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Abstract 

Cho, S. and D.T. Huynh, Finite-automaton aperiodicity is PSPACE-complete, Theoretical Com- 

puter Science 88 (1991) 99-116. 

In this paper, we solve an open problem raised by Stern (1985) - “Is finite-automaton aperiodicity 

PSPACE-complete?” - by providing an affirmative answer. We also characterize the exact complex- 

ity of two other problems considered by Stern: (1) dot-depth-one language recognition and 

(2) piecewise testable language recognition. We show that these two problems are logspace- 

complete for NL (the class of languages accepted by nondeterministic logspace-bounded Turing 

machines. 

0. Introduction 

In a paper [9] entitled “Complexity of some problems from the theory of auto- 
mata,” Stern investigated the complexity of three problems: (1) finite-automaton 
aperiodicity, (2) dot-depth-one language recognition and (3) piecewise testable lan- 
guage recognition. In that paper, one can find polynomial-time algorithms for (2), (3), 
a polynomial-space algorithm for (l), and a proof that (1) is CoNP-hard. Since there is 
a gap between the upper and lower bounds of finite-automaton aperiodicity, the 
author raised the question “Is finite-automaton aperiodicity PSPACE-complete?“. 
We will show that finite-automaton aperiodicity is indeed PSPACE-complete. We 
will also characterize the exact complexity of (2) and (3) by showing that these two 
problems are logspace-complete for NL. (The reader is assumed to be familiar with 
basic complexity-theoretic notions that can be found in [3].) 
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and by the Organized Research Awards Program of the University of Texas at Dallas. 
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In the sequel we provide the necessary definitions. Given a finite alphabet C, the 
regular languages over C are those accepted by a finite-state automata. Regular 
languages can be constructed from the finite sets of strings by Boolean operations 
(union and complement) together with concatenation and *-operation. Star-free 
languages are constructed like regular languages from the finite sets of strings but with 
the restriction that the *-operation is not allowed; languages of dot-depth-one and 
piecewise testable languages are star-free of a simple form and are defined as follows. 

A language is of dot-depth one if it is a Boolean combination of languages 

wJ*wlc* . . . w,_ic*w,, 

where wo, wi, . . . , w, are strings over C. 
A language is piecewise testable if it is a Boolean combination of languages 

C*aIC*a2 . . . Z*a,C*, 

where al, a2, . . . , a, are elements of C. 
We now introduce the formal definitions of the three problems (l), (2) and (3) 

mentioned above. Finite-automaton aperiodicity is defined as follows: 

Instance. A minimum-state deterministic finite-state automaton DFA 
M with input alphabet C. 

Question. Does M recognize a star-free event? 

Dot-depth-one language recognition is defined as follows: 

Instance. A minimum-state DFA M with input alphabet Z. 
Question. Does M recognize a language of dot-depth one? 

Piecewise testable language recognition is defined as follows: 

Instance. A minimum-state DFA M with input alphabet C. 
Question. Does M recognize a piecewise testable language? 

1. Finite-automaton aperiodicity is PSPACE-complete 

In this section we will show the main result of this paper; namely, that finite- 
automaton aperiodicity is PSPACE-complete. We first introduce a condition that 
characterizes the star-free languages. 

Proposition 1.1(a) (Schhtzenberger [7]). A regular language WsC* is star-free ijfs 
W is aperiodic, i.e. for all element x of the syntactic monoid there is some integer n such 
that x”+ I= 2’. 

Thus, a regular language W is not star-free iff some element x of the syntactic 
monoid has a nontrivial period, i.e. for all n, x”+l # x”. This condition can be stated in 
terms of minimum-state DFAs as follows. 



Finite-automaton aperiodicity is PSPACE-complete 101 

Proposition 1.1(b). A regular language accepted by a minimum-state DFA M is not 
star-free ifs there is a word UEC* and a state p such that u de&es a nontrivial cycle 
starting at p, i.e. (1) 6(p, u)#p and (2)s or some positive integer r, 6(p, u*)=p. 

The following problem is the complement of finite-automaton aperiodicity. 

Definition 1.2. Finite-automaton cycle existence is defined as follows: 

Instance. A minimum-state DFA M with input alphabet C. 

Question. Is there a word u of C* that defines a nontrivial cycle of M? 

Next we introduce a PSPACE-complete problem which we use to prove the 

PSPACE-hardness of finite-automaton cycle existence. 

Definition 1.3. Finite-state automata intersection is the following problem: 

Instance. A sequence Al, AZ, . . . , A, of DFAs having the same input 

alphabet C. 

Question. Is there a string XEC* accepted by each of Ai, 1 ,<i,<n? 

It was shown in [S] that finite-state automata intersection is PSPACE-complete. 

Since the details of the construction will be needed later in our proof of the PSPACE- 

hardness of finite-automaton cycle existence, we reproduce them here. 

Lemma 1.4. [S] Finite-state automata intersection is PSPACE-complete. 

Proof. It is easy to see that finite-state automata intersection is in nondeterministic 

linear space. Thus, by Savitch’s result [6], the problem is in PSPACE. Next we reduce 

an arbitrary problem in PSPACE to finite-state automata intersection. To this end, let 

M =(Q, Z, r, 6, qo, B, F) be a single-tape deterministic p(n) space bounded Turing 

machine, where p is some fixed polynomial and BEG denotes the blank symbol. 

Let xeC* be an input string and let n=jxl. Let A=(Qu{~))x(Zur). A string 

VALCOMP, = # ID, # ID, # ... # ID, # # l (d u{ # })* represents a valid compu- 

tation of M on input x if the following conditions are satisfied: 

(1) each IDi is an instantaneous description of M consisting of M’s tape content 

(padded out to length p(n) with B’s), the position of M’s head, and the state of M; 
(2) each IDi+ 1 follows from 1Di in one step according to the transition rules of M; 
(3) ID, is the start configuration of M on input x and ID, is an accepting 

configuration. 

Clearly, M accepts xeC* if and only if there is a valid computation 

VALCOMP, = # ID, # ID, # . ..#ID.##~(du{#})*ofMoninputx.Wecan 

construct a collection of DFAs with input alphabet Au{ # > so that the intersection of 

the languages accepted by these DFAs will be the singleton set consisting of the string 

VALCOMP, if it exists, and fl otherwise. 
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Without loss of generality, assume that M always takes an even number of steps, 
and has a unique accepting state q_. Further, M erases its tape before accepting and 
has the head at the left end of the tape in an accepting configuration. We construct 
a DFA Arn which checks that each IDi is indeed an instantaneous description, i.e. 
Ain accepts the set of strings in ( # PC”) # LIP(“))* # #, so that each string dP(“) is of the 

form [E, X,][E, X2] . ..[P. Xi-,][q, Xi][E, Xi+,] . ..[E. Xp(,,J, where XiECUT, 
1 d id p(n) and ~EQ. In other words, Ain checks that there are an even number of ID’s 
each of length p(n) and that there is exactly one cell which contains the position of the 
head and the current state of M among the p(n) cells for each ID. 

Next we construct two groups of DFAs to check that each ID,+ 1 follows from ID, 
in one step according to the transition rules of M. Recall that given the (i- l)st, ith 
and (i+ 1)st symbols of ID, the ith symbol of ID,+ 1 can be determined from the 
transition rules of M. We construct a DFA Af”” which accepts strings in sets of the 
form (# di-2ala2a3~P’“‘-i-1# di-2blb2b3dp(“)-i-1)* # # so that b2 follow from 
ala2a3 according to the transition rule of M, where ak, bke A, 1 <k < 3. Ap”“” checks 
whether the ith symbol of ID,+ 1 follows from the (i- l)st, ith and (i + 1)st symbols of 
ID, for even j’s. For i= 2, A?‘” checks that the 1st and 2nd symbols of ID,+ r follow 
from the lst, 2nd and 3rd symbols of ID, for even j’s. For i=p(n)- 1, A;$_ 1 checks 
that the (p(n)-1)st and p(n)th symbols of ID,+1 follow from the (p(n)-2)nd, 
(p(n)- 1)st and p(n)th symbols Of IDj for evenj’s. The structure of Afven is illustrated 
in Fig. 1, where the states of A;“” are numbered in such a way that the number 
assigned to a state indicates its “distance” from state Si. Further, di denotes the dead 
state and5 the final state of A?‘“. (Note that only states with the same distance can be 
equivalent.) From the simple structure of A;“‘“, one can easily see that the minimum- 
state DFA Af”” can be constructed by a deterministic logspace-bounded Turing 
machine. 

Similarly, we construct a DFA Apdd which accepts strings in sets of the form 
# Ap’“)( # Ai-2a,a2a,AP(“)-i-1 # Ai-2blb2b3AP(“)-i-1)* # Ap(“)# #, so that b, 

Fig. 1 
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follows from ulazu.3 according to the transition rules of M, i.e. the Apdd do the same as 
the A;““, except that they check the even ID’s following from the odd ID’s immedi- 
ately preceding them. The structure of Ai Odd is illustrated in Fig. 2, where the states are 
numbered in such a way that the number assigned to a state indicates its “distance” 
mod 2p(n) + 1 from si. Note again that we can easily construct a minimum-state DFA 
for Apdd by a deterministic logspace-bounded Turing machine because of the simple 
structure of Apdd. 

Finally, we construct a DFA Aen& which checks that ID,, is the start configuration 
of the machine M and the last instantaneous description ID,,, is an accepting config- 
uration of M which is of the form [qacc, B] [E, B] . . . [E, B]. It is not hard to see that 
~(&)n&&.nds)n r)~~~-‘(L(Afve”)nL(Apdd)). 1s nonempty iff M accepts x. Note that 
the above reduction can be easily carried out by a deterministic logspace-bounded 
Turing machine. This completes the proof of Lemma 1.4. q 

As observed in [9], it is straightforward to see that finite-automaton cycle existence 
is in PSPACE. 

Lemma 1.5 (Stern [9]). Finite-automaton cycle existence in in PSPACE. 

We now proceed to prove that finite-automaton cycle existence is PSPACE-hard 
by reducing finite-state automata intersection to finite-automaton cycle existence. 
More precisely, we will reduce the outputs of the logspace-reduction of Lemma 1.4 to 

Fig. 2 
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finite-automaton cycle existence. To this end, we reconsider the DFAs constructed in 
the proof of Lemma 1.4. Let 

AI=&lds=(QI, c, 61, Sl, {A))> 

~~=&=(Q~r~,&>~~> (.h)), 

and for 26idp(n)-1 

Azi-1=Apdd=(Q2i-1,~,b2i-1,S2i-1r (hi-,}), 

Azi=ATe"=(Qzi> z, 62i, szi, (hi}). 

Without loss of generality, assume that QinQj = 8 if i #j and all Als are minimum- 
state DFAs. We construct a DFA A =(Q, C, 6, s, {f}) as follows: 

2Pb) - 2 

Q={dIu iyl (Qi-(diIL 

where di is the unique dead state of Ai, 

and 6 is 

(1) 
(2) 
(3) 

s=s,,f=.fi, C=du{ #}, 

defined by 

d(q, a)=hi(q, U) for qEQi_(ri}, UEC except when defined by (2), 

s(A9 # )=Si+ 1 for 1 did2p(n)-3, w&I-2, #)=Slr 

6(q, a)=d for all (q, a) not defined by (1) and (2), 

where d is the dead state of A. The structure of A is depicted in Fig. 3. 

. . . $&__ . . . 

A 2p(n)-3 Ai A4 

Fig. 3 
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Recall that in the DFA A, two states p, q are inequivalent iff there is a string w so 

that exactly one of 6(p, w), 6(q, w) is the final statef: We can easily verify that every 

pair of states in A are inequivalent. Thus, the DFA A is a minimum-state DFA. 

Now observe that if there is a string XEC* accepted by A,, AZ, ...rA2p(n)_2 

simultaneously, then the string x# defines a nontrivial cycle for A. However, the 

converse is not necessarily true. In fact, if there is a string w that defines a nontrivial 

cycle for A, we cannot conclude that there is some string accepted by all Ai’s. Indeed 

any one of Ai may have nontrivial cycle by itself. The problem is how to eliminate 

nontrivial cycle from each component Ai. The solution is quite simple. To illustrate 

the idea, let us consider the following example. 

Example 1.6. Consider a DFA M = (Q, C, 6, ql, { q1 )), where Q = { ql, q2, q3, q4, q5 >, 

C = {a, b} and 6 is defined as 

&41, u)=q2, 6(q,, b)=q,, 6(q,, u)=q4, 6(q,, b)=q,, 

eL 4=q5 for all (q, c) not defined above, where q5 is the dead state. 

Clearly, M is a minimum-state DFA and the string ab defines a nontrivial cycle for M. 
However, we can modify M by expanding its input alphabet so that there is no 

nontrivial cycle for the modified DFA. 

Let M’=(Q,C’,6’,ql,(ql)) h w ere C’=C x (0, 1,2,3j and 6’ is defined by 

6’(q, (c, i))=p, where 6(q, c)=p and i is the distance of q from ql, i.e. i is the length of 

some shortest string x such that 6(q,, x) = q; otherwise, 6’(q, (c, i)) = q5. Then, clearly, 

M’ is a minimum-state DFA and there is no nontrivial cycle for M’. (The construction 

of M’ is illustrated in Fig. 4.) 

We apply the above idea to eliminate nontrivial cycles from each DFA Ai. Note 

that all the cycles in Ai are of length 2p(n)+2 except loops at the dead states di’s. 

Therefore, we expand the alphabet C to C x {O, . . , 2p(n) + 11, Before modifying Ai’S 

we need the following definition. 

The distance of a state q in the DFA Ai is defined to be 1x1 mod 2p(n) + 2, where x is 

a shortest string such that Gi(si, X) = q. 

Fig. 4 
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For the minimum-state DFA Ai = (Qi, C, &, si, { fi‘)), we construct a minimum-state 
DFA Bi=(Qi, C’, Si, si, (X}) as follows: 

C’ = c x (0, . . . ) 2p(n) + l} 

and S; is defined by 

4(q, (a>)= p 
if 6i(q, a) =p and j is the distance of q, 

di otherwise, where di is the dead state of Bi. 

Before proving that there is no nontrivial cycle within Bi, for technical convenience, 
we want to classify &‘s into two classes. The first class contains exactly all B;s with 
even i and is called the even class. The second class contains all B;s with odd i and is 
called the odd class. We can easily verify the following facts. 

Fact 1.7. If Bi belongs to the even class, then si is the only state with distance 0. 

Fact 1.8. Zf Bi belongs to the odd class, then there is only one state ti with distance 

p(n)+ 1. 

We now show that there is no nontrivial cycle within Bi. 

Lemma 1.9. There is no nontrivial cycle within Bi. 

Proof. Suppose there is a nontrivial cycle within Bi. Let &(p, x)=q, pfq and 
6i(p, xr)=p. By construction of Bi from Ai using the extension of C, the distance of 
p and the distance of q are identical. Thus, 1 x 1 mod 2p(n) + 2 = 0. If Bi belongs to the 
even class, then there are strings x 1, ~2 SO that X=X~X~ and 6{(p, xl)=si, 6j(si, x2)=4 
since lx(>O. Clearly, 6i(q, xl)=si and 6j(si, xzxl)=si. Then, 6i(p, x’)=&(P, 
Xl(XzXi)‘-‘Xz)=Si(Si, (XzX1)*-r x~) = 6:(si, x2) = q, which is a contradiction. Sim- 
ilarly, if Bi belongs to the odd class, then there are strings xi, x2 so that x=x1 x2 and 
6i(P, X1)= ti, s{(ti, Xz)=q. Clearly, 6j(q, XI)= ti and di(ti, x2x1)= ti. Then, 
&(p, x’)=&(p, xl(xzxl)l-l x2)=6i(ti, (xZxl)*-lx2)=8:(ti, x2)=q, which is again 
a contradiction. Thus, there is no nontrivial cycle for Bi. 0 

The outline of the proof of Lemma 1.11 follows the argument in [9]. Let 
Bi=(Qi,C’,oi, si, {A}) and di be the unique dead state of Bi, l<id2p(n)-2. Let 
PRIME be the smallest prime number which is greater than 2p(n)-2. The following 
proposition is well known. 

Proposition 1.10 (Hardy [2]). For any positiue integer n there is at least one prime 
number p such that n <pG2n. Furthermore, p can be computed in log n space. 
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NOW for each I< id 2p(n) - 2, let BZp(,,) _ z + i be a new copy Of Bi such that the sets of 
states are all pairwise disjoint. We construct a new DFA B =(Q, C’, 8, s, {f}) as 
follows: 

and 6’ is 

(1) 

PRIME 

Q=(dIu i!l (Qi-{di}L S=Sl, f=_h, 

C’=Cx{0,...,2p(n)+l} 

defined as follows: 

6’(q, (a,j))=&(q, (a,j)) for all afzC, 

where qEQi_{di) except when defined by (2); 

(2) s’(A, (#,2))=si+l, l<idPRIME-1, 

~'(h=RIMEr <#,2))=s,; 

(3) 6’(q, (a, j)) =d if not defined by (1) and (2), 

where d is the dead state of B. 
Clearly, the DFA B is a minimum-state DFA. We now prove the following lemma. 

Lemma 1.11. If B has a nontrivial cycle, then there is a string x accepted by all Bi’s and, 

hence, a string y accepted by all Ai’s. 

Proof. Suppose there is a nontrivial cycle for B. By Lemma 1.9, this cannot be a cycle 
within any Bi. Let S’(p, u)=q, p#q and 6’(p, u’)=p. Further, let r be the smallest 
number satisfying the condition. Let 

pEQi-(di} and qEQj_{dj}. 

Fact 1.12. i#j and the distance of p in Bi and the distance of q in Bj are the same. 

Proof of Fact 1.12. Clearly, the distance of p in Bi and that of q in Ej are equal. NOW 

assume, by way of contradiction, that i=j. If the computation path of u from p to 
q does not leave Bi, then the computation path of a’-’ from q to p cannot leave Bi 
either. This cannot happen by Lemma 1.9. Thus, the computation path of u from p to 
q must leave Bi and reenter through si. By the same reason, the computation path of 
u*-i from q to p must leave Bi and reenter through si. First consider the case i is even. 
Let u be the shortest suffix of u such that 6’(Si, u)= q. Let w be the shortest suffix of u’-r 
such that 6’(si, w) = p. Then 1 VI = ) w) and q = p, which is a contradiction. If i is odd, we 
can select the shortest suffix which starts at ti instead, and argue as before. q 

Let DELTA = (j- i) mod PRIME, 0 <DELTA <PRIME. Let p,, = p and pk+ 1 = 
d'(pk, U) for O<k<r-1. Thus, q=pl and p=p,. Let pkEQi,-(ri,) for O<k<r. 
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Claim 1.13. For all OGkGr-1, DELTA=(ik+l-i,) mod PRIME. 

proof of Claim 1.13. Actually, we have that DELTA=(the number of substring 

(#,0>(#,1)(#,2) in U) modPRIME, and by <#,0)<#,1)<#,2) we can 
mOVeinBfrOm&tOBi+i. Cl 

Claim 1.14. r = PRIME. 

Proof of Claim 1.14. If r <PRIME, then Y x DELTA mod PRIME#O. Thus i0 #ik, 
i.e. p =po fp, for all 1 d k c PRIME. Since r is the least number satisfying the 
condition, we conclude that r = PRIME. 0 

Proof of Lemma 1.11 (conclusion). Observe that DELTA is a generator of the cyclic 
group ZPRIME. Therefore, the sequence i,, i,, . . . , iPRIME_ I is a cyclic permutation of 
1,2,..., PRIME. Now, let u1 be the shortest prefix of u such that 6’(pk, ai) = si,+ 1, and 
u3 be the shortest suffix of u such that 8(sik+, , u3) =pk+ 1 

Then u=ulu2u3 for some a2 and it holds that 8’(sil,+ 1, u2)=sik+ I. Consider u3ul. 
Clearly, S’(sirUgUl)=si+l for all i=l,...,PRIME-1. Further, ~Y(s~~~~~,u~u~)=s~. 

Let x be such that u3ul =x( # ,2). Then, x is accepted by all Bi’s. Let 

x=<%,0><az, 1>..~<%, 2p(n)+l)( #,O)( #, 1) and define y=alaz...a,# #. 
Then, clearly, y is accepted by all Ai’s. This completes the proof of Lemma 1.11. Cl 

The remaining problem is that we have a variable-size input alphabet instead of 
a fixed-size alphabet. The idea is to encode such input symbols by binary strings of the 
same length that depends on the size of the input alphabet. Let B = (Q, C’, 8, s, {f}) be 
the DFA constructed above. We construct a DFA B’= (Q’, (0, 1>,8’, s’, { fl)) as 
follows: 

Q'=Qx (0, ljsk-‘, where k= r log, (C’( 1 , 

s‘=(s, E), f’=<Lc> 

and 6” is so defined that 

6”(<4, E), X,)‘<P, E), 

where 6’(q, a)=p and x,=aluz... &&{O, l}* is a binary string which encodes the 

symbol UEC’. Therefore, all intermediate transitions are defined as follows: 

S”(<% E), al)=<% a,>, 

fi”((4,~,),~,)=<q,~l~,), 

. . . 
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For all ((q, x), b) not defined by the above rule, we set 

a”((q, x>, b)=(d, E), 

where d is the dead state of I?‘. Now, we can easily see that if there is a nontrivial cycle 

within B, then there is a nontrivial cycle within B’. However, the converse is not 

necessarily true, as shown in the following example. 

Example 1.15. Let us consider a cycle qoaIq5a2q,oa3q0 in the DFA in Example 1.6, 

where all qi’s and aj’s are distinct. Let us encode aI as 00100, a2 as 10010, a3 as 01001. 

The cycle in the modified DFA becomes: qoOq,0q2 lq30q,0q, lq,Oq,Oq, lq90q,, 

Oq,, lq,20q,30q,41qo, where all qis are distinct, and all qi’s except qo, q5 and qlo are 

intermediate states. Obviously, qo, 001 and (001)5 define a nontrivial cycle in the 

modified DFA, whereas there is no nontrivial cycle in the original DFA. 

We need the following encoding schema to avoid the above possibility. We encode 

0 by 01 and 1 by 10. Thus, 00100 becomes y=0101100101. We also concatenate 

x=111111111100withywhichgivesxy=1111111111000101100101,wherethenum- 

ber of l’s in x is equal to jyj. Let q, U, r define a nontrivial cycle in the modified DFA. 

Then, (~1 must be a multiple of Ixy(, and u can be written as u = vwx such that w is 

a concatenation of encodings of ai’s. Then U’ = wxu is a concatenation of encodings of 

ai’s and S(q, v), U’ and r defines a nontrivial cycle. Now it is not hard to see that if there 

is a nontrivial cycle in the modified DFA, then there is a nontrivial cycle in the original 

DFA. 

We apply the above idea as follows. The form of the encodings of ais is 

1 2k00{01, 10jk, where k is the length of the binary encodings of symbols in the original 

DFA B’. By an argument similar to the one in Example 1.12, the length of u must be 

a multiple of 4k + 2, and for u there is u’ which is a concatenation of encodings of ais 

and defines a nontrivial cycle. Thus, if there is a nontrivial cycle in B’, then there is 

a nontrivial cycle in B. 
Thus, we have proved the following lemma. 

Lemma 1.16. Finite-automaton cycle existence with input alphabet C= (0, 1) is log- 
space-complete for PSPACE. 

From Lemma 1.16, we obtain the following theorem as a corollary. 

Theorem 1.17. Finite-automaton uperiodicity is logspace-complete for PSPACE. 

2. The complexity of dot-depth-one language recognition and piecewise testable 

language recognition 

In this section we characterize the complexity of two other problems; namely, 

dot-depth-one language recognition and piecewise testable language recognition. We 
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show that these two problems are logspace-complete for NL, where NL is the class of 
languages accepted by nondeterministic logspace-bounded Turing machines. The 
following result is used. 

Proposition 2.1. (Immerman [4]). NL is closed under complement. 

We now introduce a condition which characterizes piecewise testable languages. 

Definition 2.2. Given a DFA M=(Q, C, 6, qo, F), we denote its transition diagram by 
G(M). We also define G(M, r) by considering only transitions labeled by symbols in 
r, where ~zZ. Let p be a vertex of G. The component defined by p, written C(p), is 

C(p)={p}u{ql there is a path from p to q}. 

Proposition 2.3(a) (Simon [S]). Let W be a regular language and M be the minimum- 
state DFA accepting W. W is piecewise testable ifl(l) G(M) is acyclic and (2) for any 
subset P of C, each component of G(M, P) has a unique maximal state, where a state is 
said to be maximal zffrom that state there is no outgoing transition labeled by P. 

Thus, W is not piecewise testable iff either (1) G(M) is cyclic or (2) there is one 
component of G(M, P) having two distinct maximal states. 

Observation (Stern [9]). If G(M) is acyclic, then q is a maximal state of a component 
C of G(M, P) ifs(l) qeC and (2) PcC(q)={aEC(G(q, a)=q). 

From the above observation if q, q’ are distinct maximal states of C, then they 
are also distinct maximal states of some component of G(M, C(q)nC(q’)). Hence, 
Proposition 2.3(a) can be restated as follows. 

Proposition 2.3(b). W is not piecewise testable ifleither (1) G(M) is cyclic or (2) there 
are 3 distinct states p, q, q’ so that there are paths from p to q and p to q’ in the graph 

G(M, C(q) nC(q’)). 

From Proposition 2.3(b) we have the following NL-algorithm which solves the 
piecewise testable language recognition problem. 

Lemma 2.4. Piecewise testable language recognition is in NL. 

Proof. Let M = (Q, C, 6, qo, F ) be a minimum state DFA. 
(1) if there is a cycle in G(M) then return (‘yes’); 

(2) guess P, 4, 4’; 
s,:=p; s,:=p; 
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repeat guess a, bEZ(q)nC(q’); 

s1:=6(sl, a); 

s,:=Q,, b); 

until s1 = q and s2 = q’; 

return (‘yes’); 

Obviously, the above algorithm is in NL and gives a positive answer when M does 
not accept a piecewise testable language. Since NL is closed under complement [4], 
piecewise testable language recognition is in NL. 0 

Lemma 2.5. Piecewise testable language recognition is NL-hard. 

Proof. We reduce graph accessibility (GAP for short), a well-known NL-complete 
problem, to piecewise testable language recognition. A special case of GAP is mono- 
tone 2GAP where out-degree of each vertex is bounded by 2 and for all edges 
e = (u, u), v is greater than u (the vertices are linearly ordered). It is not hard to see 
that monotone 2GAP is also logspace-complete for NL. Let (G, s, g) be an instance of 
monotone 2GAP, where G = (V, E), V= { 1,2, . . . , n}, s = 1 and g = n. 

We construct a minimum-state DFA M=(Q, C, 6, pl, {f}), where Q = Vu{f}u 

{pi 1 1 < i < n} u (qi 1 1 Q i 6 n}, C = (0, 1,2} and 6 is defined as follows (see Fig. 5): 

6(pi, 2)=i for 1 <iQn, 

6(Pi, a)=Pi+l for all a~(0, l} and 1 di<n-1, 

6(p,, a)=n for ~(0, l}. 

For all iE V- {n} we have the following cases: 

outdegree(i)=2: let j, k (j< k) be two vertices adjacent to i. In this case 

6(i, 0) =j, 6(i, l)= k, 6(i, 2)=qi; 

outdegree (i)= 1: let j be the vertex adjacent to i. In this case 

6(i, a)=j for UE{O, l}, 6(i, 2)=qi; 

Fig. 5 
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outdegree = 0: 

6(i, a)=f for aE(O, l}, s(i, 2)=qi, 

6(n, O)= 1, 6(n, l)=f, W, 2)=&l. 

For all UEC and 1 di<n-- 1 

6(qi, a)=qi+l, 4%, a)=f, S(f, a)=$ 

(Note that the states pi’s and qi’s are introduced in order to obtain the minimality of 
the resulting DFA.) 

Observe that if there is a path from s to g, then there is a cycle in G(M). Further, 
f is the only state q such that C(q) #$. Therefore, if we can show that M is 
a minimum-state DFA, then we can conclude that (G, s, g) belongs to monotone 
2GAP iff L(M) is not a piecewise testable language. 

Claim. M is a minimum-state DFA. 

Proof of Claim. First, observe that all p;s are pairwise inequivalent since if i <j, then 
6( pi, 0”-j23) Zfand 6( pj, 0’-j23)=f. Next, one can easily see that all 4;s are pairwise 
inequivalent by a similar argument. Also, all states i= 1, . . . , n are pairwise in- 
equivalent since if i <j, then S(i, 20”-j+ ‘) #f and 6( j, 20”-j+ l) =J: 

Note that for all 1 <i, j<n 6(p~,0’-i+220”-1)#~ but 6(qj,0”-it220”-1)=f: Thus, 
all pairs pi’s and qj’s are pairwise inequivalent. Also, all the pairs pi’s and j’s are 
pairwise inequivalent since if i&j+l, then 6(pi, 21”-j)=f, but S(j, 21”-j)#f; if 
i <j + 1, then 6( j, 2”-j+‘) =f, but 6( pi, 2n-j+2) #t By a similar argument, all the pairs 
4;s and j’s are pairwise inequivalent. Thus, we conclude that M is minimal. 0 

Proof of Lemma 2.5 (conclusion). From the above claim, it follows that M does not 
recognize a piecewise testable language iff there is a path from s to g in G. The above 
reduction can be easily carried out by a deterministic logspace-bounded Turing 
machine. This completes the proof of Lemma 2.5. 0 

From Lemmas 2.4 and 2.5, we obtain the following theorem. 

Theorem 2.6. Piecewise testable language recognition is logspuce-complete for NL. 

Next we introduce a condition that characterizes the dot-depth-one languages. 

Definition 2.7. Let k be an integer. A DFA M is k-stable if for any two states p, q and 
any word w of length k, whenever p, q, 6(p, w), 6(q, w) belong to the same strongly 
connected component, then 6( p, w) = 6 (q, w). 

Thus, a DFA M is not k-stable if there are states p, q and a word w of length k such 
that p, q, 6(p, w) and d(q, w) belong to the same strongly connected component and 

qp, 4#6(q, 4. 
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Definition 2.8. Two words U, u are k-coinitial if they have the same first k letters; we 
write cL(u, u) if u and u are k-coinitial. 

A fork(k) of type I is a diagram of the form described by Fig. 6, where u, u are 
k-coinitial words and A, A’ are two distinct strongly connected components. 

A fork(k) of type II is defined as in Fig. 7, with cL(u, x), ck(v, y) and A #A' are two 
distinct strongly connected components. 

Proposition 2.9 (Stern [9]). A regular language is of dot-depth one @for some k, its 
minimum-state DFA M is k-stable and admits no fork(k) of type I and type II. Further, 
k can be taken to be 1 Q[ 3, where Q is the set of states of M. 

Thus, a regular language is not of dot-depth one iff its minimum state DFA M is not 
k-stable or admits fork(k) of type I or type II, where k = ) Q I3 and Q is the set of states 
of M. From Proposition 2.9, we have the following NL algorithm for dot-depth-one 
language recognition. 

Lemma 2.10. Dot-depth-one language recognition is in NL. 

Proof. Let M = (Q, C, 6, qO, F) be a minimum-state DFA. 
(1) /* Test whether M is not k-stable for k=IQI”*/ 

guess P, 4; 

if p, q belong to the same strongly connected component then 

Fig. 6 

” V 

Fig. I 
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begin 

s1:= p; s2 := q; 

for i:= 1 to k do 

begin 

guess EC; 

s,:=qs,, a); 

s2:=&, a); 

end; 

if s1 #s2 then return (‘yes’); 
end 

(2) /* Test whether A4 admits fork(k) of type I*/ 

guess P, 4, y, s, t; 
if q, r and s, t constitute two different strongly connected components then 

begin 

s,:=p; s2:=r 

’ 

sj:=.Y > 

for i:= 1 to k do 

begin 

guess aeC; 
s1:= 6(s, ) a); 

s2:= 6(s,, a); 

s3 := 6 (S3) a); 

end; 

if sl=q and s2=q and s3=t then 

begin 

s, := p; s2 := t’ 

for i:=l to kdo’ 

sg:=q; 

begin 

guess aE:C; 
s,:=d(sl, a); 
s2 := 6(SZ) a); 

s3 := 6 (s3 ) a); 

end; 

if s1 =s and s2 =s and s3 =r then 

return (‘yes’); 

end 

end 

(3) /* Test whether M admits fork (k) of type II*/ 
Similar to that of fork (k) of type I. 

Note that computing strongly connected components and checking that the connected 
components are distinct are both in NL. Therefore, the above algorithm is in NL and 
gives a positive answer when M does not accept a dot-depth-one language. Since NL 
is closed under complement [4], dot-depth-one language recognition is in NL. 0 
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Lemma 2.11. Dot-depth-one language recognition is NL-hard. 

Proof. The proof is essentially similar to that of Lemma 2.5. We reduce monotone 
2GAP to dot-depth-one language recognition. Actually, we reduce monotone 2GAP 
to the problem of checking whether a given minimum-state DFA M is k-stable or not. 
The details are left to the reader as an exercise. 0 

From Lemmas 2.10 and 2.11 we obtain the following theorem. 

Theorem 2.12. Dot-depth-one language recognition is logspace-complete for NL. 

3. Conclusions 

In this paper we have characterized the exact complexity of three problems: 
(1) finite-automaton aperiodicity, (2) dot-depth-one language recognition and 
(3) piecewise testable language recognition. For all the three problems, the DFAs in 
the input are assumed to be minimum-state DFAs. Since testing whether a given DFA 
is minimal is known to be in P, finite-automaton aperiodicity remains PSPACE- 
complete even without the minimality assumption. In [l] we showed that minimiz- 
ation of DFAs is NL-complete. Therefore, dot-depth-one language recognition and 
piecewise testable language recognition remain NL-complete even when the DFAs in 
the input are not assumed to be minimal. 
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