|^{3 *} \mid$
guess p, q;
if p, q belong to the same strongly connected component then

Fig. 6

Fig. 7

```
begin
    \(s_{1}:=p ; \quad s_{2}:=q ;\)
    for \(i:=1\) to \(k\) do
        begin
            guess \(a \in \Sigma\);
            \(s_{1}:=\delta\left(s_{1}, a\right) ;\)
            \(s_{2}:=\delta\left(s_{2}, a\right) ;\)
        end;
    if \(s_{1} \neq s_{2}\) then return ('yes');
end
    (2) /* Test whether \(M\) admits fork \((k)\) of type \(I^{*} /\)
guess \(p, q, r, s, t\);
if \(q, r\) and \(s, t\) constitute two different strongly connected components then
begin
    \(s_{1}:=p ; \quad s_{2}:=r ; \quad s_{3}:=s ;\)
    for \(i:=1\) to \(k\) do
        begin
            guess \(a \in \Sigma\);
            \(s_{1}:=\delta\left(s_{1}, a\right) ;\)
            \(s_{2}:=\delta\left(s_{2}, a\right) ;\)
            \(s_{3}:=\delta\left(s_{3}, a\right) ;\)
        end;
    if \(s_{1}=q\) and \(s_{2}=q\) and \(s_{3}=t\) then
        begin
            \(s_{1}:=p ; \quad s_{2}:=t ; \quad s_{3}:=q ;\)
            for \(i:=1\) to \(k\) do
                    begin
                        guess \(a \in \Sigma\);
                        \(s_{1}:=\delta\left(s_{1}, a\right) ;\)
                        \(s_{2}:=\delta\left(s_{2}, a\right) ;\)
                                \(s_{3}:=\delta\left(s_{3}, a\right) ;\)
            end;
            if \(s_{1}=s\) and \(s_{2}=s\) and \(s_{3}=r\) then
                return ('yes');
        end
    end
    (3) /* Test whether \(M\) admits fork ( \(k\) ) of type II*/
    Similar to that of fork ( \(k\) ) of type I.
```

Note that computing strongly connected components and checking that the connected components are distinct are both in NL. Therefore, the above algorithm is in NL and gives a positive answer when M does not accept a dot-depth-one language. Since NL is closed under complement [4], dot-depth-one language recognition is in NL.

Lemma 2.11. Dot-depth-one language recognition is NL-hard.
Proof. The proof is essentially similar to that of Lemma 2.5. We reduce monotone 2GAP to dot-depth-one language recognition. Actually, we reduce monotone 2GAP to the problem of checking whether a given minimum-state DFA M is k-stable or not. The details are left to the reader as an exercise.

From Lemmas 2.10 and 2.11 we obtain the following theorem.
Theorem 2.12. Dot-depth-one language recognition is logspace-complete for NL.

3. Conclusions

In this paper we have characterized the exact complexity of three problems: (1) finite-automaton aperiodicity, (2) dot-depth-one language recognition and (3) piecewise testable language recognition. For all the three problems, the DFAs in the input are assumed to be minimum-state DFAs. Since testing whether a given DFA is minimal is known to be in P , finite-automaton aperiodicity remains PSPACEcomplete even without the minimality assumption. In [1] we showed that minimization of DFAs is NL-complete. Therefore, dot-depth-one language recognition and piecewise testable language recognition remain NL-complete even when the DFAs in the input are not assumed to be minimal.

Acknowledgment

The authors thank an anonymous referee for some helpful remarks that improve the presentation of this paper.

References

[1] S. Cho and D.T. Huynh, The parallel complexity of finite state automata problems, Tech. Report UTDCS-22-88, Univ. of Texas, Dallas, 1988.
[2] G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers (Oxford University Press, London, 3rd ed., 1954) 343.
[3] J. Hopcroft and J. Ullman, Introduction to Automata Theory, Languages, and Computation (AddisonWesley, Reading, MA, 1979).
[4] N. Immerman, Nondeterministic space is closed under complement, SIAM J. Comput. 17 (1988) 935-938.
[5] D. Kozen, Lower bounds for natural proof systems, in: Proc. 18th IEEE Ann. Symp. on Foundations of Comput. Sci. (1977) 254-266.
[6] W.J. Savitch, Relationship between nondeterministic and deterministic tape complexities, J. Comput. System. Sci. 4 (1970) 177-192.
[7] M.P. Schützenberger, On finite monoids having only trivial subgroups, Inform. and Control 8 (1965) 190-194.
[8] I. Simon, Piecewise testable events, Lecture Notes in Computer Science, Vol. 33 (Springer, Berlin, 1975) 214-222.
[9] J. Stern, Complexity of some problems from the theory of automata, Inform. and Control 66 (1985) 163-176.

[^0]: * This research was partially supported by the National Science Foundation under Grant DCR-8696097 and by the Organized Rescarch Awards Program of the University of Texas at Dallas.

