
Journal of Computational and Applied Mathematics 228 (2009) 123–132

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

Two-grid methods for finite volume element approximations of
nonlinear parabolic equations
Chuanjun Chen ∗, Min Yang, Chunjia Bi
Department of Mathematics and Information Science, Yantai University, Yantai, 264005, PR China

a r t i c l e i n f o

Article history:
Received 8 July 2007
Received in revised form 22 April 2008

MSC:
65N12
65M60

Keywords:
Two-grid method
Finite volume element method
Error estimates

a b s t r a c t

Two-grid methods are studied for solving a two dimensional nonlinear parabolic equation
using finite volume element method. The methods are based on one coarse-grid space and
one fine-grid space. The nonsymmetric and nonlinear iterations are only executed on the
coarse grid and the fine-grid solution can be obtained in a single symmetric and linear
step. It is proved that the coarse grid can be much coarser than the fine grid. The two-grid
methods achieve asymptotically optimal approximation as long as the mesh sizes satisfy
h = O(H3| lnH|). As a result, solving such a large class of nonlinear parabolic equations
will not be much more difficult than solving one single linearized equation.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

We consider the following nonlinear parabolic problem:{ut −∇ · (a(x, t)∇u) = f (u), (x, t) ∈ Ω × J,
u(x, t) = 0, (x, t) ∈ ∂Ω × J,
u(x, 0) = u0(x), x ∈ Ω,

(1.1)

whereΩ ⊂ R2 is a convex polygonal domain, x = (x1, x2), J = [0, T ], f (u) = f (u, x, t) is a given real-valued function onΩ .
We assume that

0 < a∗ ≤ a(x, t) ≤ a∗, ∀(x, t) ∈ Ω × J, |f ′(u)| + |f ′′(u)| ≤ M, u ∈ R. (1.2)

Under the given assumptions, problem (1.1) has a unique solution in a certain Sobolev space (see, e.g., [1]).
Finite volume element (FVE) method, as a type of important numerical tool for solving differential equations, has a long

history. The method has been widely used in several engineering fields, such as fluid mechanics, heat andmass transfer and
petroleum engineering. Perhaps the most important property of FVE method is that it can preserve the conservation laws
(mass, momentum and heat flux) on each computational cell. This important property, combined with adequate accuracy
and ease of implementation, has attracted more people to do research in this field. The theoretical framework and the basic
tools for the analysis of FVE method have been developed in the last two decades (see, e.g. [2–10]). The main idea of FVE
method is as follows. First, we construct the finite element partition and the relevant dual partition. Second, we choose the
solution space of piecewise polynomial functions on the original partition and the test space of piecewise constant functions
on the dual partition (control volumes, [2,4,7,9]). Then we use the Petrov–Galerkin technique to construct the variational
formulation. Finally the discrete schemes are given.
Two-grid method is a discretization technique for nonlinear equations based on two grids of different sizes. The idea

is to use a coarse-grid space to produce a rough approximation of the solution of nonlinear problems, and then use it as
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the initial guess for one Newton-like iteration on the fine grid. This method involves a nonlinear solve on the coarse grid
of diameter H and a linear solve on the fine grid of diameter h � H . Two-grid method was first introduced in [12,13]
for linear (nonsymmetric or indefinite) and especially nonlinear elliptic partial equations. Later on, two-grid method was
further investigated by many authors (see, e.g., [14–18]). Dawson andWheeler [14,15] have applied this method combined
with mixed finite element method and finite difference method to this model problem; Li and Allen [16] have applied two-
grid method combined with mixed finite element method to reaction–diffusion equations; Chen, Guang and Yu [17] have
constructed a two-grid method for expanded mixed finite element solution of this model problem. Bi and Ginting [18] have
studied two-grid finite volume element method for linear and nonlinear elliptic problems. There are many other efficient
methods such as domain decomposition algorithms for parabolic problems, (see, e.g., [19–21]), so that an explicit treatment
of the boundary conditions on a coarser mesh will lead to an optimal DD method.
In this paper we will consider FVE method combined with two-grid method to solve (1.1). We choose the two-grid

spaces as two conforming finite element spaces VH and Vh on one coarse grid with mesh size H and one fine grid with mesh
size h � H . We solve a nonsymmetric and nonlinear problem on the coarse-grid space, then we use the known coarse-
grid solution and a Taylor expansion to extrapolate the solution on the fine grid. On the fine grid we only need to solve a
symmetric and linear system. A remarkable fact about this simple approach is, as shown in [12], that the coarse mesh can
be quite coarse and still maintain a good accuracy approximation.
As far as we know there is no two-grid method convergence analysis for parabolic equations in the literature that can

be applied in finite volume element method. In this paper we present the algorithms and analysis which partly fill this
gap. The rest of this paper is organized as follows. In Section 2, we describe FVE method and two-grid FVE method for the
nonlinear parabolic equation (1.1). We give two algorithms for the two-grid FVE method. In Section 3 we derive optimal
error estimates in the H1- and L2-norm for the FVE method. Section 4 is devoted to the error estimates for the two-grid FVE
method.
Throughout this paper,C denotes a generic positive constantwhich does not dependon the spatial and timediscretization

parameters and may be different at its different occurrences.

2. FVE method and two-grid FVE method

We will use the standard notation for Sobolev spaces W s,p(Ω) with 1 ≤ p ≤ ∞ consisting of functions that have
generalized derivatives of order s in the space Lp(Ω). The norm ofW s,p(Ω) is defined by

‖u‖s,p,Ω = ‖u‖s,p =

(∫
Ω

∑
|α|≤s

|Dαu|pdx

) 1
p

,

with the standard modification for p = ∞. In order to simplify the notation, we denote W s,2(Ω) by Hs(Ω) and omit the
index p = 2 and Ω whenever possible; i.e., ‖u‖s,2,Ω = ‖u‖s,2 = ‖u‖s. We denote by H10 (Ω) the subspace of H

1(Ω) of
functions vanishing on the boundary ∂Ω .
For the polygonal domainΩ , we consider a quasi-uniform regular triangulation Th consisting of closed triangle elements

K such that Ω̄ = ∪K∈Th K . We will useNh to denote the set of all nodes or vertices of Th andN 0
h = Nh ∩Ω .

Thenwe introduce a dual mesh T ∗h based on Th. There are various ways to introduce the dual mesh. Almost all approaches
can be described by the following general scheme. In each element K ∈ Th consisting of vertices xi, xj, xk, select a point Q in
the interior of the element K , and select a point xij on each of the three edges xixj of K . Then connect Q to the points xij by
straight lines rij. Then for a vertex xi, let Vi be the polygon whose edges are rij in which xi is a vertex of the element K . We
call Vi a control volume centered at xi. Obviously we have ∪xi∈Nh Vi = Ω̄ , and the dual mesh T

∗

h is then defined as the set of
these control volumes.
We call the control volume mesh T ∗h quasi-uniform regular if there exists a positive constant C > 0 such that

C−1h2 ≤ meas(Vi) ≤ Ch2, ∀Vi ∈ T ∗h ,

where h is the maximum diameter of all elements K ∈ Th.
There are various ways to introduce a regular dual mesh T ∗h depending on the choice of the point Q in each element

K ∈ Th and the points xij on its edges. In this paper, we use a popular configuration in which Q is chosen to be the barycenter
of the element K ∈ Th, and the points xij are chosen to be the midpoints of the edges of K . This type of control volume can
be introduced for any triangulation Th and leads to relatively simple calculations. In addition, if Th is locally regular, then the
corresponding dual mesh T ∗h is also locally regular. Let Sh be the standard piecewise linear finite element space defined on
the triangulation Th,

Sh = {v ∈ C(Ω) : v|K is linear,∀K ∈ Th; v|∂Ω = 0},

and its dual volume element space S∗h on T
∗

h ,

S∗h = {v ∈ L
2(Ω) : v|Vi is constant for all Vi ∈ T

∗

h ; v|Vi = 0, if xi ∈ ∂Ω}.

Then we obtain Sh = span{φi(x) : xi ∈ N 0
h } and S

∗

h = span{φ
∗

i (x) : xi ∈ N 0
h }, where φi(x) is the standard nodal basis

function associated with the node xi, and φ∗i (x) is the characteristic function of Vi.
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For any v ∈ H10 (Ω) ∩ H
2(Ω), we define an interpolation operator Ih : H10 (Ω) ∩ H

2(Ω)→ Sh, such that

Ihv =
∑
xi∈Nh

v(xi)φi(x).

For any vh ∈ Sh, we define another interpolation operator I∗h : Sh → S∗h , such that

I∗hvh =
∑
xi∈Nh

vh(xi)φ∗i (x).

Nowwe formulate FVEmethod for problem (1.1) as follows. Given a vertex xi, integrating (1.1) over the associated control
volume Vi and using the Green formula, we obtain∫

Vi

∂u
∂t
dx−

∫
∂Vi
(a∇u) · nds =

∫
Vi
f (u)dx, (2.1)

where n denotes the unit outward normal on ∂Vi. It should be noted that the above formulation is a way of stating that we
have an integral conservation form on the dual element (Vi).
Then the semi-discrete FVE method of (1.1) is written as follows: Find uh ∈ Sh, such that∫

Vi

∂uh
∂t
dx−

∫
∂Vi
(a∇uh) · nds =

∫
Vi
f (uh)dx. (2.2)

Now we rewrite (2.2) to a variational form similar to finite element problems. For any vh ∈ Sh, we multiply the integral in
(2.2) by vh(xi), and sum over all xi ∈ Nh to obtain(

∂uh
∂t
, I∗hvh

)
+ ah(uh, I∗hvh) = (f (uh), I

∗

hvh), (2.3)

where ah(·, I∗h ·) is defined by, for any uh, vh ∈ Sh,

ah(uh, I∗hvh) = −
∑
xi∈Nh

∫
∂Vi
(a∇uh) · nI∗hvhds = −

∑
xi∈Nh

vh(xi)
∫
∂Vi
(a∇uh) · nds.

We consider a time step 1t and approximate the solution at times tn = n1t , n = 0, 1, . . . ,N; 1t = T/N . Then we
obtain the Euler backward fully-discrete FVE method for (1.1): Find uh ∈ Sh, such that

(
unh − u

n−1
h

1t
, I∗hvh

)
+ ah(unh, I

∗

hvh) = (f (u
n
h), I

∗

hvh), ∀vh ∈ Sh,

u0h = u0.

(2.4)

From Lemma 2 in the next section we can know that there exists a unique local solution for (2.4), (see, e.g., [9]). In order to
present two-grid FVE method for the nonlinear parabolic problem (1.1), we introduce two quasi-uniform triangulations of
Ω , TH and Th with two different mesh sizes H and h (H > h). We introduce the corresponding finite element spaces SH and
Sh which satisfy SH ⊂ Sh. They will be called the coarse-grid and fine-grid spaces, respectively.
To solve problem (1.1), we introduce two-grid algorithms into the FVE method. The idea is to use a coarse-grid space to

produce a rough approximation of the solution, and then use it as the initial guess for one Newton-like iteration on the fine
grid. This method involves a nonlinear solve on the coarse-grid space and a linear solve on the fine-grid space. We present
the two-grid FVE method as two steps:

Algorithm 1. Step 1: On the coarse grid TH , find unH ∈ SH (n = 1, 2, . . .), such that
(
unH − u

n−1
H

1t
, I∗HvH

)
+ aH(unH , I

∗

HvH) = (f (u
n
H), I

∗

HvH), ∀vH ∈ SH ,

u0H = u0.

(2.5)

Step 2: On the fine grid Th, find unh ∈ Sh (n = 1, 2, . . .), such that
(
unh − u

n−1
h

1t
, I∗hvh

)
+ ah(unh, I

∗

hvh) = (f (u
n
H)+ f

′(unH)(u
n
h − u

n
H), I

∗

hvh), ∀vh ∈ Sh,

u0h = u0.

(2.6)

We note that the system in the second step of Algorithm 1 is a linear problem but still nonsymmetric. In order to get a
symmetric system, we introduce the following bilinear forms
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ac(uh, vh) =
∫
Ω

ā∇uh · ∇vhdx, ∀uh, vh ∈ Sh, (2.7)

ah,c(uh, I∗hvh) = −
∑
xi∈Nh

∫
∂Vi
(ā∇uh) · nI∗hvhds

= −

∑
xi∈Nh

vh(xi)
∫
∂Vi
(ā∇uh) · nds, ∀uh, vh ∈ Sh, (2.8)

where ā = ā|K = aK and

aK =
1

meas(K)

∫
K
a(x)dx, ∀K ∈ Th.

Then from [5,24], we have the following lemma.

Lemma 1. For any uh, vh ∈ Sh, we have

ah,c(uh, I∗hvh) = ac(uh, vh).

From this lemma we can see that ah,c(uh, I∗hvh) is symmetric. Then we obtain the second algorithm.

Algorithm 2. Step 1: The same as in Algorithm 1.
Step 2: On the fine grid Th, find unh ∈ Sh (n = 1, 2, . . .), such that

(
unh − u

n−1
h

1t
, I∗hvh

)
+ ah,c(unh, I

∗

hvh) = (f (u
n
H)+ f

′(unH)(u
n
h − u

n
H), I

∗

hvh), ∀vh ∈ Sh,

u0h = u0.

(2.9)

We note that the system in the first step of Algorithm 2 is the same as in Algorithm 1. But on the fine grid in the second step
the coefficient matrix of the system is symmetric. So the system is easier to solve (e.g. conjugate-gradient-like methods can
be applied effectively). We call these algorithms two-grid FVE methods.

3. Error analysis for FVE method

To describe error estimates for the FVE method, we define |||uh|||20 = (uh, I∗huh),∀uh, vh ∈ Sh. Further (uh, I
∗

hvh) is
symmetric and positive definite and the corresponding discrete norm is equivalent to the L2-norm, i.e., that there exist
two positive constants C∗, C∗ > 0, independent of h such that

C∗‖uh‖ ≤ |||uh|||0 ≤ C
∗
‖uh‖, ∀uh ∈ Sh. (3.1)

The following two lemmas have been proved in [9,24], where Lemma 2 indicates that the bilinear form a(·, I∗h ·) is
continuous and coercive on Sh, while Lemma 3 shows that a(·, I∗h ·) is generally not symmetric and how far it is from being
symmetric.

Lemma 2. For h sufficiently small, there exist two positive constants α,M > 0 such that, for all uh, vh ∈ Sh, the coercive property

ah(uh, I∗huh) ≥ α‖uh‖
2
1

and the boundedness property

|ah(uh, I∗hvh)| ≤ M‖uh‖1‖vh‖1

hold true.

Lemma 3. For h sufficiently small, there exists a positive constant C > 0 such that

|ah(uh, I∗hvh)− ah(vh, I
∗

huh)| ≤ Ch‖uh‖1‖vh‖1, ∀uh, vh ∈ Sh. (3.2)

Let Rh : H2(Ω) ∩ H10 (Ω)→ Sh be the standard Ritz projection such that

a(Rhu, vh) = a(u, vh), ∀vh ∈ Sh, (3.3)

where a(·, ·) is the bilinear form related to the finite element scheme, i.e.,

a(u, v) =
∫
Ω

a∇u · ∇vdx, ∀u, v ∈ H10 (Ω). (3.4)

It is well-known [22] that
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‖u− Rhu‖s ≤ Ch2−s‖u‖2, s = 0, 1. (3.5)
‖u− Rhu‖0,∞ ≤ Ch| ln h|‖u‖1,∞. (3.6)

For error analysis we introduce two error functions

εh(f , χ) = (f , χ)− (f , I∗hχ), ∀χ ∈ Sh, (3.7)

εa(χ, ψ) = a(χ, ψ)− ah(χ, I∗hψ), ∀χ,ψ ∈ Sh. (3.8)
The two error functions are defined in [10,11] and the bounds for (3.7) and (3.8) are shown as the following lemma.

Lemma 4. Let χ ∈ Sh, then

|εh(f , χ)| ≤ Chi+j‖f ‖i‖χ‖j, f ∈ H i(Ω), i, j = 0, 1,

|εa(Rhv, χ)| ≤ Chi+j‖v‖1+i‖χ‖j, v ∈ H1+i(Ω) ∩ H10 (Ω), i, j = 0, 1.

Now we turn to the error estimate for the FVE method. First, we will give the optimal error estimates in the H1-norm.

Theorem 1. Let u and uh be the solutions of (1.1) and (2.4), respectively. Assume that (1.2) is satisfied and u ∈ L∞(H2(Ω)),
ut ∈ L2(H2(Ω)), utt ∈ L2(L2(Ω)). For 1t small enough, if u0h = Rhu0 with Rh defined by (3.3), we have, for t

n
≤ T ,

‖un − unh‖1 ≤ C(1t + h), (3.9)

where C = C(‖u‖L∞(H2), ‖ut‖L2(H2), ‖utt‖L2(L2)) is independent of h and1t .

Proof. For convenience, let un − unh = (u
n
− Rhun)+ (Rhun − unh) =: η

n
+ ξ n. Denote ∂tξ n =

ξn−ξn−1

1t . Then from (2.1) and
(2.4), we get the following error equation at t = tn

(∂tξ
n, I∗hvh)+ ah(ξ

n, I∗hvh) = (∂tu
n
− unt , I

∗

hvh)− (∂tη
n, I∗hvh)− ah(η

n, I∗hvh)+ (f (u
n)− f (unh), I

∗

hvh),

∀vh ∈ Sh. (3.10)

By (3.3), (3.7) and (3.8), we have

ah(ηn, I∗hvh) = ah(u
n, I∗hvh)− ah(Rhu

n, I∗hvh)
= (f (un)− unt , I

∗

hvh)− a(Rhu
n, vh)+ [a(Rhun, vh)− ah(Rhun, I∗hvh)]

= (f (un)− unt , I
∗

hvh)− a(u
n, vh)+ [a(Rhun, vh)− ah(Rhun, I∗hvh)]

= (f (un)− unt , I
∗

hvh − vh)+ [a(Rhu
n, vh)− ah(Rhun, I∗hvh)]

= εh(unt − f (u
n), vh)+ εa(Rhun, vh). (3.11)

Choosing vh = ∂tξ n, we obtain

(∂tξ
n, I∗h ∂tξ

n)+ ah(ξ n, I∗h ∂tξ
n) = (∂tun − unt , I

∗

h ∂tξ
n)− (∂tη

n, I∗h ∂tξ
n)− εh(unt − f (u

n), ∂tξ
n)

− εa(Rhun, ∂tξ n)+ (f (un)− f (unh), I
∗

h ∂tξ
n). (3.12)

Now we estimate (3.12). First

ah(ξ n, I∗h ∂tξ
n) =

1
2
[ah(ξ n + ξ n−1, I∗h (ξ

n
− ξ n−1))+ ah(ξ n − ξ n−1, I∗h (ξ

n
− ξ n−1))]

≥
1
21t

ah(ξ n + ξ n−1, I∗h (ξ
n
− ξ n−1))

=
1
21t
[ah(ξ n, I∗h ξ

n)− ah(ξ n−1, I∗h ξ
n−1)] −

1
2
[ah(∂tξ n, I∗h ξ

n)− ah(ξ n, I∗h ∂tξ
n)]. (3.13)

By (3.12) and (3.13), we have

(∂tξ
n, I∗h ∂tξ

n)+
1
21t
[ah(ξ n, I∗h ξ

n)− ah(ξ n−1, I∗h ξ
n−1)]

≤ (∂tun − unt , I
∗

h ∂tξ
n)− (∂tη

n, I∗h ∂tξ
n)− εh(unt − f (u

n), ∂tξ
n)− εa(Rhun, ∂tξ n)

+
1
2
[ah(∂tξ n, I∗h ξ

n)− ah(ξ n, I∗h ∂tξ
n)] + (f (un)− f (unh), I

∗

h ∂tξ
n)

= (∂tun − unt , ∂tξ
n)− (∂tη

n, I∗h ∂tξ
n)− εh(∂tun − f (un), ∂tξ n)− εa(Rhun, ∂tξ n)

+
1
2
[ah(∂tξ n, I∗h ξ

n)− ah(ξ n, I∗h ∂tξ
n)] + (f (un)− f (unh), I

∗

h ∂tξ
n). (3.14)

Multiplying by1t and summing over n from 1 to l (1 ≤ l ≤ N) at both sides of (3.14), by (3.1) and Lemma 3, since ξ 0 = 0
we have
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α

2
‖ξ l‖21 + C

l∑
n=1

‖∂tξ
n
‖
21t ≤

l∑
n=1

(∂tun − unt , ∂tξ
n)1t −

l∑
n=1

(∂tη
n, I∗h ∂tξ

n)1t

−

l∑
n=1

εh(∂tun − f (un), ∂tξ n)1t −
l∑
n=1

εa(Rhun, ∂tξ n)1t +
l∑
n=1

1
2
[ah(∂tξ n, I∗h ξ

n)

− ah(ξ n, I∗h ∂tξ
n)]1t +

l∑
n=1

(f (un)− f (unh), I
∗

h ∂tξ
n)1t ≡

6∑
i=1

Ti. (3.15)

We now estimate the right-hand terms of (3.15), from the results given in [23], we have

|T1| ≤ C(ε)
l∑
n=1

(∫ tn

tn−1
‖utt‖dt

)2
1t + ε

l∑
n=1

‖∂tξ
n
‖
21t

≤ C(ε)

(∫ t l

0
‖utt‖2dt

)
(1t)2 + ε

l∑
n=1

‖∂tξ
n
‖
21t, (3.16)

where ε denotes a small positive constant.
For T2, from (3.5), we get

|T2| ≤ C(ε)
l∑
n=1

∫ tn

tn−1
‖ηt‖

2dt + ε
l∑
n=1

‖∂tξ
n
‖
21t

≤ C(ε)h4
(∫ t l

0
‖ut‖22dt

)
+ ε

l∑
n=1

‖∂tξ
n
‖
21t. (3.17)

For T3 and T4, by (3.7) and (3.8) we have

|T3| ≤ C
l∑
n=1

h‖∂tun − f (un)‖1‖∂tξ n‖1t

≤ C(ε)h2
(∫ t l

0
‖ut‖21dt

)
+ C(ε)h2

(
l∑
n=1

‖f n‖211t

)
+ ε

l∑
n=1

‖∂tξ
n
‖
21t. (3.18)

|T4| ≤ C
l∑
n=1

h‖un‖2‖∂tξ n‖1t

≤ C(ε)h2
(

l∑
n=1

‖un‖221t

)
+ ε

l∑
n=1

‖∂tξ
n
‖
21t. (3.19)

By Lemma 3 and the inverse estimate, we have

|T5| ≤ C
l∑
n=1

h‖ξ n‖1‖∂tξ n‖11t

≤ C
l∑
n=1

‖ξ n‖1‖∂tξ
n
‖1t

≤ C(ε)
l∑
n=1

‖ξ n‖211t + ε
l∑
n=1

‖∂tξ
n
‖
21t. (3.20)

For T6, at any point x ∈ Ω , by the Taylor expansion, we have

f (un)− f (unh) = f
′(ũn)(un − unh) = f

′(ũn)(ηn + ξ n),

for some value ũn between un and unh. From (3.5), we have

|T6| ≤ C(ε)
l∑
n=1

(‖ξ n‖2 + ‖ηn‖2)1t + ε
l∑
n=1

‖∂tξ
n
‖
21t

≤ C(ε)
l∑
n=1

(‖ξ n‖2 + ‖un‖22h
4)1t + ε

l∑
n=1

‖∂tξ
n
‖
21t. (3.21)
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Combining (3.15)-(3.21), we have

‖ξ l‖21 +

l∑
n=1

‖∂tξ
n
‖
21t ≤ C(ε)h2

[∫ t l

0
‖ut‖22dt +

l∑
n=1

‖un‖221t +
l∑
n=1

‖f n‖211t

]

+ C(ε)(1t)2
∫ t l

0
‖utt‖2dt + C(ε)

l∑
n=1

‖ξ n‖211t + Cε
l∑
n=1

‖∂tξ
n
‖
21t. (3.22)

Choosing proper ε and kicking the last term into the left side of (3.22), and applying discrete Gronwall lemma [15], for
small1t , we have

‖ξ l‖21 +

l∑
n=1

‖∂tξ
n
‖
21t ≤ Ch2

[∫ t l

0
‖ut‖22dt +

l∑
n=1

‖un‖221t +
l∑
n=1

‖f n‖211t

]
+ C(1t)2

∫ t l

0
‖utt‖2dt. (3.23)

Together with (3.5) we get (3.9). �

Then we state and show the optimal error estimate in the L2-norm for the FVE method.

Theorem 2. Let u and uh be the solutions of (1.1) and (2.4), respectively. Assume that (1.2) is satisfied and u ∈ L∞(H2(Ω)),
ut ∈ L2(H2(Ω)), utt ∈ L2(L2(Ω)). For 1t small enough, if u0h = Rhu0 with Rh defined by (3.3), we have, for t

n
≤ T ,

‖un − unh‖ ≤ C(1t + h2), (3.24)

where C = C(‖u‖L∞(H2), ‖ut‖L2(H2), ‖utt‖L2(L2)) is independent of h and1t .

Proof. Choosing vh = ξ n instead of vh = ∂tξ n in (3.12), we obtain

(∂tξ
n, I∗h ξ

n)+ ah(ξ n, I∗h ξ
n) = (∂tun − unt , I

∗

h ξ
n)− (∂tη

n, I∗h ξ
n)

− εh(unt − f (u
n), ξ n)− εa(Rhun, ξ n)+ (f (un)− f (unh), I

∗

h ξ
n). (3.25)

For the first term of the left-hand side of (3.25), we have

(∂tξ
n, I∗h ξ

n) =
1
21t
[(ξ n − ξ n−1, I∗h (ξ

n
+ ξ n−1))+ (ξ n − ξ n−1, I∗h (ξ

n
− ξ n−1))]

≥
1
21t

(ξ n − ξ n−1, I∗h (ξ
n
+ ξ n−1))

=
1
21t
[(ξ n, I∗h ξ

n)− (ξ n−1, I∗h ξ
n−1)]

=
1
21t

(|||ξ n|||
2
0 − |||ξ

n−1
|||
2
0). (3.26)

Then we have
1
21t

(|||ξ n|||
2
0 − |||ξ

n−1
|||
2
0)+ ah(ξ

n, I∗h ξ
n) ≤ (∂tun − unt , ξ

n)− (∂tη
n, I∗h ξ

n)− εh(∂tun − f (un), ξ n)

− εa(Rhun, ξ n)+ (f (un)− f (unh), I
∗

h ξ
n). (3.27)

By Lemma 2, (3.1), (3.26), multiplying1t and summing over n from 1 to l (1 ≤ l ≤ N) at both sides of (3.27), since ξ 0 = 0
we have

‖ξ l‖2 +

l∑
n=1

‖ξ n‖211t ≤ C
l∑
n=1

(∂tun − unt , ξ
n)1t − C

l∑
n=1

(∂tη
n, I∗h ξ

n)1t − C
l∑
n=1

εh(∂tun − f (un), ξ n)1t

− C
l∑
n=1

εa(Rhun, ξ n)1t + C
l∑
n=1

(f (un)− f (unh), I
∗

h ξ
n)1t ≡

5∑
i=1

Qi. (3.28)

Now we estimate the right-hand terms of (3.28), from the results given in [23], we have

|Q1| ≤ C
l∑
n=1

(∫ tn

tn−1
‖utt‖dt

)2
1t + C

l∑
n=1

‖ξ n‖21t

≤ C

(∫ t l

0
‖utt‖2dt

)
(1t)2 + C

l∑
n=1

‖ξ n‖21t. (3.29)
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For Q2, from (3.5), we get

|Q2| ≤ C
l∑
n=1

∫ tn

tn−1
‖ηt‖

2dt + C
l∑
n=1

‖ξ n‖21t

≤ Ch4
(∫ t l

0
‖ut‖22dt

)
+ C

l∑
n=1

‖ξ n‖21t. (3.30)

For Q3 and Q4, by (3.7) and (3.8) we have

|Q3| ≤ C
l∑
n=1

h2‖∂tun − f (un)‖1‖ξ n‖11t

≤ C(ε)h4
(∫ t l

0
‖ut‖21dt

)
+ C(ε)h4

(
l∑
n=1

‖f n‖211t

)
+ ε

l∑
n=1

‖ξ n‖211t. (3.31)

|Q4| ≤ C
l∑
n=1

h2‖un‖2‖ξ n‖11t

≤ C(ε)h4
(

l∑
n=1

‖un‖221t

)
+ ε

l∑
n=1

‖ξ n‖211t. (3.32)

For Q5, by (3.5), we have

|Q5| ≤ C
l∑
n=1

(‖ξ n‖2 + ‖ηn‖2)1t + C
l∑
n=1

‖ξ n‖21t

≤ Ch4
(

l∑
n=1

‖un‖221t

)
+ C

l∑
n=1

‖ξ n‖21t. (3.33)

Combining (3.28)–(3.33), we have

‖ξ l‖2 +

l∑
n=1

‖ξ n‖211t ≤ C(ε)h
4

[∫ t l

0
‖ut‖22dt +

l∑
n=1

‖un‖221t +
l∑
n=1

‖f n‖211t

]

+ C(1t)2
∫ t l

0
‖utt‖2dt + C

l∑
n=1

‖ξ n‖21t + Cε
l∑
n=1

‖ξ n‖211t. (3.34)

Choosing proper ε and kicking the last term into the left side of (3.34), and applying discrete Gronwall lemma, for small1t
we have

‖ξ l‖2 +

l∑
n=1

‖ξ n‖211t ≤ Ch
4

[∫ t l

0
‖ut‖22dt +

l∑
n=1

‖un‖221t +
l∑
n=1

‖f n‖211t

]
+ C(1t)2

∫ t l

0
‖utt‖2dt. (3.35)

Together with (3.5) this yields (3.24). �

4. Error analysis for two-grid FVE method

In this section we consider the error estimates in the H1-norm for the two-grid FVE method Algorithms 1 and 2. For the
two-grid FVE method Algorithm 1, we have:

Theorem 3. Let u and uh be the solutions of (1.1) and the two-grid FVE method Algorithm 1, respectively. Assume that (1.2) is
satisfied, u ∈ L∞(H2(Ω) ∩W 1,∞(Ω)), ut ∈ L2(H2(Ω)), utt ∈ L2(L2(Ω)), and the coarse-grid partition H and the time step1t
satisfy H−11t < C. For 1t small enough, if u0h = Rhu0 with Rh defined by (3.3), then we have, for t

n
≤ T ,

‖un − unh‖1 ≤ C(1t + h+ H3| lnH|), (4.1)

where C = C(‖u‖L∞(H2), ‖u‖L∞(W1,∞), ‖ut‖L2(H2), ‖utt‖L2(L2)) is independent of h and1t .
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Proof. Once again, we set un− unh = (u
n
− Rhun)+ (Rhun− unh) =: η

n
+ ξ n and choose vh = ∂tξ n. Then for Algorithm 1, we

get the error equation

(∂tξ
n, I∗h ∂tξ

n)+ ah(ξ n, I∗h ∂tξ
n) = (∂tun − unt , I

∗

h ∂tξ
n)− (∂tη

n, I∗h ∂tξ
n)− ah(ηn, I∗h ∂tξ

n)

+ (f (un)− f (unH)− f
′(unH)(u

n
h − u

n
H), I

∗

h ∂tξ
n). (4.2)

Similarly as in Theorem 1, we have

(∂tξ
n, I∗h ∂tξ

n)+
1
21t
[ah(ξ n, I∗h ξ

n)− ah(ξ n−1, I∗h ξ
n−1)]

≤ (∂tun − unt , ∂tξ
n)− (∂tη

n, I∗h ∂tξ
n)− εh(∂tun − f (un), ∂tξ n)− εa(Rhun, ∂tξ n)

+
1
2
[ah(∂tξ n, I∗h ξ

n)− ah(ξ n, I∗h ∂tξ
n)] + (f (un)− f (unH)− f

′(unH)(u
n
h − u

n
H), I

∗

h ∂tξ
n). (4.3)

For the last term of the right-hand side of (4.3), a Taylor expansion about unH yields

f (un) = f (unH)+ f
′(unH)(u

n
− unH)+

1
2
f ′′(ũ)(un − unH)

2,

for some function ũ. Then

f (un)− f (unH)− f
′(unH)(u

n
h − u

n
H) = f

′(unH)(u
n
− unh)+

1
2
f ′′(ũ)(un − unH)

2

= f ′(unH)(η
n
+ ξ n)+

1
2
f ′′(ũ)(un − unH)

2.

By (1.2), we have

|(f (un)− f (unH)− f
′(unH)(u

n
h − u

n
H), I

∗

h ∂tξ
n)| ≤ C(ε)(‖ξ n‖2 + ‖ηn‖2)+ C(ε)‖(un − unH)

2
‖
2
+ ε‖∂tξ

n
‖
2. (4.4)

For the first five terms of the right-hand side of (4.3), we can estimate them similarly as in Theorem 1. Multiplying 1t
and summing over n from 1 to l (1 ≤ l ≤ N), since ξ 0 = 0, for small1t , we have

‖ξ l‖21 +

l∑
n=1

‖∂tξ
n
‖
21t ≤ C(ε)h2

[∫ t l

0
‖ut‖22dt +

l∑
n=1

‖un‖221t +
l∑
n=1

‖f n‖211t

]
+ C(ε)(1t)2

∫ t l

0
‖utt‖2dt

+ C(ε)
l∑
n=1

‖(un − unH)
2
‖
21t + C(ε)

l∑
n=1

‖ξ n‖211t + Cε
l∑
n=1

‖∂tξ
n
‖
21t. (4.5)

Choosing proper ε, kicking the last term into the left side of (4.5), and using discrete Gronwall lemma, for small 1t we
have

‖ξ l‖21 +

l∑
n=1

‖∂tξ
n
‖
21t ≤ Ch2

[∫ t l

0
‖ut‖22dt +

l∑
n=1

‖un‖221t +
l∑
n=1

‖f n‖211t

]

+ C(1t)2
∫ t l

0
‖utt‖2dt + C

l∑
n=1

‖(un − unH)
2
‖
21t. (4.6)

For the last term of (4.6), we have

‖(un − unH)
2
‖
2
≤ ‖un − unH‖

2
0,∞‖u

n
− unH‖

2

≤ (‖un − RHun‖0,∞ + ‖RHun − unH‖0,∞)
2
‖un − unH‖

2, (4.7)

where RH is defined in the same way as Rh is defined by (3.3). By Theorem 2, (3.6), (3.24) and the inverse estimate, we get

‖(un − unH)
2
‖
2
≤ C(H| lnH| + H−1(1t + H2))2(1t + H2)2

≤ C(H| lnH|1t + H3| lnH| + H−1(1t)2 + 2H1t + H3)2. (4.8)

We can choose H and1t such that H−11t < C , then we have

‖(un − unH)
2
‖
2
≤ C(1t + H3| lnH|)2, (4.9)

with (4.6), we get

‖ξ l‖1 ≤ C(1t + h+ H3| lnH|), (4.10)
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where C = C(‖u‖L∞(H2), ‖u‖L∞(W1,∞), ‖ut‖L2(H2), ‖utt‖L2(L2)) is independent of h and 1t . Together with (3.5)
this yields (4.1). �

For the two-grid FVE method Algorithm 2, we can have a similar result.

Theorem 4. Let u and uh be the solutions of (1.1) and the two-grid FVE method Algorithm 2, respectively. Assume that (1.2) is
satisfied, u ∈ L∞(H2(Ω) ∩W 1,∞(Ω)), ut ∈ L2(H2(Ω)), utt ∈ L2(L2(Ω)), and the coarse-grid partition H and the time step1t
satisfy H−11t < C. For 1t small enough, if u0h = Rhu0 with Rh defined by (3.3), then we have, for t

n
≤ T ,

‖un − unh‖1 ≤ C(1t + h+ H3| lnH|), (4.11)

where C = C(‖u‖L∞(H2), ‖u‖L∞(W1,∞), ‖ut‖L2(H2), ‖utt‖L2(L2)) is independent of h and1t .

5. Conclusions

In this paper, we have presented and derived error estimates for two-grid finite volume elementmethods for a nonlinear
parabolic equation. The theorems demonstrate a remarkable fact about two-grid FVEmethod:we can iterate on a very coarse
grid TH and still get good approximations by taking one iteration on the fine grid Th. It is proved that the coarse grid can be
much coarser than the fine grid (h� H). We can achieve asymptotically optimal approximation in H1-norm error estimate
as long as the mesh sizes satisfy h = O(H3| lnH|).
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