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Upregulation of hypoxia inducible factor is associated with
attenuation of neuronal injury in neonatal piglets
undergoing deep hypothermic circulatory arrest
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Background: Prolonged deep hypothermic circulatory arrest is known to cause
neurological injury. Hypoxia inducible factor, a transcription factor that mediates
adaptive changes during hypoxia, is neuroprotective in models of ischemic brain
injury, in part by upregulating erythropoietin. This study tested the hypothesis that
upregulation of hypoxia inducible factor and erythropoietin by preconditioning with
hypoxia or the hypoxia-mimetic agents deferoxamine and cobalt chloride would be
neuroprotective in a piglet model of deep hypothermic circulatory arrest.

Methods: Anesthetized neonatal piglets were randomized to 4 preconditioning
groups (15 per group): hypoxia, deferoxamine, cobalt chloride, or control (NaCl
vehicle). Brain hypoxia inducible factor and erythropoietin contents were assessed
by means of Western blotting at 3, 8, and 24 hours after treatment (n = 3 per time
point). Twenty-four hours after treatment, 6 to 7 animals per group underwent
cardiopulmonary bypass and 110 minutes of deep hypothermic circulatory arrest.
After recovery, serial neurobehavioral examinations were conducted for 6 days,
after which histopathologic brain injury and neuronal apoptosis (cleaved caspase 3)
were assessed.

Results: Erythropoietin expression was not significantly increased by any of the
pretreatment strategies. In contrast, there was a significant upregulation of hypoxia
inducible factor by pretreatment with deferoxamine and cobalt chloride (P = .002).
Neurobehavioral measures revealed no significant differences in time to recovery or
extent of injury. Examination of histopathologic brain injury in the hippocampus
revealed that pretreatment with deferoxamine (0.4 = 0.3) and cobalt chloride (0.5
* 0.3) were associated with significantly less neuronal loss than pretreatment with
hypoxia or control (2.8 = 0.5, P = .004). Finally, cleaved caspase 3 (a marker of
apoptotic cell death) was also shown to be diminished in the cobalt and deferox-
amine groups, but the difference was not significantly different from the value in the
control group.

Conclusions: In contrast to hypoxia, deferoxamine and cobalt chloride precondi-
tioning upregulated hypoxia inducible factor and were associated with histopatho-
logic neuroprotection after exposure to cardiopulmonary bypass and prolonged deep
hypothermic circulatory arrest.

eep hypothermic circulatory arrest (DHCA) is often used during repairs of

complex congenital cardiac defects. However, many patients undergoing

DHCA have neurodevelopmental abnormalities that are manifested days or
even years after recovery from the surgical procedure. These abnormalities range
from subtle subclinical radiographic findings to overt cognitive and functional
impairment, including seizures, choreoathetosis, and impaired scoring on psy-
chomotor developmental indices.'
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Hypoxia inducible factor (HIF) is a transcription factor
that mediates adaptive mechanisms during periods of hy-
poxic stress. It is a heterodimeric protein consisting of 2
subunits, HIF-1« and HIF-18. HIF-18 is constitutively ex-
pressed in the nucleus and maintains a relatively constant
level. In contrast, HIF-1a is rapidly ubiquinated in the
cytoplasm and removed by means of proteasomal degrada-
tion during periods of normal oxygen tension. However,
during hypoxic conditions, the degradation of HIF-la is
blocked, allowing it to accumulate within the cell. The
increased intracellular concentration of HIF-1« then allows
it to translocate to the nucleus, where it forms a heterodimer
with HIF-18 and becomes an active transcription factor for
several key end products that are important for anaerobic
metabolism and cell survival, including erythropoietin
(EPO), vascular endothelial growth factor, glucose trans-
porter enzymes, and glycolytic enzymes.?

Similar in concept to ischemic preconditioning, which has
been widely studied as an approach to alleviate ischemia-
reperfusion injury in the heart, hypoxic preconditioning has
been investigated as a protective strategy preceding permanent
cerebral ischemia in rodents.*” In these rodent models of brain
infarction, animals exposed to antecedent hypoxia or hypoxia-
mimetic agents (deferoxamine or cobalt chloride [CoCL,])
were more tolerant of subsequent cerebral ischemia, a benefit
attributed to the upregulation of HIF-1a*® and its target gene
products. Therefore on the basis of these previous studies, we
hypothesized that upregulation of HIF-1a and EPO before a
period of DHCA in neonatal piglets would have similar neu-
roprotective benefits by alleviating the injury resulting from the
inherent global ischemia encountered during circulatory
arrest.

Methods

Surgical Preparation

Animal care was conducted under the approval of the Institutional
Animal Care and Use Committee of Emory University and in
compliance with the “Guiding Principles in the Use and Care of
Animals,” as published by the National Institutes of Health in
1996. All surgical procedures were carried out under sterile
conditions.

This study was completed in 2 phases: the goal of phase I was
to determine whether HIF-1oe and EPO could be upregulated in
piglets by stimuli similar to those that had been previously used in
rodent models. In this part of the study, 36 2- to 3-week-old
Yorkshire cross piglets were preanesthetized with an intramuscular
cocktail of ketamine (22 mg/kg), acepromazine (1.1 mg/kg) and
atropine (0.05 mg/kg) and then orotracheally intubated and venti-
lated with a pediatric veterinary ventilator (Model 2000; Hallow-
ell, Inc, Pittsfield, Mass) to maintain pH at a goal of 7.35 to 7.45,
Pco, at 35 to 45 mm Hg, and Po, at 100 to 110 mm Hg. Deep
anesthesia was maintained with 1% to 1.5% inhaled isoflurane. A
marginal ear vein was cannulated for administration of drugs and
intravenous fluids, and the superficial femoral artery was cannu-
lated with a 22-gauge fluid-filled catheter for monitoring of blood

pressure, heart rate, and arterial blood gases. The animals were
then randomly assigned to one of 4 groups: (1) control (ventilated
with supplemental oxygen to maintain an arterial Po, of 95-125
mm Hg for 3 hours and received an intravenous and intraperitoneal
injection of 0.225% NaCl as a vehicle); (2) hypoxia (ventilated
with a hypoxic gas mixture to maintain an arterial Po, of 30-40
mm Hg for a period of 3 hours and received an intravenous and
intraperitoneal injection of 0.225% NaCl); (3) deferoxamine
(maintained arterial Po, of 95-125 mmHg and received an intra-
venous [100 mg/kg] and intraperitoneal [100 mg/kg] injection of
deferoxamine, a hypoxia-mimetic agent); and (4) CoCl, (main-
tained arterial Po, of 95-125 mm Hg and received an intravenous
injection of 0.225% NaCl and intraperitoneal [20 mg/kg] injection
of CoCl,, a hypoxia-mimetic agent). The doses of CoCl, and
deferoxamine were chosen on the basis of previous doses used in
similar rodent studies. (Cobalt has been safely administered in
rodents up to 60 mg/kg; however, in the current study such high
doses caused hemodynamic collapse and death. Therefore a
smaller dose was used that did not seem to have significant adverse
effects. We did not, however, perform a formal dose-response
study to determine the extent of HIF-1a upregulation by greater
doses of deferoxamine and CoCl,.) The animals were then eutha-
nized at 3, 8, and 24 hours (n = 3 in each group) after the start of
the experiment with an overdose of pentobarbital (100 mg/kg
administered intravenously). The brains of these animals were then
removed en bloc, snap-frozen in liquid nitrogen, and stored in a
freezer at —80°C until ready for Western blot analysis of HIF-1«
and EPO.

The goal of phase II was to determine whether HIF-1o and
EPO would be neuroprotective in piglets subjected to DHCA. In
this phase 25 piglets (n = 6-7 in each group) underwent the same
preconditioning treatments as described above (ie, 3 hours of
anesthesia, either maintaining hypoxia or normoxia with injection
of deferoxamine, CoCl,, or vehicle). However, these animals were
allowed to recover for 24 hours, at which time they were reanes-
thetized in a manner similar to that described above. Cefazolin (25
mg/kg administered intravenously) was administered before the
procedure on each day and every 8 hours thereafter for a period of
24 hours. Deep anesthesia was maintained with 1% to 1.5%
inhaled isoflurane, except during the period of DHCA. Once again,
the superficial femoral artery was cannulated for monitoring pur-
poses. After systemic heparinization (300 U/kg), the contralateral
common femoral artery was cannulated with an 8F arterial cannula
(Bio-Medicus, Minneapolis, Minn), and the right atrial appendage
was cannulated with an 18F venous cannula (Baxter RMI, Deer-
field, I1l) through a right anterolateral thoracotomy.

The cardiopulmonary bypass (CPB) circuit consisted of a non-
pulsatile roller pump (Cobe Cardiovascular, Inc, Arvada, Colo),
sterile tubing, a pediatric membrane oxygenator (Lilliput 2; Cobe
Cardiovascular, Inc, Arvada, Colo), a venous reservoir (Lilliput 1
twin reservoir, Cobe Cardiovascular, Inc), and a 40-wm arterial
filter (Cobe Cardiovascular, Inc). The circuit was primed with 500
mL of whole porcine blood (Lampire Biological Labs, Pipersville,
Pa), 1000 U of heparin, 30 mg/kg calcium chloride, 15 mEq
sodium bicarbonate, 1 g/kg mannitol, 5 mg/kg dexamethasone, and
0.1 mg/kg pancuronium bromide.

The animals were started on CPB and perfusion cooled to a
nasopharyngeal temperature of 18°C over a period of 20 minutes,
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followed by a 110-minute period of circulatory arrest. Perfusion
was initiated at a flow rate of 150 mL/kg and adjusted to maintain
a perfusion pressure of greater that 30 mm Hg. During the cooling
and rewarming periods, hematocrit was maintained at or near 30%,
and arterial blood gases were managed according to the alpha-stat
strategy, maintaining a Pco, of 35 to 45 mm Hg uncorrected for
temperature. The head was packed in ice during this time, and
the heart was topically cooled and arrested without the use of
cardioplegia. During the circulatory arrest period, the venous
cannula was unclamped periodically to completely drain the
venous system of any accumulated blood. After reinstitution of
CPB, the animals were rewarmed and weaned from CPB once
they reached a temperature of 34°C. The animals were then
decannulated, a 6F red rubber thoracostomy tube was placed,
and all incisions were closed in multiple layers with absorbable
sutures.

Postoperative Care

While the animals recovered from anesthesia, oxygen saturation
and heart rate were continuously monitored with a pulse oximeter
(Novametrix Medical Systems, Inc, Wallington, Conn). When the
animals were able to breathe spontaneously, mechanical ventila-
tion was discontinued. The endotracheal tube was removed when
it was no longer tolerated, and the animals were moved to a
temperature-controlled recovery kennel. The thoracostomy tube
was removed when there was minimal output. The ear vein can-
nula was maintained until the animals were able to eat-drink
independently. Animals incapable of eating-drinking were sup-
ported with gastric feeds through a nasogastric tube. Buprenor-
phine (0.1 mg/kg administered intravenously) was used for pain
management in the immediate postoperative period. The animals
were allowed to survive for 6 days, during which they underwent
serial neurobehavioral assessments by a blinded observer accord-
ing to a standardized scoring system (Table E1).

Perfusion Fixation of Brain

At the end of the 6-day survival period, the animals were sedated
with an intramuscular cocktail of ketamine (22 mg/kg) and
acepromazine (1.1 mg/kg). A marginal ear vein was cannulated for
administration of systemic heparin (300 U/kg) and euthanasia
solution (sodium pentobarbital, 100 mg/kg). The right carotid
artery was exposed and cannulated with a 14-gauge angiocatheter.
The right chest was opened, and the superior vena cava was incised
to allow exsanguination. Through the carotid artery, the brain was
perfused in situ with 1 L of normal saline, followed by 1 L of 4%
paraformaldehyde (dissolved daily in 0.1 mol/L sodium phosphate
buffer) at a pressure of 100 mm Hg. After removal of the scalp and
cranial vault, the brain was excised en bloc with the cerebellum
and brain stem and placed in 10% buffered formalin for permanent
fixation.

Preparation of Homogenates From Brain Tissue for
Western Blot Analysis

The fresh brain was frozen immediately with liquid nitrogen and
stored at —80°C until use to prepare total homogenates from
porcine brain tissue. Small pieces of brain tissue were placed in
homogenizing buffer (containing the following: Tris/HCl, 50
mmol/L [pH 7.5]; NaCl, 150 mmol/L; ethylenediamine tetraacetic

acid, 1 mmol/L; dithiothreitol, 1 mmol/L; pepstatin A, 0.001
mmol/L; phenylmethylsulfonyl fluoride, 0.4 mmol/L; phenanthro-
line, 1 mmol/L; iodoacetamide, 1 mmol/L; aprotinin, 0.01 U/mL;
and 0.1% Triton X-100) and homogenized with a Tekmar Tissum-
izer for 30 seconds and repeated several times until tissue granules
could not be seen. Then the homogenate was stored at 4°C over-
night for lysis and extraction of proteins from both cytoplasm and
nuclei. The sample was then centrifuged at 3000g for 20 minutes,
and the supernatant (total homogenate) was stored at —80°C in
small aliquots. Protein was determined by using the Bradford dye
method (BioRad, Hercules, Calif).

Western Blot Analysis for HIF-1a and EPO

HIF-1« and EPO levels were analyzed in total homogenates from
whole brain tissue, as previously described,®° by using a mono-
clonal antibody for HIF-1a (Calbiochem, San Diego, Calif) and a
polyclonal antibody for EPO (Santa Cruz Biotechnology, Santa
Cruz, Calif). For detection of bands, an enhanced chemilumines-
cence detection kit (ECL+plus, Amersham Corp, Piscataway, NJ)
with lumigen PS-3 substrate was used. To compare relative
amounts of specific proteins, we used a 2-dimensional gel imaging
system and Labworks image acquisition and analysis software
(UVP, Inc, Upland, Calif), with data presented as arbitrary optical
density units.

Histopathologic Analysis and Immunostaining for
Cleaved Caspase 3

After storage in 10% buffered formalin, brains from phase II
animals were cut in the coronal plane, processed, and embedded in
paraffin blocks. Six-micrometer sections were then mounted on
slides for hematoxylin and eosin staining, as well as for immuno-
staining for caspase 3 and cleaved caspase 3 as a marker of
apoptosis. Immunohistochemistry was performed on sections that
were deparaffinized and subjected to heat-induced epitope retrieval
by steaming for 15 minutes. Slides were then incubated at room
temperature with antibodies directed toward caspase 3 (rabbit
polyclonal, 1:25; Cell Signaling, Beverly, Mass) and cleaved
caspase 3 (rabbit polyclonal, 1:100; Cell Signaling).

Immunostaining for caspase 3 and cleaved caspase 3 was
performed in the hippocampus only because this region is known
to be particularly susceptible to ischemic injury.'® The number of
total nuclei and apoptotic nuclei (as indicated by brown staining
for cleaved caspase 3) were quantified at 20X magnification by
using a computer-automated counting system and ImagePro 4.0
software (Media Cybernetics Inc, Silver Springs, Md). The per-
centage of apoptotic nuclei averaged from a minimum of 3 random
fields is presented.

Hematoxylin and eosin—stained slides were examined by a
neuropathologist (D.J.B.) blinded to the experimental groups.
Seven regions of the brain were analyzed, including the frontal and
parietal neocortex, hippocampus, striatum, cerebellum, thalamus,
and pons. Each region was examined for 3 discrete changes:
neuronal hypereosinophelia as a marker of acute hypoxic injury,
reactive gliosis as an indicator of tissue response to injury, and
frank tissue necrosis (infarction). Each region received a score
ranging from O (no injury) to 4 (severe injury).
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Figure 1. Brain content of erythropoietin (EPO; A) and hypoxia
inducible factor (HIF-1a; B) at 3, 8, and 24 hours after precondi-
tioning stimulus by means of Western blot assay. *P < .05. DFX,
Deferoxamine; CoCl,, cobalt chloride.

Statistical Analysis: Phase I

A nested general linear model was performed to test for overall
group and time-within-group effects for both EPO and HIF-1a.
For significant group effects, subsequent post-hoc Dunnett tests
were conducted to compare treatment groups with the control
group. For significant time-within-group effects, we performed
appropriate tests of the estimable functions to determine the source
of the overall effect. Because of the fact that many of the HIF-1«
values were nondetectable (ie, 0), we also performed a nonpara-
metric Kruskal-Wallis test of the group effect, as well as a test of
the group effect on the proportion of detectable values.

Statistical Analysis: Phase I1

Perioperative variables. We used 1-way analysis of variance
to determine whether there were any significant group differences
in biologic measures that would indicate procedural differences.
This was done to determine any effects that might need to be
controlled for in the testing of group effects on the main outcome
variables.

Repeated neurobehavioral measurements. Because of the fact
that many of the test animals eventually returned to baseline (score
= 0), we compared the group, time, and group-by-time interaction
on the proportion of impaired animals by using repeated-measures
logistic regression (population-averaged generalized estimating
equations [GEE] model).

Brain injury. We first performed tests of group effects in the
data summed across brain region (7 types) and type of brain injury
(neuronal loss, gliosis, and tissue necrosis) by using Kruskal-
Wallis tests to determine initial group differences of interest. We
then tested for group differences in the most significant regions
and types by using ordinal logistic regression.

Apoptosis. On the basis of the results from the brain injury
analysis, we looked at a marker of apoptotic cell death, caspase 3,
within the brain regions that demonstrated significant injury. Be-
cause of the fact that the distribution of caspase 3 was somewhat
skewed in most regions, we used nonparametric Kruskal-Wallis
tests to test for significant group differences.

Results

Upregulation of HIF-1a and EPO by Hypoxic
Preconditioning or Hypoxia-mimetic Agents

Western blot analyses of brains for content of HIF-1« and
EPO were performed 3, 8, and 24 hours after the precondi-
tioning stimulus. The mean values for EPO and HIF-1« are
presented in Figure 1. Although there is a trend toward
increased EPO expression in the deferoxamine and CoCl,
groups at 24 hours, these results indicated no statistically
significant upregulation of EPO by any of the pretreatment
strategies (Figures 1, A, and E1,A).

In contrast, analysis of the HIF-1a data showed a sig-
nificant increase, compared with that seen in the control
group, in the deferoxamine (P = .026) and CoCl, (P =
.002) groups but not in the hypoxia (P = .686) group.
Although a test of means for these data is tenuous, the result
was supported by the nonparametric test (x> = 24.57, df = 3,
P < .0005), as well as the test of the proportion of nonde-
tectables (control = 78%, hypoxia = 56%, deferoxamine =
CoCl, = 0%, x* = 19.00, df = 3, P < .0005). Thus the data
indicated a significant upregulation of HIF-1a by means of
pretreatment with deferoxamine and CoCl, (Figures 1, B,
and El, B).

Phase II: Perioperative Variables

There were no significant group differences in perioper-
ative variables (Table E2), and therefore no adjustments
were made to the analyses of the primary outcomes.
Mean arterial pressure and heart rate were similar in all
groups before CPB and after recovery from DHCA, as
were cooling and total CPB times. Arterial Pco, was
maintained at 40 to 45 mm Hg before and after CPB,
without significant differences between groups. Like-
wise, on-pump and post-CPB hematocrit values were
similar in all groups and were maintained at a level of
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Neurobehavioral Evaluation Scores

After recovery from CPB and DHCA, each animal under-
went neurobehavioral evaluations by a blinded observer on
postoperative days 1, 2, 4, and 6. Although the neurobehav-
ioral measures indicated a slightly quicker recovery in the
deferoxamine and CoCl, groups (Table E3 and Figure 2), the
group-by-time interaction was not statistically significant (x>
= 53, df = 3, P = .913). By postoperative day 6, all animals
had recovered to a similar extent, with the most common
residual deficits consisting of gait abnormalities or minor
ataxia.

Histopathologic Analyses

Histopathologic injury was evaluated in 7 regions of the
brain, as indicated above, focusing on acute neuronal injury,
reactive gliosis, and frank tissue necrosis. Examination of
brain injury by type and region indicated that the thalamus
and pons were essentially unaffected (Table E4) and that
overall damage was most significant in the hippocampus
and cerebellar regions. Only the hippocampus, however,
showed a statistically significant effect (Table E5 and Fig-
ure 3, A). A post-hoc analysis of the group difference on the
measure of neuronal loss in the hippocampus demonstrated
a significant overall group effect (x> = 15.29, df = 3, P =
.002) and, more specifically, a significant reduction of injury
in the deferoxamine (z = —2.90, P = .004) and CoCl, (z =
—2.89, P = .004) groups, but not in the hypoxia group (z =

Neuronal Loss Gliosis TissueNecrosis

B Control S Hypoxia ODFX ElCoCI2

Figure 3. Histopathologic grading of neuronal injury. There was
diminished neuronal loss in the hippocampus (A) of animals
treated with deferoxamine and cobalt chloride. Similar trends
were seen in the frontal lobe (B) and cerebellum (C). *P < .05.

DFX, Deferoxamine; CoCl,, cobalt chloride.

—1.36, P = .174), compared with the control group. Figure E2
is a representative photomicrograph of the diminished hypere-
osinophilia (representing neuronal loss) in the brain of a
CoCl,-treated animal compared with that seen in the brain of a
control animal. A similar pattern of protection was seen in the
neocortex (Figure 3, B) and cerebellum (Figure 3, C), but these
differences did not reach statistical significance.

Immunostaining for Cleaved Caspase 3

Finally, as a marker of apoptotic cell death, brain tissue in the
hippocampus was immunostained for cleaved caspase 3 to
further define the location of the injury because the greatest
level of histopathologic protection was seen in this region. The
deferoxamine and CoCl, groups exhibited diminished apopto-
sis compared with the control group, but this difference was
not statistically significant (Table E6 and Figure 4).
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the hippocampus. There was a trend toward protection in the
cobalt- and deferoxamine-pretreated groups, but these differ-
ences were not statistically significant. DFX, Deferoxamine;
CoCl, , cobalt chloride.

Discussion

Although the cause of brain injury associated with DHCA is
multifactorial,"'! global ischemia and reperfusion appear to
be 2 of the most important factors. Despite the reduction of
metabolic demand afforded by deep hypothermia, the rela-
tive deficiency of oxygen and glucose during circulatory
arrest can cause irreversible cellular damage, particularly
with prolonged arrest times. In rat cerebral ischemia mod-
els, preconditioning with hypoxia, deferoxamine, and CoCl,
provides an element of neuroprotection by upregulating
HIF-1a and its target genes, including EPO,*’ vascular
endothelial growth factor, and glucose transporter en-
zymes.>'""!'? Presumably, these adaptive changes induced
by HIF-1« allow more efficient anaerobic metabolism, es-
sentially reducing the metabolic demand during subsequent
hypoxia-ischemia.

The current study examined the potential benefits of
hypoxic, deferoxamine, or CoCl, preconditioning on neu-
rological injury in a piglet survival model of DHCA. Al-
though hypoxia did not show a beneficial effect, deferox-
amine- and CoCl,-treated animals had significantly
diminished histopathologic injury and a trend toward re-
duced neuronal apoptosis. In addition, animals precondi-
tioned with deferoxamine and CoCl, had improved neuro-
logic recovery on postoperative day 2 when compared with
the control group, although this difference was not statisti-
cally significant.

Experimental approaches to neuroprotection in similar
models of DHCA have had mixed results. Neuroprotective
benefits have been shown with such treatments as throm-

boxane receptor blockade,'? intermittent and selective ce-

rebral perfusion,'*'> allopurinol treatment,'® systemic ste-
roid pretreatment,'” and pH-stat blood gas management.'®
Conversely, a number of interventions, such as modified
ultrafiltration'® and pharmacologic cerebroplegia,”® have
not proved to be beneficial. In contrast to the above inter-
ventions, which have generally been applied at the time of
surgical intervention, cerebral preconditioning would have
to be carried out before the operation, a criticism that has
precluded preconditioning protocols from being applied
clinically to patients with cerebral ischemia as a result of
strokes. However, global ischemia associated with DHCA
can be anticipated in infants undergoing elective repair of
congenital cardiac defects, and therefore preconditioning
would be practical in this situation, although the optimal
timing of its application remains a matter of further
investigation.

Although we obtained positive results with deferoxamine
and CoCl,, one difficulty in this study is the fact that
hypoxia failed to upregulate HIF-1a or EPO significantly
and thus did not have a neuroprotective benefit. Because this
was the first attempt to apply hypoxic preconditioning in a
porcine model, we attempted to use a protocol similar to
what had been described in previous rodent studies (8%
oxygen for a period of 3 hours). This level of hypoxia,
however, was associated with hemodynamic compromise
and death, perhaps related to hypoxic pulmonary vasocon-
striction and right-to-left shunting. We therefore exposed
the animals to the lowest oxygen content that was tolerable,
typically 14% to 16%, providing arterial Po, levels in the
range of 30 to 40 mm Hg, which might not have been
sufficient to stimulate upregulation of HIF-1« and its down-
stream products. Alternatively, species differences between
rodents and piglets could account for the lack of HIF-1«
upregulation in response to the 3-hour period of hypoxia
that was used in this study. It is therefore possible that an
alternative hypoxic stimulus, such as a more prolonged
episode of hypoxia, could have induced HIF-1« upregula-
tion and neuroprotection. In addition to longer periods of
hypoxia, future investigations should aim to determine
whether larger doses of deferoxamine and CoCl, would
have a more pronounced protective effect.

One of the limitations of this study is that although we
have shown a correlation between the upregulation of
HIF-1a and neuroprotection, we have not conclusively es-
tablished the mechanism by which this protection occurs.
To do so, we would have ideally added further groups
combining the preconditioning stimuli with a specific
HIF-1a blocker to show that the protective effect would
have been abolished. In addition, HIF-1a is known to up-
regulate more than 20 downstream proteins, many of which
could play a role in the neuroprotective process demon-
strated. Clearly, further studies designed to delineate the
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roles of these other factors are indicated. However, the aim
of this study was not to provide new insight into the mech-
anism of action of HIF-1« but rather to apply the concept of
cerebral preconditioning to a clinically relevant animal
model. A second limitation is that although we saw differ-
ences in upregulation of HIF-1a and EPO after precondi-
tioning with deferoxamine and CoCl,, our study lacked the
necessary power to show statistical significance in most
cases. The aim of the first phase of the study was to establish
the time course of HIF-1a and EPO upregulation so as to
optimize the timing of the preconditioning event for the
second phase of the study. Therefore it was necessary to
euthanize the animals at several time points. Although the
small number of animals in each group at each time point
resulted in insufficient statistical power to detect even large
differences, a properly powered preliminary study would
have required an unjustifiably large number of animals.
Despite these limitations, the effects of deferoxamine and
CoCl, preconditioning on brain HIF-lae and EPO levels
were convincing enough to support further study.

In summary, this study has demonstrated that deferox-
amine and CoCl, preconditioning significantly upregulate
brain tissue HIF-1a levels and decrease neuronal injury
related to DHCA. This neuroprotective benefit was not seen
with hypoxic preconditioning. Until safety, optimal timing,
and dosage are determined, this technique is not immedi-
ately transferable to the clinical arena but has promising
potential as a method to induce ischemic tolerance and
prevent neuronal injury in infants undergoing DHCA.

We thank Ms Sara Katzmark, Ms Susan Schmarkey, and Ms
Robyn Walters for their technical assistance in conducting this
investigation.
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TABLE E1. Neurobhehavioral evaluation scores (0 = normal

function, 95 = brain death)

Level of consciousness

Normal 0
Clouded 5
Stuporous 12
Comatose 25
Respiration
Normal 0
Abnormal 5
Cranial nerves
Vision absent 1
Light reflex absent R/L 0.5/0.5
Corneal reflex absent R/L 0.5/0.5
Facial sensation absent 1
Auditory absent 1
Gag reflex absent 1
Motor-sensory function
Flexor response to pain: forelimbs R/L 1
Flexor response to pain: hindlimbs R/L mn
Righting reflex absent 10
Gait
Normal 0
Minimal ataxia 5
Moderate ataxia 10
Able to stand 15
Unable to stand 20
No purposeful movement 25
Behavior
Not drinking 10
Not exploring 10
Total 95
R, Right; L, left.
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Figure E1. Western blot gels of erythropoietin (A) and hypoxia inducible factor (B) protein, demonstrating more
prominent staining in brains of cobalt chloride-treated (Co) and deferoxamine-treated (D) animals compared with
control (C) and hypoxia-pretreated (H) animals.
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TABLE E2. Age, weight, and hemodynamic parameters of piglets undergoing cardiopulmonary bypass and deep

hypothermic circulatory arrest

Control (n = 6) Hypoxia (n = 6) DFX (n = 7) CoCl, (n = 6) P value

Age (d) 188 £ 3.9 21+35 19.8 = 3.7 245+ 3.2 .069
Weight (kg) 52+09 47 =06 47 =08 55+ 0.8 249
Prearrest temperature (°C) 16.8 = 1.2 172+ 16 173 +09 175+ 05 .881
Prearrest arterial Pco, (mm Hg) 473+ 174 428 =57 446 =175 46.8 = 3.1 .508
Mean arterial pressure (mm Hg)

Before CPB 495 + 3.4 475 + 5.2 51.0 = 6.2 472 + 25 344

After CPB 59.0 = 9.6 59.2 = 8.6 62.5 = 11.0 575 +5.2 .736
Hematocrit

Before CPB 232 = 2.1 25.8 = 3.8 252 + 34 23.0 = 2.6 .083

On-pump 215+ 1.2 29.7 = 2.6 297 =29 295 + 26 374

After CPB 28.7+29 307 =22 293+ 39 293+ 22 675
Cooling time (min) 240+18 23342 234 + 2.1 240+ 28 .851
Total CPB time (min) 167 = 8.4 166 = 7.9 165 + 4.7 159 + 4.1 173

No significant differences were detected. Results are presented as means = SD. DFX, Deferoxamine; CoCl,, cobalt chloride; CPB, cardiopulmonary bypass.

TABLE E3. Percentage of animals impaired over time after
surgical intervention

Percentage of animals with neurobehavioral

impairment
POD 1 POD 2 POD 4 POD 6
Control 100 100 50 33
Hypoxia 100 100 40 40
DFX 100 83 50 33
Cobalt 100 83 33 17

POD, Postoperative day; DFX, deferoxamine.

TABLE E4. Percentage of all animals with histologic brain
injury by type and region

Neuronal Tissue
loss Gliosis necrosis
Frontal lobe 78 48 48
Striatum 96 22 17
Parietal lobe 92 n 67
Hippocampus 64 23 5
Thalamus 8 4 0
Cerebellum 95 64 45
Pons 0 0 0

TABLE E5. Results of Kruskal-Wallis test of group differ-
ences in severity of histologic brain injury

Test of treatment
group difference

X P value

Over all regions

Neuronal loss 6.029 110

Gliosis 3.697 .296

Tissue necrosis 5.399 145
Over all brain injury types

Frontal lobe 2.166 539

Striatum 0.652 .884

Parietal lobe 1.323 124

Hippocampus 11.491 .009

Cerebellum 5.222 .156

X% X test with 3 df.
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TABLE E6. Results of Kruskal-Wallis test of group differences in cleaved caspase 3 among regions of the hippocampus

Test of treatment group

Median percentage of apoptotic nuclei difference
Control Hypoxia DFX Cobalt X P value
Dentate gyrus 0.32 0.24 0.13 0.26 245 434
CA1 0.1 0.10 0.04 0.07 3.08 319
CA2 0.15 0.18 0.08 0.07 6.95 073
CA3 0.21 0.22 0.10 0.1 4.51 21

DFX, Deferoxamine; x% x* test with 3 df.

Figure E2. Photomicrographs demonstrating hypereosinophilia (black arrows), which is indicative of acute
neuronal loss in the hippocampus of a control animal (A) and a cobalt chloride—treated animal (B).
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