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a b s t r a c t

We derive conditions for L2 differentiability of generalized linear models with error distri-
butions not necessarily belonging to exponential families, covering both cases of stochastic
and deterministic regressors. These conditions induce smoothness and integrability condi-
tions for corresponding GLM-based time series models.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Motivation

Introduced byNelder andWedderburn (1972), generalized linearmodels (GLMs) have become one of themost frequently
used statistical models with a vast amount of published results. Hence, trying to give a full account on relevant literature
would be pretentious. We instead refer to the monographs McCullagh and Nelder (1989) and Fahrmeir and Tutz (2001).
When it comes to regularity assumptions, though, this literature focuses on GLMs which are exponential families, compare
Haberman (1974, 1977); Fahrmeir (1990); Fahrmeir and Kaufmann (1985), or uses quasi-likelihood or pseudo-likelihood
techniques to account for over/under-dispersion effects, see, a.o., Gouriéroux et al. (1984); Nelder and Pregibon (1987) and
McCullagh andNelder (1989). In some situations, exponential families are a too narrow class, though: e.g., recently log-linear
models for generalized Pareto distributions have found applications in operational risk (compare Dahen and Georges, 2010),
but distributions of extreme value type with unknown shape parameter do not fall into the range of exponential families
and so far are not yet covered.

Heading for asymptotic results and robustness, we are not only interested in consistency results for specific estimators
like maximum likelihood estimators (MLEs), but rather in local asymptotic normality (LAN) in the sense of Le Cam (1970) and
Hájek (1972). With the LAN property at hand a very powerful asymptotic framework as pioneered by Le Cam is available:
It gives a precise setup in which to obtain strong optimality results for (estimators behaving asymptotically like) the MLE,
i.e., the Asymptotic Convolution Theorem and the Asymptotic Minimax Theorem, see, e.g. Rieder (1994, Theorems 3.2.3
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and 3.3.8) or van der Vaart (1998, Theorems 8.8 and 8.11). The LAN property entails necessary expansions for asymptotic
maximin tests with explicit terms for the asymptotic maximin power under local alternatives (Le Cam, 1986, Section 11.9);
it is the starting point for efficient and adaptive estimation in semiparametric models (compare Bickel et al., 1993) and for
a comprehensive theory of optimally-robust procedures (see Rieder (1994, Chapters 5 and 7)).

Now, a sufficient condition for the LAN property is given by L2-differentiability (see, e.g. Rieder (1994, Theorem 2.3.5)),
and – at least in the i.i.d. setting – this is a necessary condition, too, compare Le Cam and Yang (2000, Chapter 7, Proposition
3). Hence in this light, deriving smoothness of the model in terms of L2-differentiability would be a desirable goal; i.e., to
consider GLMs as particular parametric models and to derive their L2-differentiability. For GLMs which are exponential
families, this has already been achieved in Schlather (1994). Typically, however, scale-shape families as e.g. the generalized
Pareto distributions are non-exponential. In this article, we hence generalize results of Rieder (1994, Section 2.4) on
L2-differentiability for linear regression models to also cover error distributions with a k-dimensional parameter and with
regressors of possibly different length for each parameter. More specifically, we separately treat the case of stochastic
regressors, which is of particular interest for incorporating (space-)time dependence, and of deterministic regressors as
occurring in planned experiments.

While in principle L2-differentiability of thesemodels could be settled by general auxiliary results fromHájek (1972, Lem-
mas A.1–A.3), or be placed in the framework of Rieder and Ruckdeschel (2001), our goal are sufficient conditions directly
exploiting the regression structure.More specifically, these conditions refer to (i) smoothness of the error distributionmodel,
(ii) (uniform) integrability of the scores (L2-derivative) and (iii) suitably integrated continuity of the Fisher information of
again the error distribution model.

At first glance, this might look like a technical exercise but setting up time series models where time-dependence is
captured by a GLM-type link with (functions of) the own past observations as regressors, conditions (ii) and (iii) reveal
to which extent the current error distribution may depend upon the past without making it ‘‘over-informative’’ for the
present. More precisely, letting aside dimensionalities of the parameter of the error distribution and the regressors, the
scores function of a GLM P with errors from a distribution model Q, link function ℓ and regressor x is of form ΛP

β (x, y) =

ΛQ
ℓ(xβ)(y)ℓ̇(xβ)x, whereΛQ

ϑ are the parametric scores frommodel Q. Now even if Q has fat tails and non-existingmoments,
in many cases ΛQ

ϑ still is square integrable, see e.g. the case of α-stable distributions as in DuMouchel (1973) or the
generalized extreme value and Pareto distributions GEVD and GPD explicated later on in this paper. If however, as in a
autoregressive (AR) time series context with identity link ℓ(θ) = θ , x comes again from a distribution within Q, the LAN
property may fail due to a lack of integrability. This is the case in Andrews et al. (2009, Theorem 3.3), where in addition the
authors obtain slower convergence rates for β in an AR-model with α-stable errors. One way to preserve the LAN property
could consist in using a suitable link function ℓ such that the product ℓ̇x becomes square integrable—see later in this paper
for corresponding GPD and GEVD time series. This technique can be seen as an alternative/an extension to the approach
using regression ranks as in Hallin et al. (2011), which in the respective case of a regression model with α-stable errors and
deterministic regressors achieves the same goal, i.e., extending the availability of the LAN property.

In this paper, we explicate the respective conditions (i)–(iii) for the cases of stochastic and deterministic regressors,
respectively, in examples including – for reference and comparison – linear regression, Poisson, and Binomial regression, as
well as scale-shape regression for the GPD and GEVD.

In particular for the latter distributions we give conditions which render a corresponding time series model accessible
to the LAN type framework and thus contribute a new sort of GLM for extreme value type distributions where the tail
weight respectively, the shape parameter depends on past observations in an autoregressive way. Thus, large extreme
observations may foster or dampen the occurrence of future large extreme observations and controlling the extremal index
(see Embrechts et al. (1997, pp. 413–423)) this way.

The rest of the paper is organized as follows: Section 2 provides the mathematical setup and the main results with
Theorem 2.3 (for random carriers) and Theorem 2.6 (for deterministic carriers). The examples are worked out in Section 3.
The proofs of our assertions are given in the Appendix.

2. Main results

Let (Ω, A ) be a measurable space and M1(A ) the set of all probability measures on A . Consider Q = {Qϑ |ϑ ∈ Θ} ⊂

M1(A ) a parametric model with open parameter domain Θ ⊂ Rk. Following Le Cam and Rieder, we write dQϑ for the
densities w.r.t. some dominating measure ν on A and denote the norm in the respective L2(ν) space by ∥ · ∥L2 ; as usual,
ν is suppressed from notation as the choice of ν has no effect on respective convergence assertions. In this context, L2
differentiability in the case of i.i.d. observations is defined as follows.

Definition 2.1. ModelQ is called L2 differentiable atϑ ∈ Θ if there exists a functionΛQ
ϑ ∈ Lk2(Pϑ ) such that, as h → 0 ∈ RkdQϑ+h −


dQϑ


1 +

1
2 (Λ

Q
ϑ ) Th


L2

= o(|h|). (2.1)

Then, ΛQ
ϑ is the L2 derivative and the k × k matrix I Q

ϑ = EϑΛQ
ϑ (ΛQ

ϑ ) T is the Fisher information of Q at ϑ .
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We say that Q is continuously L2 differentiable at ϑ if, for any h → 0 ∈ Rk,

sup
t∈Rk: |t|≤1

dQϑ+h(Λ
Q
ϑ+h)

Tt −


dQϑ (ΛQ

ϑ ) Tt


L2
= o(1). (2.2)

Introducing regressors to explain parameter ϑ , we turn model Q into a regression model P with parameter β . To this
end, for p ∈ N, let π ∈ Nk, π = (ph)h=1,...,k be a partition of the p coordinates into blocks of dimension ph, i.e.,


h ph = p.

Obviously, then each x ∈ Rp can unambiguously be indexed by the double index (xh,j) h=1,...,k
j=1,...,ph

. For these blocks we define

the following operators:

Tπ :Rp
× Rp

→ Rk, (a, b) → Tπ (a, b) =: a Tπ b =


ph
j=1

ah,jbh,j


h=1,...,k

(2.3)

ρπ :Rk
× Rp

→ Rp, (c, a) → ρπ (c, a) =: c ·π a = (chah,j) h=1,...,k
j=1,...,ph

(2.4)

Mπ :Rk×k
× Rp

× Rp
→ Rp×p, (C, a, b) → Mπ (C, a, b) = (Ch1,h2ah1,j1bh2,j2) h1,h2=1,...,k

j1,j2=1,...,ph
. (2.5)

We also write C ·π a for a k × m matrix C , meaning that we apply ρπ to C column by column as first argument, so that the
result will be the respective p × mmatrix (ch,lah,j) h=1,...,k

j=1,...,ph
;l=1,...,m.

Then, the case of a k-dimensional parameter ϑ in Model Q and non-identically dimensional regressors for each of the
k coordinates can be captured using a continuously differentiable link function ℓ:Rk

→ Θ with derivative ℓ̇, so that for a
p-dimensional regressor X and p-dimensional regression parameter β we obtain a regression as ϑ = ℓ(θ) for θ = X Tπ β .
Applying the chain rule, the candidate L2 derivative in this regression model is

ΛP
β (x, y) = ℓ̇(θ) TΛQ

ϑ (y) ·π x. (2.6)

The case of the linear regression model treated in Rieder (1994, Section 2.4) is obtained as a special case for Q an
L2-differentiable k = 1-dimensional location model and ℓ the identity. As in Rieder (1994, Section 2.4), we distinguish
the cases of stochastic and deterministic regressors.

To apply conditions as in Hájek (1972), we need the notion of absolute continuity in k dimensions: Let f :Rk
→ R; we call

f absolutely continuous, if for all a, b ∈ Rk the function G: [0, 1] → R, s → G(s) = f (a + s(b − a)) is absolutely continuous
(as usual, see Rudin (1986, Chapter 6)).

For later reference we recall the results of Hájek (1972, Lemmas A.1–A.3):

Proposition 2.2 (Hájek). Assume that in some ϑ0 ∈ Θ surrounded by some open neighborhood U, model Q satisfies

(H.1) The densities dQϑ (y) are absolutely continuous in each ϑ ∈ U for Qϑ0-a.e. y.
(H.2) The derivative ∂

∂ϑ
dQϑ (y) = Λϑ (y) dQϑ (y) exists in each ϑ ∈ U for Qϑ0-a.e. y.

(H.3) The Fisher information Iϑ =


Λϑ (y)Λϑ (y) T Qϑ (dy) exists, (i.e., the integral is finite) and is continuous in ϑ on U.

Then, Q is continuously L2 differentiable in ϑ0 with derivative Λϑ0 and Fisher information Iϑ0 .

2.1. Random carriers

In this context the regressors x are stochastic with distribution K , but the observations (x, y)i are then modeled as
i.i.d. observations. To this end, letmodelQ be a k-dimensional L2-differentiablemodelwith parameterϑ ∈ Θ and derivative
ΛQ

ϑ and Fisher information I Q
ϑ . The corresponding GLM induced by the link function ℓ:Rk

→ Θ (with derivative ℓ̇) and
partition π is given as

P =


Pβ(dx, dy) = Qℓ(x Tπ β)(dy|x) K(dx) | β ∈ Rp

; Qϑ ∈ Q


. (2.7)

We state the following result.

Theorem 2.3. Let β0 ∈ Rp and ϑt = ℓ(θt) for θt = x Tπ (β0 + t) as well as ℓ̇t = ℓ̇(θt); further define I P
ϑt

(x) :=

Mπ


ℓ̇ T
t I Q

ϑt
ℓ̇t , x, x


.

Then model P from (2.7) is L2 differentiable in β0 if subsequent conditions (i)–(iii) hold.

(i) Model Q fulfills (H.1)–(H.3) with ‘‘Qϑ0-a.e. y’’ replaced by ‘‘Pβ0-a.e. (x, y)’’ in (H.1) and (H.2).
(ii) 

|I P
ϑ0

(x)| K(dx) < ∞, (2.8)
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(iii) for every b ∈ (0, ∞),

lim
s→0

sup
|t|≤b

  |I P
ϑst

(x) | − |I P
ϑ0

(x)|
 K(dx) = 0, (2.9)

where |I | is the Frobenius matrix norm, i.e., |I |
2

= trI 2.

Then model P is continuously L2 differentiable in β0 with derivative ΛP
β0

(x, y) = ℓ̇ T
0 ΛQ

ϑ0
(y) ·π x and Fisher information

I P
β0

= Eβ0Λ
P
β0

(ΛP
β0

) T
=


I P

ϑ0
(x)K(dx).

Remark 2.4. Sufficient conditions for (2.8) and (2.9) are


|I P
ϑ0

| |̇l0|2 |x|2 K(dx) < ∞, and for every b ∈ (0, ∞), it is required

that lims→0 sup|t|≤b
  |I Q

ϑst
| |ℓ̇st |

2
− |I Q

ϑ0
| |ℓ̇0|

2
 |x|2 K(dx) = 0.

As just seen, the general GLM case comes with additional conditions for the link function ℓ and its derivative. For the
linear regression case, they boil down to (i) L2 differentiability of the one dimensional location case and (ii) finite second
moment of x w.r.t. K . (iii) becomes void, as ℓ̇ ≡ 1 and I Q does not depend on the parameter—compare Rieder (1994,
Theorem 2.4.7).

2.2. Deterministic carriers

The case of deterministic carriers canonically leads to triangular schemes of independent, but no longer identically
distributed observations. To this end, we take up Rieder (1994, Definition 2.3.8) and define a corresponding notion of
L2-differentiability:

For n ∈ N and i = 1, . . . , in, let (Ωn,i, An,i) be general sample spaces and M1(An,i) the set of all probability measures on
An,i. Consider the array of parametric families of probability measures Pn,i = {Pn,i,β |β ∈ Rp

} ⊂ M1(An,i).

Definition 2.5. The parametric array P = (
in

i=1 Pn,i) is called L2 differentiable at β0 ∈ Rp if there exists an array of
functions ΛP

n,i,β0
∈ Lk2(Pn,i,β0) such that for all i = 1, . . . , in and n ≥ 1 the following conditions (2.10)–(2.12) are fulfilled.

En,i,β0Λ
P
n,i,β0

= 0. (2.10)

Let I P
n,i,β0

= En,i,β0Λ
P
n,i,β0

(ΛP
n,i,β0

) T and I P
n,β0

=
in

i=1 I P
n,i,β0

and for t ∈ Rk, we define tn = (I P
n,β0

)−
1
2 t and Un,i =

Un,i,β0(t) = t T
n ΛP

n,i,β0
. Then, for all ε ∈ (0, ∞) and all t ∈ Rk we require

lim
n→∞


i=1,...,in


{|Un,i|>ε}

U2
n,i dPn,i,β0 = 0. (2.11)

Finally, for all b ∈ (0, ∞) we need

lim
n→∞

sup
|t|≤b

in
i=1

dPn,i,β0+tn −

dPn,i,β0


1 +

1
2
Un,i,β0(t)

2
L2

= 0. (2.12)

Then, in β0 and at time n, P has L2 derivative (ΛP
n,i,β0

) and Fisher information I P
n,β0

.
P is continuously differentiable in β0, if for each sequence hn → 0 ∈ Rp,

lim
n→∞

sup
|t|≤b

in
i=1

dPn,i,β0+hnUn,i,β0+hn(t) −

dPn,i,β0Un,i,β0(t)

2
L2

= 0. (2.13)

Our GLM with deterministic regressors xn,i ∈ Rp correspondingly is defined as P =
in

i=1 Pn,i with

Pn,i =


Pn,i,β0(dy) = Qϑn,i(dy) | β0 ∈ Rp

; ϑn,i = ℓ(x Tπ
n,i β0), Qϑn,i ∈ Q


. (2.14)

Rieder (1994, Theorem 2.4.2) shows that in the linear regression case, conditions (2.11) and (2.12) follow from the
(uniform) smallness of the hat matrix Hn = Hn;i,j = x T

n,i(
in

g=1 xn,gx
T
n,g)

−1xn,j, which, as Hn is a projector, reduces to the
Feller type condition

lim
n

max
i=1,...,in

Hn;i,i = 0. (2.15)
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In our more general framework, one may still define a corresponding projector Hn locally (i.e., in β0) as

Hn = Hn;i,j;β0 = L T
n,i;β0

(I P
n,β0

)−1Ln,j;β0 , Ln,i;β0 = ℓ̇(θn,i)
T(I P

n,i,β0
)1/2 ·π xn,i (2.16)

and, locally, the (changes in the) fitted parameters ϑn,i (in a corresponding Fisher scoring procedure) then can be written as

ϑ
(new)
n,i = ϑn,i +

in
j=1

(I P
n,i,β0

)−1/2Hn;i,j(I
P
n,j,β0

)−1/2ΛQ
ϑn,j

(yn,j).

However, contrary to the linear regression case, in the general GLM case, the distribution of the standardized scores
(I P

n,j,β0
)−1/2ΛQ

ϑn,j
(yn,j) is not invariant in β0. Therefore, the proof for the linear regression fails at this point and condition

(2.15) is not sufficient—compare for instance the one-dimensional GLM P at β0 = 1 induced by the one-dimensional
Poisson model Q with parameter λ > 0, in = n, the identity as link function and regressors xn,i = 1/n. In fact, this is the
standard example for a scheme satisfying the Feller condition but violating the Lindeberg condition. Also, not surprisingly,
it is easy to see that Lindeberg condition (2.11) entails condition (2.15).

Theorem 2.6. Model P from (2.14) is continuously L2 differentiable in β0 ∈ Rp with L2 derivative ΛP
n,i,β0

= ΛP
β0

(xn,i, y) with
ΛP

β0
from (2.6) and Fisher information I P

n,β0
as given in Definition 2.5 if the following conditions (i)–(iii) are fulfilled.

(i) Model Q fulfills (H.1)–(H.3).
(ii) The Lindeberg condition (2.11) holds for Un,i defined as in Definition 2.5.
(iii) Let ϑn,i,t = ℓ(θn,i,t) for θn,i,t = x Tπ

n,i


β0 + (I P

n,β0
)−1/2t


and introduce the abbreviations I Q

n,i,t = I Q
θn,i,t

, ℓ̇n,i,t = ℓ̇(θn,i,t),

and I P
n,i,t = Mπ


ℓ̇ T
n,i,tI

Q
n,i,t ℓ̇n,i,t , xn,i, xn,i


. Then, for every b ∈ (0, ∞) it must hold

lim
n→∞

sup
|t|≤b

in
i=1

t T
n (I P

n,i,t − I P
n,i,0)tn = 0. (2.17)

3. Examples

Example 3.1 (Linear Regression). It is obvious that Theorem 2.3 can be applied to the linear regression model

P = {Pβ(dx, dy) = F(dy − x Tβ)K(dx)} (3.1)

about the one dimensional location model

Q = {Qϑ (dy) = F(dy − ϑ)} (3.2)

for some probability F on (R, B) with finite Fisher information of location, if the latter is defined as supϕ(


ϕ′(x) dF)2/

(


ϕ2 dF)where ϕ varies in the set C 1
0 (R → R) of all continuously differentiable functionswith compact support, see Huber

(1981, Definition 4.1/Theorem 4.2)—finite Fisher information of location settles condition (i) of Theorem 2.3, condition (ii)
as already noted boils down to


|x|2 K(dx) < ∞ and condition (iii) is void.

Example 3.2 (Binomial GLM with Logit Link and Poisson GLM with Log Link). The Binomial model Binom(m, p) for known
size m ∈ N, usually m = 1, and unknown success probability p ∈ (0, 1) has error distribution with counting density
qp(y) =


m
y


py(1 − p)m−y (on y ∈ {0, . . . ,m}), hence condition (i) of Theorem 2.3 is obviously fulfilled with Fisher

information I Q
p = m(p(1 − p))−1. Choosing a logit link, i.e., ℓ(θ) = eθ/(1 + eθ ), I Q

p ℓ̇(θ)2 = mp(1 − p), conditions (ii)
and (iii) become

(ii)


ex
Tβ (1 + ex

Tβ)−2
|x|2 K(dx) < ∞,

(iii)


ex
Tβ (ex

Ts
− 1)(1 − ex

T(2β+s))

(1 + ex T(β+s))2(1 + ex Tβ)2
|x|2 K(dx) → 0, s → 0.

As in these expressions both integrands are bounded pointwise in x, if |x|2 is integrable w.r.t. K , the Binomial GLM with
logit-link is continuously L2 differentiable.

The Poissonmodel Pois(λ) (λ ∈ (0, ∞)) has error distributionwith counting density qλ(y) = e−λλy/y! (on y ∈ N), hence
condition (i) of Theorem 2.3 is obviously fulfilled with Fisher information I Q

λ = λ−1. Choosing log link, i.e., ℓ(θ) = eθ ,
I Q

λ ℓ̇(θ)2 = λ, conditions (ii) and (iii) become

(ii)


ex
Tβ

|x|2K(dx) < ∞, (iii)


ex
Tβ(ex

Ts
− 1) |x|2 K(dx) → 0, s → 0.

Hence integrability of e|x|(|β|+δ)
|x|2 w.r.t. K implies continuous L2 differentiability of the Poisson GLM with log-link.
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These two conditions, i.e., |x| ∈ L2(K) for Binomial logit and e|x|(|β|+δ)
|x|2 ∈ L1(K) for the Poisson GLM with log-link

recover the conditions mentioned in Fahrmeir and Tutz (2001, p. 47).

Example 3.3 (GEVD and GPD Joint Shape-Scale Models with Componentwise Log Link). Both, the generalized extreme value
distribution (GEVD) and the generalized Pareto distribution (GPD) come with a three-dimensional parameter (µ, σ , ξ) for
a location or threshold parameter µ ∈ R, a scale parameter σ ∈ (0, ∞) and a shape parameter ξ ∈ R. While for the GEVD,
in principle the three dimensional model is L2-differentiable for ξ ∈ (−1/2, 0) and ξ ∈ (0, ∞), respectively, in the GPD
model, the model including the threshold parameter is not covered by our theory for L2-differentiable error models. The
reason is basically, that observations close to the endpoint of the support in the GPD model carry overwhelmingly much
information on the threshold. To deal with GEVD and GPD in parallel let us hence assume µ known in both models, and, for
simplicity, µ = 0. Then, parameter ϑ consists of scale σ and shape ξ . In both models, the scores ΛQ

ϑ on the quantile scale,
i.e.,Λϑ (F−1

ϑ (u)) for F−1
ϑ (u) the respective quantile function, include terms of order (1−u)ξ . Hence for condition (i), we need

to assume that at least ξ > −1/2. Depending on the context, it can be reasonable to add further restrictions. e.g., in case
of the GPD, we only obtain an unbounded support if ξ ≥ 0; similarly, if we restrict attention to the special case of Fréchet
distributions for GEV distributions, ξ > 0 is a natural restriction.

For parameter ϑ , we consider a continuously differentiable componentwise link function ℓ:R2
→ Θ , i.e., the link

function is of the form ℓ(θ) = (ℓσ (x T
σ βσ ), ℓξ (x T

ξ βξ )) where we partition the p-dimensional regressor x and parameter
β accordingly to x = (xσ , xξ ) and β = (βσ , βξ ) so that θ = x Tπ β = (x T

σ βσ , x T
ξ βξ ). Then, based on the 2 × 2 Fisher

information matrix I Q
σ ,ξ for joint scale and shape with entries Iσσ , Iσξ and Iξξ , we obtain

ℓ̇ TI Q
σ ,ξ ℓ̇ =


ℓ̇2

σ Iσσ ℓ̇σ ℓ̇ξ Iσξ

ℓ̇σ ℓ̇ξ Iσξ ℓ̇2
ξ Iξξ


.

That is, conditions (ii) and (iii) of Theorem 2.3 become

(ii)


ℓ̇2
σ (Iσσ + Iσξ )|xσ |

2K(dx) +


ℓ̇2

ξ (Iξξ + Iσξ )|xξ |
2K(dx) < ∞,

(iii)


(ℓ̇2
σ+s(Iσ+sσ+s + Iσ+sξ+s) − ℓ̇2

σ (Iσσ + Iσξ ))|xσ |
2K(dx)

+


(ℓ̇2

ξ+s(Iξ+sξ+s + Iσ+sξ+s) − ℓ̇2
ξ (Iξξ + Iσξ ))|xξ |

2K(dx) → 0, s → 0.

GEVD model: The scale-shape model GEVD(0, σ , ξ) has error distribution Qϑ (y) = exp

−(1 + ξ

y
σ
)
−

1
ξ

. As mentioned,

condition (i) of Theorem 2.3 is fulfilled as long as ξ ∈ (−1/2, 0) or ξ > 0. This is reflected by the Fisher information matrix
which reads

I Q
σ ,ξ = ξ−2D


Iσσ Iσξ

Iσξ Iξξ


D, where D−1

= diag(σ , ξ) and (3.3)

Iσσ = (ξ + 1)2Γ (2ξ + 1) − 2(ξ + 1)Γ (ξ + 1) + 1,
Iσξ = −(ξ + 1)2Γ (2ξ + 1) + (ξ 2

+ 4ξ + 3)Γ (ξ + 1) + (ξ 2
+ ξ)Γ ′(ξ)Γ (ξ + 1) − ξΓ ′(1) − ξ − 1,

Iξξ = (ξ + 1)2Γ (2ξ + 1) − 2Γ (ξ + 3) − 2ξΓ ′(ξ)Γ (ξ + 2) + 2ξ(ξ + 1)Γ ′(1)
+ ξ 2(Γ ′′(1) + (Γ ′(1))2) + (ξ + 1)2

and has singularities in ξ = 0 and ξ = −1/2.

GPD model: The scale-shape model GPD(0, σ , ξ), has a c.d.f. of Qϑ (y) = 1 − (1 + ξ
y
σ
)
−

1
ξ and here, for σ > 0 and ξ > −

1
2

condition (i) is fulfilled with Fisher information matrix:

I Q
σ ,ξ =

1
1 + 2ξ

D

1, 1
1, 2(ξ + 1)


D, D−1

= diag(σ , ξ + 1).

Again failure of condition (i) is reflected by a singularity at ξ = −1/2 of the Fisher information.
The canonical link function for the scale is log link ℓσ (x T

σ βσ ) = exp(x T
σ βσ ), whereas due to a lack of equivariance

in the shape, there is no such canonical link for this parameter. For our GEVD and GPD applications, however, (non-
regression-based) empirical evidence speaks for shape ξ varying in (0, 2). So a good link should not necessarily exclude
values ξ ∉ (0, 2), but make them rather hard to attain. For this paper we even impose the sharp restriction ξ > 0.

Moreover, to use GLMs with GEVD and GPD errors in time series context to model parameter driven time dependences
in the terminology of Cox (1981), a real challenge is to design (smooth and isotone) link functions such that the regressors
may themselves follow a GEVD or a GPD distribution, as this implies very heavy tails against which we have to integrate.
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More specifically, we aim at constructing an AR-type time series for the scale and shape of the form

Xt ∼ GEVD(ℓ(X(t−1):(t−p1)
Tβσ , X(t−1):(t−p2)

Tβξ )) for X(t−1):(t−p) = (Xt−1, . . . , Xt−p). (3.4)

In this model, negative values of βξ would dampen clustering of extremes, as then usually a large value stemming from a
large positive shape parameter will be followed by an observation with low or even negative shape hence withmuch lighter
tails, thus in general a smaller value; correspondingly βξ positive will foster clustering of extremes.

A straightforward guess would be to use the log link, but this does not work for GEVD or GPD time series, as then
integrability (ii) fails. Thus, besides being smooth (for our theorem) and strictly increasing (for identifiability), an admissible
link functionmust grow extremely slowly. To get candidates in case of theGEVD, note that all terms of the Fisher information
matrix for GEVD are dominated by term Γ (2ξ + 1), so conditions (ii) and (iii) are fulfilled if for large positive values θξ , the
link function grows so slowly to ∞ that Γ (2ℓξ (θξ )) ≈ log(θξ ), which for large x amounts to a behavior like the iterated
logarithm log(log(x)); analogue arguments in case of the GPD suggest ℓξ (θξ ) ≈ log(θξ ).

One possibility to achieve this for the GEVD for p = 1 is ℓξ (θξ ) = log(f (log(xξ )
Tβξ )) where f (x) for x > 0 is quadratic

like x2/2 + x + 1 and for x < 0 behaves like a1/(log(a2 − x))2 + a3 for some a1, a2, a3 > 0 such that f is continuously
differentiable in 0 and f (x) > e−1/2 always. As is shown in Appendix A.5, this choice indeed fulfills conditions (ii) and (iii).

With regard to the singularity in ξ = 0 of I Q
σ ,ξ in (3.3), in many applications, it may turn out useful though to restrict

shape ξ to lie in either (−1/2, 0)or in (0, ∞); correspondingly, one could suggest a rescaled binomial link ℓ = ℓBinom/2−1/2
for the first case and shifting the link function ℓξ sketched above to ℓ̃ξ = ℓξ + 1/2 in the second.

Of course, given an admissible link function, the next question would be whether for given starting values x−1, . . . ,
x−max(p1,p2) a time series defined according to (3.4) for t ≥ 0, using this link function is (asymptotically) stationary. This
is out of scope for this paper and will be dealt with elsewhere.
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Appendix. Proofs

A.1. Proof of Hájek’s auxiliary result Proposition 2.2

Proof. Apparently, (H.1) and (H.2) are implied by continuous differentiability of the densities dQϑ (y) w.r.t. ϑ . Hájek (1972)
gives a proof of Proposition 2.2 for dQϑ (y) Lebesgue densities and for k = 1, but our notion of absolute continuity for
k > 1 from p. 4 reduces the problem to the situation of k = 1, which is possible here, as we require (H.1)–(H.3) on open
neighborhoods. In addition, Hájek requires (H.1) for every y. Looking into his proof of his Lemma A.2, though, one does not
need that dQϑ (y) be Lebesgue densities, and in his Lemma A.3 one only needs absolute continuity for Qϑ0-a.e. y. Finally, the
asserted continuous L2 differentiability (not mentioned in the cited reference) with regard to Definition 2.1 is just (H.3). A
similar result, already for k ≥ 1, but only for dominated Q and for continuous differentiability of dQϑ (y) w.r.t. ϑ for Qϑ0-a.e.
y, is Witting (1985, Satz 1.194). �

A.2. Proof of the chain rule

Lemma A.1 (Chain Rule). Let Q = {Qϑ | ϑ ∈ Θ} a parametric model with open parameter domain Θ ⊂ Rk. Assume Q is L2
differentiable in ϑ0 ∈ Θ with derivative ΛQ

ϑ0
and Fisher information IQϑ0

. Let ℓ:Θ ′
→ Θ with domain Θ ′

⊂ Rk′ be differentiable
in some θ0 ∈ Θ ′ such that ℓ(θ0) = ϑ0 andwith derivative denoted by ℓ̇(θ0). Then Q̃ = {Q̃ϑ = Qℓ(θ) | θ ∈ Θ ′

} is L2 differentiable
in θ0 with derivative ΛQ̃

θ = (ℓ̇(θ0))
TΛQ

ϑ0
and Fisher information IQ̃θ = (l̇(θ0)) TIQϑ0

ℓ̇(θ0). If Q is continuously L2 differentiable
in ϑ0, so is Q̃ in θ0.

Proof. Let hn → 0, n → ∞ in Rk′ , |hn| ≠ 0. We take ϑn := ℓ(θ0 + hn), ϑ0 := ℓ(ϑ0). Smoothness of link function ℓ implies:

ϑn = ℓ(θ0 + hn) = ϑ0 + ℓ̇(θ0)hn + r(θ0, hn), (A.1)

for some remainder function r such that

lim
n→∞

r(θ0, hn)/|hn| = 0. (A.2)
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Let Qϑn be dominated by some measure ν with density qϑn , i.e., dQϑn = qϑndν. By L2 differentiability of model Q for

Rn :=
 √

qϑn −
√
qϑ0


1 +

1
2 (Λ

Q
ϑ0

) T(ϑn − ϑ0)
2

dν, we have

lim
n→∞

Rn/|ϑn − ϑ0|
2

= 0. (A.3)

But by (A.1) we may write Rn as Rn =

(An − Bn)

2 dν for

An :=
√
qϑn −

√
qϑ0


1 +

1
2
(ΛQ

ϑ0
) T l̇(ϑ0)hn


and Bn :=

1
2
√
qϑ0(Λ

Q
ϑ0

) Tr(ϑ0, hn).

Now, Cauchy–Schwarz entails that A2
n ≤ 2(An − Bn)

2
+ 2B2

n. Therefore
A2
ndν ≤ 2


(An − Bn)

2dν + 2


B2
ndν = 2Rn + 2


B2
ndν

≤ 2Rn +
1
2
|r(ϑ0, hn)|

2


qϑ0 |Λ
Q
ϑ0

|
2dν ≤ 2Rn +

1
2
|IQϑ0

| |r(ϑ0, hn)|
2.

Hence, using (A.1), (A.2), and (A.3)

1
|hn|

2


A2
ndν =

2Rn

|ϑn − ϑ0|
2


l̇(ϑ0)hn + r(ϑ0, hn)

2
|hn|

2
+

1
2
|IQϑ0

|
|r(ϑ0, hn)|

2

|hn|
2

= o(1).

That is, by Definition 2.1 model Q̃ is L2 differentiable in ϑ0 ∈ Θ ′. �

A.3. Proof of Theorem 2.3

Let sn → 0 ∈ Rp for n → ∞ such that s̃n = sn/|sn| → s̃0 for some s̃0 with |s̃0| = 1. We take ϑs := ℓ(θs),
θs := x T(β0 + s), ℓ̇s = ℓ̇(θs). Let dQϑn = qϑn dν. By Definition 2.1 the GLM P is L2 differentiable at every β ∈ Rp if
limn→∞ |sn|−2


Ã2
n ν(dy) K(dx) = 0 for the An from Lemma A.1 now taking up the dependence on x, i.e.,

Ãn = Ãn(x, y) :=
√
qϑn −

√
qϑ0


1 +

1
2
(ΛQ

ℓ(x Tβ0)
) Tℓ̇(x Tβ0) ·π x Tsn


. (A.4)

Here (pointwise) existence (for Pβ-a.e. (x, y)) and form of the L2-derivative follow from (H.1) and the chain rule applied
pointwise (in (x, y)). The proof of Lemma A.1 for K -a.e. x and s small enough provides some function z(s) → 0 such that

Ã2
nν(dy) = |x Tsn|2(z(x Tsn))2.

Hence, for K -a.e. fixed x, Ã′
n(x) := |sn|−2


Ã2
nν(dy) → 0. For Lebesgue measure λ, fixed x ∈ Rp and u ∈ [0, 1] by the

fundamental theorem of calculus for absolutely continuous functions, for K -a.e. fixed xwe obtain

|sn|−2
 

qϑsn −
√
qϑ0

2
dν = |sn|−2

  1

0

1
2


qϑusn (ℓ̇

T
usnΛ

Q
ϑusn

·π x Tsn) λ(du)
2

dν

≤
1

4|sn|2

  1

0
qϑusn (ℓ̇

T
usnΛ

Q
ϑusn

·π x Tsn)2 λ(du) dν

=
1
4
s̃ T
n

 1

0
I P

ϑusn
(x) λ(du) s̃n

=
1

4|sn|
s̃ T
n


|sn|

0
I P

ϑus̃n
(x) λ(du) s̃n =: Bn(x).

Now, introduce B0 = s̃ T
n I P

ϑ0
(x)s̃n/4. By (ii) and (iii)


Bn(x) K(dx) is finite eventually in n, and by (iii) and Fubini

Bn(x) K(dx) =
1
4


|sn|

0


|I P

ϑus̃n
(x)| K(dx) λ(du) =


B0(x) K(dx) + o(1).

Hence, by Vitali’s Theorem (e.g. Rieder (1994, Proposition A.2.2)), Bn is uniformly integrable (w.r.t. K ), and, as Ã′
n(x) ≤

2Bn(x) + 2B0(x), so is Ã′
n(x), and again by Vitali’s Theorem,


Ã′
n(x) K(dx) → 0 which is (2.1). Continuity (2.2) with regard

to Vitali’s Theorem is just continuity of the Fisher information just shown.
The assertion of Remark 2.4 is shown similarly, replacing the Bn and B0 from above with |I Q

ϑst
| |ℓ̇st |

2
|x|2 resp.

|I Q
ϑ0

| |ℓ̇0|
2
|x|2. �
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Fig. A.1. Link function for the shape of GEVD.

A.4. Proof of Theorem 2.6

For selfcontainedness, we reproduce the argument for condition (2.10) from Rieder (1994, Theorem 2.3.7). In model Q,
by (2.1), assuming ν-densities √

qϑ+h −
√
qϑ


1 +

1
2 (Λ

Q
ϑ ) Th

√
qϑ dν

2 ≤

 √qϑ+h −
√
qϑ


1 +

1
2 (Λ

Q
ϑ ) Th

2 dν

where the RHS by L2-differentiability of Q is o(|h|2). Hence,

Eϑ (ΛQ
ϑ ) Th + o(|h|) =


(
√
qϑ+h −

√
qϑ )

√
qϑ dν = −


(
√
qϑ+h −

√
qϑ )2 dν/2

= −h TI Q
ϑ h/2 + o(|h|2) = o(|h|).

So EϑΛQ
ϑ = 0, and hence also En,i,β0Λ

P
n,i,β0

= 0. Lindeberg condition (2.11) is assumedwithout change, so it only remains to
show condition (2.12). LetNn,i be theQϑn,i,tn

-null set such that both (H.1) and (H.2) hold for all y ∈ Nc
n,i. LetN =


n
in

i=1 Nn,i.
Then as in the case of stochastic regressors, from (H.1) and the chain rule applied pointwise (in y ∈ Nc)we obtain (pointwise)
existence and form of the L2-derivative. Let Ãn from (A.4) now take up the dependence on xn,i, i.e., Ãn,i = Ãn(xn,i) (with sn
from the preceding proof substituted by tn) so that in particular, for every fixed i, Ã′

n,i :=

Ã2
n,iν(dy) → 0 as tn → 0. For

condition (2.12) we have to show that limn→∞ sup|t|≤b
in

i=1


Ã2
n,iν(dy) = 0. But, similarly as in the preceding proof for

fixed i, by the fundamental theorem of calculus for absolutely continuous functions, we have

Ã′

n,i =

 
qϑn,i,tn

−

qϑn,i,0

2
dν ≤

1
4|tn|


|tn|

0
t T
n I P

n,i,ut tn λ(du) =: Bn,i.

Now, introduce B0,i =
1
4 t

T
n I P

n,i,0tn and note that
in

i=1 I P
n,i,0 = I P

n,β0
, so t T

n I P
n,i,0tn = |t|2 ≤ b and by (iii)

in
i=1 Bn,i =in

i=1 B0,i + o(1) = |t|2/4+ o(1). Hence, by Vitali’s Theorem, Bn,i is uniformly integrable (w.r.t. the counting measure), and,
as Ã′

n,i ≤ 2Bn,i + 2B0,i, so is Ã′

n,i, and again by Vitali’s Theorem,
in

i=1 Ã
′

n,i → 0. Finally, continuity (2.13) again with regard to
Vitali’s Theorem is just continuity of the Fisher information just proven. �

A.5. Link function for the GEVD shape model

For GEVD for the shape we have chosen link function ℓ = log(f (β log(xt−1))), for

f (x) = (x2/2 + x + 1)I(x > 0) + (a1(log(a2 − x))−2
+ a3)I(x ≤ 0)

for some a1, a2, a3 > 0. The constants a1, a2, a3 are chosen so that f is continuously differentiable in 0 and f (x) > e−1/2

always, i.e.

a1
(log(a2))2

+ a3 =
2a1

a2(log(a2))3
= 1,

a1
(log(a2 − x))2

+ a3 > e−1/2, ∀x < 0. (A.5)

Since a1(log(a2 − x))−2 > 0, to ensure the last inequality we let a3 = e−1/2
≈ 0.6063. Solving the system of equations we

get aa22 = e2(1−e−0.5), so a2 ≈ 1.624 and a1 = 0.5a2(log(a2))3 ≈ 0.00926.
As said, shape is usually varying in (0, 2). As visible from Fig. A.1, this interval corresponds to an argument of the link

function x = β log(xt−1) ranging in (−∞,

1 − 2(1 − e2) − 1 ≈ 2.712); hence, for β = 1, ℓ = log(f (β log(xt−1))) is

smaller than 2 as long as xt−1 < 15 and ℓ < 3 for xt−1 < 193.
To show that our choice of link function for GEVD, fulfills conditions (ii) and (iii), first we calculate its derivative ℓ̇ = ḟ /f

and obtain ℓ̇ = (x + 1)/(x2/2 + x + 1) for x > 0 and ℓ̇ = 2a1(a2 − x)−1(log(a2 − x))−3 for x < 0. Hence, for large x, ℓ̇
behaves like 2/x, while for x < 0, it essentially behaves like −x−1(log(−x))−3.
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As mentioned, the term Γ (2x) dominates all entries of all terms of I Q
σ ,ξ in (3.3). Using the Stirling approximation,

i.e., Γ (x) ≈
√
2π exp(x(log(x) − 1/2)), due to the double application of the logarithm in the link function we get that

Γ (2ℓξ (θξ )) is approximately βξ log(xξ ). By equivariance in µ and σ , therefore the integral of condition (ii) turns into:
B1(ξ) := 4β−1

ξ


log(x) K(dx) < ∞ forβξ > 0 and, forβξ < 0, to B2(ξ) := β−1

ξ


log(x)


(log(−βξ ))+log(log(x))

−6
K(dx).

Finiteness of B1(ξ) and B2(ξ) follows from finiteness of E(min{1, (log x)k}) for x ∼ GEVD(0, 1, ξ), k ∈ N. Reconsidering
B1(ξ), B2(ξ) at ξ + s, for |s| < h, h < 1we see that sup|s|<h Bi(ξ + s) < ∞ for i = 1, 2, hence, condition (iii) is a consequence
of dominated convergence and continuity of Fisher information Iξξ in ξ .
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