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SUMMARY

Cell signaling mechanisms often transmit in-
formation via posttranslational protein modifi-
cations, most importantly reversible protein
phosphorylation. Here we develop and apply
a general mass spectrometric technology for
identification and quantitation of phosphoryla-
tion sites as a function of stimulus, time, and
subcellular location. We have detected 6,600
phosphorylation sites on 2,244 proteins and
have determined their temporal dynamics after
stimulating HeLa cells with epidermal growth
factor (EGF) and recorded them in the Phosida
database. Fourteen percent of phosphorylation
sites are modulated at least 2-fold by EGF, and
these were classified by their temporal profiles.
Surprisingly, a majority of proteins contain mul-
tiple phosphorylation sites showing different ki-
netics, suggesting that they serve as platforms
for integrating signals. In addition to protein ki-
nase cascades, the targets of reversible phos-
phorylation include ubiquitin ligases, guanine
nucleotide exchange factors, and at least 46 dif-
ferent transcriptional regulators. The dynamic
phosphoproteome provides a missing link in
a global, integrative view of cellular regulation.

INTRODUCTION

The mammalian cell constantly receives signals from its

surroundings to which it has to respond appropriately.

For example, growth-factor signals are integrated with

internal-state information and lead to decisions on cell

growth, differentiation, or proliferation (Hunter, 2000;

Pawson and Nash, 2003; Schlessinger, 2000). Many hu-

man diseases, including multiple forms of cancer, arise
through deregulation of this information processing capa-

bility. In recent decades, our knowledge of the players in

signal transduction mechanisms has been painstakingly

accumulated, mainly through the study of individual mole-

cules in specific pathways. More recently, the emergence

of technologies allowing high-throughput, system-wide

experiments—such as microarray analysis—has provided

a detailed and objective view of downstream transcrip-

tional changes following various stimuli. However, many

critical events involved in cellular responses are mediated

by changes in posttranslational protein modifications

rather than transcriptional changes. Thus, protein modifi-

cation can influence and control enzymatic activity, pro-

tein conformation, protein-protein interactions, and cellu-

lar localization. Even for protein phosphorylation, which

affects an estimated one-third of all proteins and is the

most widely studied posttranslational modification (Co-

hen, 2001), only a small subset of total in vivo sites has

been discovered so far. Development of global and quan-

titative methods for elucidating dynamic phosphorylation

events is therefore essential for a systematic understand-

ing of cellular behavior.

Phosphorylation has traditionally been studied largely

by in vitro assays, a method which has recently been

extended using protein chip arrays (Ptacek et al., 2005).

Likewise, synthetic peptides have served as kinase sub-

strates and allowed extraction of consensus motifs (Son-

gyang et al., 1994), which were then incorporated into in

silico prediction programs (Yaffe et al., 2001). Unfortu-

nately, kinases are often less specific in vitro than they are

in vivo, necessitating additional experimental approaches.

Mass spectrometry (MS) has become a powerful technol-

ogy for proteomics and a method of choice for unbiased

(i.e., hypothesis-free) analysis of in vivo phosphorylation

(Aebersold and Mann, 2003; Chen and White, 2004; Fi-

carro et al., 2002; Mumby and Brekken, 2005; Rush

et al., 2005; Salomon et al., 2003; Stover et al., 2004).

Intracellular signal transduction mediated by receptor

tyrosine kinases, such as the epidermal growth factor

(EGF) receptor, is governed by phosphorylation of
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downstream protein kinases and their substrates (Hunter,

2000; Pawson and Nash, 2003), and several MS studies

have focused on tyrosine-phosphorylation ‘‘early events’’

after growth-factor treatment (Blagoev et al., 2003, 2004;

Kratchmarova et al., 2005; Zhang et al., 2005). These

approaches employed anti-phosphotyrosine antibodies,

which exclude detection of downstream serine/threonine

kinase signaling. Other studies have identified large num-

bers of phosphorylation sites, but without a functional con-

text (Beausoleil et al., 2004). We have recently described

an integrated phosphoproteomic technology combining

phosphopeptide enrichment, high-accuracy identifica-

tion, and stable isotope labeling by amino acids in cell cul-

ture (SILAC) (Ong et al., 2002) to quantify changes in phos-

phopeptide levels. Initially we applied these methods to

the yeast pheromone response pathway (Gruhler et al.,

2005). We have now improved and extended this ap-

proach and combined it with the time-course method

(Andersen et al., 2005; Blagoev et al., 2004) to study, for

the first time, the global in vivo phosphoproteome and its

temporal dynamics upon growth-factor stimulation.

RESULTS

Phosphopeptide Sequencing and Determination

of Temporal Profiles

Our quantitative, phosphopeptide-specific approach

combines SILAC for quantitation, strong-cation exchange

chromatography (SCX) and titanium dioxide (TiO2) chro-

matography for phosphopeptide enrichment, and high-

accuracy multistage MS (Figure 1). Three populations of

HeLa cells are SILAC encoded with both arginine and

lysine using three distinct isotope forms (‘‘double-triple

labeling’’) and stimulated by EGF (150 ng/ml) for different

times. Cells are mixed and separated into cytosolic and

nuclear fractions, and the proteins are enzymatically di-

gested. The resulting peptide mixtures are then separated

into 13 fractions by SCX, and phosphopeptides are en-

riched on TiO2 beads in the presence of 2,5-dihydroben-

zoic acid (Larsen et al., 2005) (Figure 1A). Each fraction

is analyzed by online liquid chromatography (LC) MS on

a hybrid linear ion trap/Fourier transform mass spectrom-

eter (LTQ-FT) with two consecutive stages of fragment-

ation for unambiguous phosphopeptide identification

(Beausoleil et al., 2004; Olsen and Mann, 2004) (Figure 1B).

In a second, independent experiment, we used the novel

linear ion trap/orbitrap mass spectrometer (LTQ-Orbitrap)

(Makarov et al., 2006). In this case, phosphopeptides were

fragmented by multistage activation (‘‘pseudo-MS3’’)

(Schroeder et al., 2004) (Figure 1C). All labeled peptides

elute as characteristic triplets, with their intensity reflect-

ing the relative amounts at the three time points. Two

time-course experiments are combined using the com-

mon time point (5 min of EGF stimulation), providing a

five-time-point profile (Figure 1D). Quantitation of phos-

phorylation sites was done by MSQuant software (Schulze

and Mann, 2004) and checked manually for all peptides.

Extracted ion current (XIC) values indicate that our mea-
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surements spanned a phosphopeptide abundance range

of between 103 and 104.

More than 10,000 phosphopeptides were detected in

116 LC MS analyses. We achieved greater than 99% cer-

tainty of phosphopeptide identification through the sub-

ppm accuracy of peptide mass measurements, double

fragmentation of peptides losing a phospho-group (MS2

and MS3), and the isotope-state information present in

the SILAC peptide triplet (see Table S1 and Figure S1 in

the Supplemental Data available with this article online).

Furthermore, peptides were typically sequenced several

times in different forms—for instance, those containing

oxidized methionine or missed tryptic cleavage sites

(see Supplemental Experimental Procedures and Table

S2 for a listing of all peptides and their ratios). Our analysis

identified 6,600 phosphorylation sites on a total of 2,244

proteins (Figure 2).

The above analysis establishes the sequence and num-

ber of phosphorylation sites for each phosphopeptide. In

some cases, the fragmentation spectra do not contain

sufficient information to determine the site of phosphory-

lation within a peptide with single amino acid accuracy.

We therefore developed a phospho-site analysis pipeline

using a posttranslational modification (PTM) score for lo-

calization, which assigns probabilities to each of the pos-

sible sites based on their distinguishing fragment ions

(Figures S2–S4). The PTM score is based on an algorithm

that makes use of the four most intense fragment ions per

100 m/z units in an MS2 or MS3 spectrum (Olsen and

Mann, 2004). All possible combinations of serine, threo-

nine, and tyrosine phosphorylation are tested, and the

combinations with the highest scores are reported (for de-

tails, see Experimental Procedures and Supplemental

Data). Furthermore, we extracted from the literature 22

consensus motifs from 15 of the most common kinases

and matched all candidate phospho-sites against these

motifs (Table S3). Given the peptide sequence and num-

ber of phosphorylation sites for each phosphopeptide,

we grouped potential phosphorylation sites into four cate-

gories depending on their PTM localization score and mo-

tifs (Figure 2B). In the category with highest confidence in

localization (class I), the site in question had a localization

probability for the phospho-group of at least 0.75. That is,

the added probability of all other potential sites is less than

0.25. In class II, the localization probability is between 0.75

and 0.25, but these sites also had to match one of the 22

kinase motives. Class III sites had the same localization

probabilities as class II but did not match any of the motifs.

Finally, class IV sites (not shown in the figure) had localiza-

tion probabilities below 0.25. Note, however, that the

probability that the peptide is phosphorylated is still larger

than 99%, even for class IV peptides. Many of the kinase

motifs have very limited specificity, which is reflected in

the fact that a third of the phospho-sites matched with

two or more motifs (Table S4).

To determine the distribution of quantitation errors, we

measured the SILAC ratios of all nonphosphorylated

peptides. Protein expression is not expected to change



appreciably within the time frame of our experiment, so

the SILAC triplets of nonphosphorylated peptides should

be 1:1:1. The standard deviation of the measured ratios

was below 20% for all four preparations (Figure S5). For

the analysis of dynamic changes as a result of growth-fac-

tor treatment, a cutoff value of a 2-fold change in either

direction is therefore very conservative. A total of 1,046

phosphopeptides were in this category, which we term

here ‘‘regulated phosphopeptides.’’

The In Vivo Phosphoproteome

In their classic study using phosphoamino acid analysis,

Hunter and coworkers found relative abundances of

0.05%, 10%, and 90% for phosphotyrosine (pY), phos-

phothreonine (pT), and phosphoserine (pS) in normally

growing cells (Hunter and Sefton, 1980). Here we deter-

mined the distribution between individually identified sites

to be 103 pY (including 53 induced by EGF), 670 pT, and

4,901 pS sites (class I sites, Figure 2C). Thus, our new

data set, based on more than 2,000 phosphoproteins,

suggests that the distribution of pY, pT, and pS sites is

1.8%, 11.8%, and 86.4%—very close to the original esti-

mate for serine and threonine, but an order of magnitude

higher for tyrosine. This apparent discrepancy is not due

simply to tyrosine phosphorylation induced by growth-

factor treatment because many EGF-regulated sites

were also detected in the basal state. Instead, the likely

reason is that tyrosine phosphorylation tends to occur

on less abundant proteins compared to serine and threo-

nine phosphorylation. On a per-protein basis, pY sites

would therefore be underrepresented in the phospho-

amino acid analysis. Another contributing factor may be

the fact that pY is less stable in phosphoamino acid anal-

ysis than pS/pT, whereas we have found no evidence that

the phosphopeptide enrichment method discriminates

between these modification types.

We next averaged the time profiles of the upregulated

phosphorylation sites and normalized them to their maxi-

mal fold change. Figure 2D shows that, on average, dy-

namic changes in tyrosine phosphorylation occur much

faster and from a lower basal level compared to serine/

threonine phosphorylation.

We found phosphorylation sites on a wide variety of pro-

teins, and about half the proteins contained more than one

site (Table S2). Figure 2E shows a Gene Ontology (GO)

(Zeeberg et al., 2003) analysis of the in vivo phosphopro-

teome. GO localization information existed for 1,589 of

the 2,244 phosphoproteins. Almost half of the phosphory-

lation events occurred on nuclear proteins, whereas only

one-third of all proteins in the database were assigned

as nuclear by GO, indicating that phosphorylation prefer-

entially targets nuclear proteins. The proportion of regu-

lated proteins closely paralleled the total number of phos-

phorylations of nuclear proteins. As expected, proteins

annotated as extracellular were significantly underrepre-

sented in the phosphoproteome. Although there is evi-

dence of a mitochondrial phosphoproteome (Pagliarini

and Dixon, 2006), proteins annotated as mitochondrial
by GO were underrepresented, as were plasma mem-

brane proteins. As membrane proteins are often of low

abundance and we did not specifically enrich the plasma

membrane in this analysis, we are less likely to identify

phosphorylation events associated with them. Con-

versely, proteins associated with the cytoskeleton, which

are generally of higher abundance, were almost twice as

likely to be detected in the phosphoproteome as com-

pared with their proportion in the database, and they ac-

counted for an even higher share of the regulated sites.

This illustrates that, at the current state of technology,

our phosphopeptide screen is still not comprehensive.

We may also miss certain phosphopeptides that are either

too small or too large in mass to be readily measurable in

our current MS setup. Therefore, absence of a phosphory-

lation site from our data set does not necessarily mean that

it does not exist. Given that we have observed 2,244 phos-

phoproteins in a single cell line and taking into account the

sensitivity and dynamic range limitations of current MS

technology (de Godoy et al., 2006), it is clear that a large

proportion of cellular proteins are phosphorylated.

We compared our data set with all annotated human

phospho-sites in the SwissProt database from experimen-

tal data or inferred from homologous sequences (3,262

sites in version 48.0) and also included four previous phos-

phoproteomics data sets in our analysis (Amanchy et al.,

2005; Beausoleil et al., 2004; Stover et al., 2004; Thele-

mann et al., 2005). We found that more than 90% of our

sites were novel with respect to SwissProt. From the

four previous data sets, we were able to map 1,890 sites

onto IPI version 3.13. Of these, 691 (37%) were also found

in our data set (Table S5). Given that the previous studies

generally used lower-resolution MS and different experi-

mental conditions, this is a relatively high value. As in the

case of SwissProt, close to 90% of our data are novel

compared with these previous studies. Taken together,

our data suggest that, despite several decades of re-

search into phosphorylation, most in vivo phosphorylation

sites have still not been detected.

Phosphoproteome Dynamics

EGF signaling begins with activation of the EGF receptor

and extends through a cascade of downstream kinases

to mediate the increased phosphorylation of a large num-

ber of substrate proteins. The overall levels of phosphory-

lated proteins within a specific cellular compartment are

also affected by other processes, including dephosphory-

lation by protein phosphatases, protein degradation via

ubiquitination, and translocation of the protein to another

subcellular location. Our experiment measures the net ef-

fect of all these diverse processes that collectively regu-

late the dynamic phosphoproteome.

To search for patterns in the time profiles of the regu-

lated phosphopeptides, we explored several clustering

techniques. Clustering algorithms have been applied

extensively to the analysis of gene-expression data, in-

cluding time-series data sets. We found fuzzy c-means

(FCM) clustering to be better suited to our analysis than
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Figure 2. Results of Large-Scale Phosphopeptide Sequencing

(A) Distribution between singly and multiply phosphorylated peptides (some peptides were both singly and multiply phosphorylated and occur in more

than one category).

(B) Phosphorylation-site analysis. See text for definition of classes I, II and III.

(C) Distribution of the pY/pS/pT phosphoproteome.

(D) Averaged and normalized time profile of all regulated tyrosine and serine/threonine phosphorylation sites.

(E) Gene Ontology (GO) analysis of the in vivo phosphoproteome.
hard partitioning algorithms, such as k-means, hierarchi-

cal clustering, or self-organizing maps (Figure 3 and Ex-

perimental Procedures). In FCM clustering, each profile

is assigned a grade of membership for a set of clusters

(represented by color in Figure 3). FCM offers robust clus-
tering with regards to noise by variation of a fuzzification

parameter m, which limits the contribution of ill-behaved

profiles to the clustering process. We iteratively explored

combinations of cluster sizes and fuzzification parameters

and found optimal partitioning with c = 6 and m = 2. There
Figure 1. Quantitative and Time-Resolved Phosphoproteomics Using SILAC

(A) Three cell populations are SILAC encoded with normal and stable isotope-substituted arginine and lysine amino acids, creating three states dis-

tinguished by mass. Each population is stimulated for a different length of time with EGF, and the experiment is repeated to yield five time points. Cells

are combined, lysed, and enzymatically digested, and phosphopeptides are enriched and analyzed by mass spectrometry.

(B) Mass spectra of eluting peptides reveal SILAC triplets (same peptide from the three cell populations), and these triplets are remeasured in selected

ion monitoring (SIM) scans for accurate mass determination. Phosphopeptides are identified by loss of the phospho-group in a first fragmentation

step followed by sequence-related information from a second fragmentation step.

(C) Same peptide as in (B) but measured on the LTQ-Orbitrap. Inset shows a magnification of the SILAC peptide selected for fragmenting. Right-hand

panel shows the result of multistage activation of the peptide.

(D) Raw data of a phosphopeptide from the protein programmed cell death 4. The three peptide intensities in the two experiments are combined using

the 5 min time point, resulting in the quantitative profile shown in the inset.
Cell 127, 635–648, November 3, 2006 ª2006 Elsevier Inc. 639



Figure 3. Clustering of Dynamic Phos-

phorylation Profiles

Temporal profiles were assigned to six clusters

by fuzzy c-means clustering. The y axis is log10

transformed and normalized, and the number

of phosphopeptides is given in parentheses.

Each trace is color coded according to its

membership value for the respective cluster

(see color bar). Each cluster is designated by

the function of prominent members. Examples

of such members are given for each cluster.
are four clusters with upregulated phosphopeptides and

two with downregulated ones.

Clusters turned out to contain functionally related mem-

bers and were named to reflect their specific components.

For example, cluster A was enriched in tyrosine-phos-

phorylated peptides involved in membrane-proximal sig-

nal events and was therefore termed ‘‘signal initiators.’’

Similarly, cluster D was termed ‘‘negative feedback’’ be-

cause it contained phospho-sites from RAF, MEK2, and

EGFR, which are each involved in downregulation of the

EGF pathway (Hunter, 1998; Schlessinger, 2000).
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We next investigated whether different phospho-sites

within the same protein were regulated in the same man-

ner. Interestingly, most proteins (77%) that had a regulated

phosphopeptide also had at least one additional phos-

phopeptide that behaved differently—i.e., that was either

unchanging or else in a different cluster. For instance, Fig-

ure 3 contains a tyrosine phosphorylation site of the adap-

tor protein Shc with the signal initiator time profile and

a serine phosphorylation site in the ‘‘late negative regu-

lators’’ cluster (Pelicci et al., 1992). As another example,

we detected two serine phosphorylated peptides from



Figure 4. Functional Categories of Regulated Phosphoproteins

Regulated phosphoproteins fall into seven major functional categories. For each category, the consensus kinetic curves of its members (from Figure 3)

are drawn in proportion to the number of phosphopeptides in that cluster. For additional data, see Table S6.
tuberin (TSC2) (Roux et al., 2004). One of these was un-

changing, while the other had a ‘‘late stimulator’’ profile

following EGF stimulation. Our data set shows that, in gen-

eral, phosphorylation is regulated differently on different

sites within the same protein. This finding suggests that

the degree of phosphorylation should always be measured

site specifically rather than for the protein as a whole in or-

der to obtain accurate and functionally relevant under-

standing of activation kinetics. It also suggests that protein

phosphorylation typically serves different functions on dif-

ferent sites of the protein, a fact that is already appreciated

for a number of well-studied signaling proteins.

We grouped regulated phosphopeptides into functional

protein classes in Table S6 and Figure 4. One class of reg-

ulated proteins comprises kinases and phosphatases

(represented by 23 phosphopeptides), spanning the entire

EGF cascade from the receptor through RAF and MEK to

the MAP kinases (ERK1, ERK2, and p38). The main kinetic

clusters in this functional class are initiators, activators,

and terminators of EGF signaling, all showing increasing

levels of phosphorylation during the 20 min time course

of EGF treatment. Interestingly, transcriptional regulators

made up a large class of regulated proteins. In addition

to 26 different transcription factors with 34 regulated

phosphopeptides, there were 20 transcriptional coregula-
C

tors with EGF-dependent phosphorylation sites (Table 1).

Traditionally, cellular signaling research has focused ei-

ther on the early events in the cytoplasm or else directly

on the resulting changes in transcriptional levels; thus, in-

formation about the transcription factors responsible for

the observed gene-expression differences is lacking. Our

study now reveals that the EGF signal spreads to at least

46 transcriptional regulators within the relatively short time

frame of 20 min. Only a subset of these transcription fac-

tors have previously been known to be involved in growth-

factor signaling, and some were not even known to be

regulated by phosphorylation. WBRS9 and DAFT-1 are

such examples, from which we identified seven phospho-

peptides and two phosphopeptides, respectively (Table

S2). However, only pS-189 in WBRS9 and pS-1456 in

DAFT-1 increased upon EGF stimulation, implicating

them as the regulatory sites (Table 1). Moreover, analysis

of the regulated phosphorylation sites using Phosida (see

below) indicated 33 novel phosphorylation sites from 19

different transcription factors. Both transcriptional regula-

tors and coregulators display mainly late stimulator and

‘‘terminal effector’’ kinetic classes.

Apart from the canonical signaling axis leading to gene-

expression changes, EGF also affects the cytoskeleton.

Table S6 contains 27 regulated phosphopeptides of
ell 127, 635–648, November 3, 2006 ª2006 Elsevier Inc. 641



Table 1. EGF-Regulated Transcription-Factor Phospho-Sites

IPI Number Protein Name Phosphopeptide Sequence Cluster

IPI00234446 ATF-2 KMPLDLpSPLATPIIR D

IPI00234446 ATF-2 NDSVIVADQpTPpTPTR D

IPI00009975 ATF-7 ESSEPTGpSPAPVIQHSSATAPSNGLSVR C

IPI00009975 ATF-7 TDSVIIADQpTPpTPTR D

IPI00006079 Bclaf1 STFREEpSPLR D

IPI00029795 CTF KTEMDKpSPFNSPSPQDSPR A

IPI00026673 CUTL1 RRHpSpSVSDSQPCEPPpSVGTEYSQGASPQPQHQLK D

IPI00220159 DAFT-1 RNpSVERPAEPVAGAATPSLVEQQK C

IPI00032936 ERF RVpSSDLQHATAQLSLEHR C

IPI00032936 ERF TPADTGFAFPDWAYKPESpSPGSR C

IPI00011593 Fra2 RSpSSSGDQSSDSLNpSPTLLAL C

IPI00011593 Fra2 SHPYpSPLPGLASVPGHMALPRPGVIK D

IPI00289547 Jun D DEPQTVPDVPSFGEpSPPLpSPIDMDTQER C

IPI00395737 LUZP1 RSpSSEGLSK D

IPI00163729 MRTF-A FGSTGSpTPPVpSPTPSER B

IPI00163729 MRTF-A pSPAAFHEQR B

IPI00329152 MRTF-B pSPAAFHEQIK B

IPI00102820 MTSG1 NSGSFPpSPSIpSPR F

IPI00033016 Myc KFELLPTPPLpSPSRR B

IPI00418606 NFIB MYpSPICLTQDEFHPFIEALLPHVR B

IPI00166491 PHF2 ALRPPTpSPGVFGALQNFK C

IPI00166491 PHF2 RKGpSDDAPYpSPTAR C

IPI00291638 RB1CC1 pSTELVLpSPDMPR D

IPI00297694 RNF4 RLPQDHADSCVVpSpSDDEELSR D

IPI00549473 Similar to ILF-1 pSAPApSPTHPGLMSPR E

IPI00164672 SMIF HAPTYTIPLpSPVLpSPTLPAEAPTAQVPPSLPR D

IPI00063647 SPAG9 ERPISLGIFPLPAGDGLLpTPDAQK C

IPI00030783 STAT5 (cytoplasm) AVDGpYVKPQIK A

IPI00030783 STAT5 (nuclear) AVDGpYVKPQIK C

IPI00414482 TF3C-alpha NSSTDQGpSDEEGSLQK C

IPI00414482 TF3C-alpha RRApSWASENGETDAEGTQMTPAK C

IPI00217957 TMBS62 ETRIpSFVEEDVHPK C

IPI00069817 WBRS9 EDEGRREpSINDR D

IPI00008137 Zfp295 EHAPLApSPVENK D
actin-binding proteins, with diverse kinetic profiles. There

were also 21 proteins interacting with small GTPases,

many of them regulating cytoskeleton-associated func-

tions, with late stimulator or late negative regulator time

profiles (Bos, 2005; Soderling and Scott, 2006). Ubiquiti-

nation, like phosphorylation, is a diverse and widespread

cellular control mechanism (Devoy et al., 2005; Dikic and

Giordano, 2003; Waterman and Yarden, 2001). While
642 Cell 127, 635–648, November 3, 2006 ª2006 Elsevier Inc.
ubiquitination was not measured directly in this experi-

ment, a group of 12 ubiquitin ligases, including E1-, E2-,

and E3-type enzymes, was dynamically phosphorylated

following EGF stimulation and provide an interesting link

between these two regulatory systems. Ubiquitin ligases

had late stimulator or ‘‘early negative regulator’’ time pro-

files. Another intriguing class of proteins with very different

time profiles was a diverse set of RNA-binding proteins



and RNA-processing factors (represented by 26 phospho-

peptides). Figure 4 summarizes the variety of cellular func-

tions directly influenced by EGF signaling.

Cellular Control by Dynamic Phosphorylation

A major advantage of following the temporal dynamics of

phospho-sites instead of whole proteins is that signaling

outcomes can be more directly connected to responsible

upstream or downstream events. The phosphorylation of

receptor molecules not only activates various signaling

cascades but also deactivates the processes in later

stages. These events are separated in time and were easily

resolved in our analysis. The autophosphorylation of the

EGF receptor on multiple tyrosine residues is the critical

step initiating the propagation of the signal inside the cell

(Hunter, 2000; Pawson and Nash, 2003; Schlessinger,

2000). In contrast, Ser/Thr phosphorylation often attenu-

ates the signal by negative feedback (Countaway et al.,

1989; Hunter, 1998; Schlessinger, 2000). Accordingly, we

detected signal initiator profiles for all of the EGFR pep-

tides containing Tyr1069, Tyr1092, Tyr1110, Tyr1138,

Tyr1172, and Tyr1197, while phosphorylation of EGFR on

Thr693, Ser991, and Thr993 instead showed delayed ki-

netics, peaking after 10 min (Figure 5A). Moreover, it was

recently reported that, in addition to ERK1/2, p38 MAPK

is also capable of phosphorylating EGFR at Thr693, which

could account for its considerably higher phosphorylation

at later time points (Winograd-Katz and Levitzki, 2006)

(Figures 5A and 5B).

Fine-tuning mechanisms are not limited to receptors

and may affect proteins at all levels of signaling pathways.

Supporting this notion, we identified two novel in vivo

phosphorylation sites in kinases within the canonical

RAF-MEK-ERK cascade (Marshall, 1994), namely Ser186

on A-RAF and Ser23 on MEK2. The phosphorylation mo-

tifs—and more importantly, the kinetic profiles of these

sites—clearly suggest negative feedback regulation by

the downstream kinases ERK1/2 (Table S6 and Figure 3D).

In a similar fashion, direct activation of protein kinases can

be precisely monitored by the phosphorylation in their ac-

tivation loops (Karin and Hunter, 1995; Marshall, 1994).

For example, we observed that EGF stimulation of HeLa

cells leads to more rapid and transient activation of both

ERK1 and ERK2 as compared with the delayed and pro-

longed activation of p38 MAPK (Figure 5B).

Another general principle commonly used in cellular sig-

naling is the phosphorylation-dependent translocation of

proteins such as kinases and transcriptional regulators

into the nucleus. Signal transducer and activator of tran-

scription 5 (STAT5) is a latent transcription factor retained

in its inactive state in the cytosol. Upon growth-factor

stimulation, STAT5 is activated by phosphorylation on

Tyr694, leading to its dimerization and nuclear transloca-

tion (Bromberg and Darnell, 2000). This translocation

was readily apparent in our analysis through the dynamic

phospho-profiles of Tyr694 of STAT5 in the cytosol and

the nucleus (Figure 5C). We observed rapid phosphoryla-

tion of STAT5 in the cytosolic fractions, peaking as early as
the first minute of EGF stimulation. In the nuclear fraction,

however, an increasing profile was detected for the same

phosphopeptide, with an accumulation rate mirroring its

decreasing amounts in the cytosol (Figure 5C).

Our data identify a unique combination of in vivo signal-

ing components and their relevant regulatory sites. This

could be particularly useful for deciphering the action of

complex transcription factors, as illustrated below for

activator protein 1 (AP-1), a dimeric complex composed

of combinations of members of the Jun, Fos, and ATF

families of transcription factors. The dimer partner compo-

sition of AP-1 determines differential DNA binding-site

specificity and as a result regulates the expression of a

distinct subset of genes (Shaulian and Karin, 2002; van

Dam and Castellazzi, 2001). Moreover, MAPK-dependent

phosphorylation of members from all three families has

been shown to regulate AP-1 activity (Karin et al., 1997;

Murphy et al., 2002; Ventura et al., 2003). Here we provide

evidence that EGF-dependent gene regulation in HeLa

cells involves at least four members of the AP-1 complex,

namely JunD, Fra2, ATF2, and ATF7 (Figures 5D–5F).

Although we identified five phosphorylation sites on

Fra2, only the peptide containing pSer308 and pSer320

changed significantly, associating these two sites with rel-

evant regulatory activity (Figure 5D). Likewise, we have

identified activating phosphorylations in JunD, while the

corresponding phospho-sites in JunB did not change

during the course of stimulation (Figure 5E). These results

indicate that JunD plays a more prominent role down-

stream of EGFR than its close relative JunB. For the re-

maining family of AP-1-related transcription factors, we

have observed three regulatory sites for ATF2 and three

for ATF7. Only the ATF2 phosphorylation on Thr69 and

Thr71 by p38 MAPK, which leads to enhanced AP-1 activ-

ity (Karin et al., 1997; Raingeaud et al., 1996), has previ-

ously been described. The phosphorylation of the corre-

sponding sequence in ATF7 exhibited similar delayed

kinetics strictly following the activation profile of p38

(Figure 5F). Thus, our results not only position ATF7 down-

stream in EGF-stimulated signaling cascades and provide

its regulatory sites but also point toward p38 MAPK as the

kinase responsible for their phosphorylation.

Phosida Database

The current data set comprises more phosphorylation

sites than all previous studies combined. To enable effi-

cient use of these data by the scientific community, we

have created a database called Phosida, for phosphoryla-

tion site database (http://www.phosida.com). Phosida

lists phosphorylation sites associated with particular pro-

jects and proteomes or, alternatively, displays phosphor-

ylation sites found for any protein or protein group of inter-

est (Figure 6). The data are crossreferenced to information

in SwissProt and the International Protein Index (IPI) data-

base. Importantly, Phosida links extensive mass spectro-

metric peptide information to the phosphorylation sites,

such as identical sites on several peptides with the same

temporal profiles in response to stimulus (EGF stimulation,
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Figure 5. Regulatory Information from Specific Phosphorylation Sites

(A) EGF receptor and negative feedback. Tyrosine phosphorylation sites (pY) have fast kinetics, whereas serine/threonine phosphorylation (pS, pT)

occurs with a time delay.

(B) Activation profiles from the mitogen-activated protein kinase (MAPK) family.

(C) Translocation of activated STAT5 from the cytosol to the nucleus.

(D) Multiply phosphorylated transcription factor Fra2. Only one of the phosphopeptides is regulated by EGF.

(E) Related but differentially regulated transcription factors. Both JunD and JunB are phosphorylated at the paralogous sites, but only in JunD are

these sites regulated (shown by overlapping peptides for the Jun B site, yellow and violet traces).

(F) Profile for a kinase and its known substrates. p38 starts to phosphorylate its substrates shortly after its own phosphorylation and activation.
in this case). Furthermore, we have submitted our phos-

phorylation data to the Phospho.ELM database (Diella

et al., 2004) and the Human Proteome Reference Data-

base (Peri et al., 2004) and have uploaded previous phos-

phoproteome data sets to Phosida.

DISCUSSION

We have developed and applied a strategy combining

triple-encoding SILAC for monitoring activation profiles,
644 Cell 127, 635–648, November 3, 2006 ª2006 Elsevier Inc.
SCX and TiO2 chromatography for phosphopeptide en-

richment, and high-accuracy mass spectrometric char-

acterization. Identification of numerous phosphorylation

sites of transcription factors and other low-abundance

regulatory proteins demonstrates that the technology

can probe the phosphoproteome in considerable depth.

The approach is completely generic for identification of

key phosphorylation events in signaling pathways and is

applicable to any cell culture system that can be SILAC

labeled. It can also be used to study crosstalk between



Figure 6. The Phosida Database

Phosida information for the phosphopeptides

of Shc, including matching kinase motifs, local-

ization p value, cellular compartment where

the peptide was found, and data for its phos-

phorylation dynamics. Information for the

tyrosine-phosphorylated peptide ELFDDP-

SpYVNVQNLDK is displayed. The database is

freely accessible at http://www.phosida.com.
signals, perturbations such as drug treatment, and knock-

outs or siRNA-induced knockdowns of signaling mole-

cules. While acquisition and especially analysis of the

data is currently very time consuming, advances in auto-

mation should make quantitative phosphoproteomics

easier to perform in the future.

A global, unbiased view of the in vivo phosphoproteome

reveals that a large proportion of cellular proteins are

phosphorylated and that only a small subset of total phos-

phorylation sites are regulated in response to a stimulus.

The observation that individual phospho-sites on a protein

are typically regulated differently suggests that proteins

generally serve as integrating platforms for a variety of in-

coming stimuli. This integration of signals could be inde-

pendent, with phosphorylation of each site occurring sep-

arately from the others, or it could be dependent, for

example, on when a ‘‘priming site’’ is necessary for subse-

quent phosphorylation events.
While phosphorylation is not the only regulatory system

in the cell, it is intimately tied to many other systems, as

demonstrated here by identification of regulatory sites

on ubiquitin ligases, GEFs, actin-binding proteins, RNA-

interacting proteins, and other important protein classes.

Our data also pinpoint a large number of transcriptional

regulators or coregulators to which the growth-factor

stimulus is distributed.

Future studies could connect these data directly to

downstream gene-expression changes as measured by

microarray technology and/or to protein-expression

changes as measured by quantitative proteomics. Inte-

grated with other large-scale data sets, quantitative phos-

phoproteomics should provide an interesting foundation

for a system-wide modeling of cell signaling events.

Perhaps of more immediate use, it contains a treasure

trove of detailed and time-resolved information about

numerous individual signaling events controlled by
Cell 127, 635–648, November 3, 2006 ª2006 Elsevier Inc. 645
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phosphorylation. For example, debate has raged for years

as to whether Grb2, a key adaptor protein, undergoes ty-

rosine phosphorylation (Li et al., 2001). Here we identified

two phosphorylation sites on Grb2 with certainty: Tyr169

and Tyr209, both located within the carboxy-terminal

SH3 domain (see Table S2). The different kinetic profiles

of the two sites now support the notion that efficient Sos

dissociation from the activated EGFR-Grb2-Sos complex

requires combinatorial Grb2 phosphorylation (Blagoev

et al., 2004; Li et al., 2001). In a similar way, such data

sets may greatly accelerate cell signaling research by pro-

viding scientists with critical information about regulatory

sites and their dynamics on various kinases, adaptors,

transcriptional regulators, and other key signaling mole-

cules. Only a limited number of kinase mutations have

been found in cancers (Stephens et al., 2005), indicating

that changes in activity are more often the cause of dis-

ease progression and suggesting that large-scale and

quantitative phosphorylation screens could be used to

monitor cancer development.

EXPERIMENTAL PROCEDURES

Cell Culture, Fractionation, and Peptide Preparation

Serum-starved HeLa cells (human cervix epithelial adenocarcinoma

cells) labeled with L-arginine and L-lysine, L-arginine-U-13C6
14N4 and

L-lysine-2H4, or L-arginine-U-13C6-15N4 and L-lysine-U-13C6-15N2 (6 3

15 cm dishes per condition; �95% confluent cells) were treated with

150 ng/ml of EGF for 0 min, 5 min, and 10 min. A second, identically

labeled set of HeLa cells was treated with EGF for 1 min, 5 min, and

20 min. Otherwise, conditions were similar to those described in Bla-

goev et al. (2004). Mixed cells were centrifuged and cell membranes

were disrupted using a Dounce glass homogenizer. Nuclear pellets

were separated from cytoplasm by centrifugation.

Protein digestion was performed essentially as in Foster et al. (2003),

strong-cation exchange chromatography of digests as in Gruhler et al.

(2005), and TiO2 enrichment of phosphopeptides essentially as in

Larsen et al. (2005). Details are given in Supplemental Experimental

Procedures.

Mass Spectrometric Analysis

Titansphere eluates were analyzed by online C18 reversed-phase

nanoscale liquid chromatography-tandem mass spectrometry essen-

tially as described in Gruhler et al. (2005) with a few modifications.

Briefly, experiments were performed on an Agilent 1100 nanoflow sys-

tem (Agilent Technologies) connected to a 7 tesla Finnigan LTQ-FT

(Thermo Electron, Bremen, Germany) equipped with a nanoelectros-

pray ion source (Proxeon Biosystems, Odense, Denmark). The mass

spectrometer was operated in the data-dependent mode to automat-

ically switch between MS, MS2, and neutral loss-dependent MS3

acquisition.

Data-dependent settings were chosen to trigger an MS3 scan when

a neutral loss of 97.97, 48.99, or 32.66 Da was detected among the ten

most intense fragment ions. Former target ions selected for MS2 were

dynamically excluded for 60 s. Total cycle time was approximately 3 s.

In a second set of experiments, a hybrid linear ion trap/orbitrap instru-

ment was used (LTQ-Orbitrap, Thermo Electron). The instrument was

operated with the ‘‘lock mass’’ option as recently described (Olsen

et al., 2005). Survey spectra were acquired with a resolution of

60,000 in the orbitrap while acquiring up to five tandem mass spectra

in the LTQ part of the instrument. During fragmentation, the neutral loss

species at 97.97, 48.99, or 32.66 m/z below the precursor ion were
646 Cell 127, 635–648, November 3, 2006 ª2006 Elsevier Inc.
activated in turn for 30 ms each (pseudo-MS3; see Schroeder et al.,

2004).

Assigning Peptide Sequences Using MASCOT and MSQuant

Raw MS2 and MS3 spectra were centroided and merged into a single

peak-list file and searched against the human IPI protein database ver-

sions 3.04 and 3.07, the former of which contains 48,968 protein se-

quences including known nonhuman contaminants such as porcine

trypsin and Achromobacter lyticus endoproteinase Lys-C.

Statistical Analysis of Assigned Peptide Sequences

and Quantitation

To establish a cutoff score threshold for a false-positive rate of less

than one percent (p < 0.01), we performed a MASCOT search against

a concatenated target/decoy database (Elias et al., 2005) consisting of

a combined forward and reverse version of the IPI human database. All

spectra and all sequence assignments made by MASCOT were im-

ported into MSQuant (http://msquant.sourceforge.net). Here, the as-

signment of individual phosphorylation sites in MS2 and MS3 spectra

were automatically scored using an algorithm similar to the one we

have published previously for MS3 spectra scoring (Olsen and Mann,

2004). The scoring is probability based and makes use of the four

most intense fragment ions per 100 m/z units. For the localization

PTM score from MS2 spectra, fragment ions are expected to retain

the phospho-group (+80 Da), whereas in neutral loss-triggered

MS3 spectra, the fragments are matched as �H2O (+HPO3 � H3PO4;

�18 Da). The algorithm calculates the putative b and y ions in the ob-

served mass range for all possible combinations of phosphorylation

sites within a peptide sequence and determines the number of

matches, k.

The PTM localization probability score is �10 3 log10(p), where the

probability p is calculated as

p = ðk!=½n!ðn� kÞ!�$½pk�$½ð1� pÞðn�kÞ�Þ
= ðk!=½n!ðn� kÞ!�$½0:04k�$½0:96ðn�kÞ�Þ;

where n is the total number of possible b and y ions (see Figures S3 and

S6 for examples).

Phosphopeptide quantitation was likewise performed with the help

of MSQuant. For each identified SILAC triplet, MSQuant calculated

the three XIC values, and the assignments used for quantitation were

visually displayed and validated. XICs for the first and last member

of the triplet were normalized with respect to the common 5 min point

of stimulation, which was scaled to one.

Clustering of Regulated Phosphopeptides

The raw ratios for the time profiles of regulated phosphopeptides were

log10 transformed and then normalized so that, for each profile, the

mean was zero and standard deviation was one. The normalization

of data ensures that phosphopeptides with similar temporal patterns

are close in Euclidean space. The transformed profiles were then clus-

tered using the Mfuzz toolbox (Futschik and Carlisle, 2005), which is

based on the open-source statistical language R (RDC Team, 2006).

We used the fuzzy c-means (FCM) clustering algorithm, which is part

of the toolbox. FCM clustering is a soft partitioning clustering method

that requires two main parameters (c = number of clusters, m = fuzzi-

fication parameter) and uses Euclidean distance as the distance met-

ric. FCM assigns to each profile a membership value in the range [0,1]

for each of the c cluster. The algorithm iteratively assigns the profile to

the cluster with the nearest cluster center while minimizing an objective

function. Parameter m plays an important role in deriving robust clus-

ters that are not greatly influenced by noise and random artifacts in

data. For our analysis, the optimal values of c and m were derived

by the iterative refinement procedure as described in Futschik and

Carlisle (2005). The final clustering was done with the parameters

c = 6 and m = 2.

http://msquant.sourceforge.net


Supplemental Data

Supplemental Data include Supplemental Experimental Procedures,

Supplemental References, six figures, and six tables and can be found

with this article online at http://www.cell.com/cgi/content/full/127/3/

635/DC1/.
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