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a b s t r a c t

We establish some representations for the smallest and largest zeros of orthogonal
polynomials in terms of the parameters in the three-terms recurrence relation. As a
corollary we obtain representations for the endpoints of the true interval of orthogonality.
Implications of these results for the decay parameter of a birth–death process (with killing)
are displayed.
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1. Introduction

This paper is concerned with representations for the smallest and largest zeros of orthogonal polynomials in terms of
the parameters in the three-terms recurrence relation. Some results on the decay parameter of an ergodic birth–death
process are suggestive of representations for the extreme zeros that have not yet appeared in the literature on
orthogonal polynomials. Our main theorem establishes the correctness of these representations. As a corollary we obtain
representations for the extreme points of the support of the orthogonalizing measure.
The paper is organized as follows. After collecting some known, but relevant properties of orthogonal polynomials in

Section 2, we will derive our main results in Section 3. In Section 4 we describe some applications. In particular, we regain
the results on the decay parameter of an ergodic birth–death process and extend these to the wider class of birth–death
processes with killing.

2. Preliminaries

Our point of departure is the familiar three-terms recurrence relation for orthogonal polynomials. That is, we consider a
sequence of monic polynomials {Pn(x)}∞n=0 satisfying

Pn(x) = (x− cn)Pn−1(x)− λnPn−2(x), n > 1,
P0(x) = 1, P1(x) = x− c1,

(1)
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where cn is real and λn > 0. By Favard’s theorem, there exists a positive Borel measure ψ on the real axis (of total mass 1,
say) with respect to which the polynomials {Pn(x)} are orthogonal, that is,∫

∞

−∞

Pn(x)Pm(x)ψ(dx) = knδnm, n,m ≥ 0,

with kn > 0. We refer to Chihara [1] for the following preliminary results.
The polynomial Pn(x) has n real and simple zeros xn1 < xn2 < · · · < xnn, and the zeros of Pn(x) and Pn+1(x) mutually

separate each other, that is,

xn+1,i < xni < xn+1,i+1, i = 1, 2, . . . , n, n ≥ 1. (2)

It follows that the limits

ξi := lim
n→∞

xni and ηi := lim
n→∞

xn,n−i+1, i ≥ 1, (3)

and the limits

σ := lim
i→∞

ξi and τ := lim
i→∞

ηi

exist (but may be infinite), and satisfy

−∞ ≤ ξi ≤ ξi+1 ≤ σ ≤ τ ≤ ηi+1 ≤ ηi ≤ ∞, i ≥ 1. (4)

We also recall that

ξi = ξi+1 ⇒ ξj = σ , j ≥ i and ηi+1 = ηi ⇒ ηj = τ , j ≥ i,

where we use the convention ξ0 := −∞, η0 := ∞.
Let us assume that the Hamburger moment problem associated with the polynomials {Pn(x)} is determined, so thatψ is

the unique orthogonalizing measure for the polynomials {Pn(x)}. Then, if ξ1 > −∞, the quantities ξi are closely related to
supp(ψ), the support of the orthogonalizing measure ψ . Indeed, lettingΞ := {ξ1, ξ2, . . .}, we have

σ = ∞⇒ supp(ψ) = Ξ , (5)

while

σ <∞⇒ supp(ψ) ∩ (−∞, σ ] = Ξ̄ , (6)

a bar denoting closure. Moreover, σ is the smallest limit point of supp(ψ). If η1 <∞, analogous statements are valid about
the relation between supp(ψ) and the set H := {η1, η2, . . .}. The interpretation of ξ1 as the smallest point of supp(ψ)
is relevant for the application we describe in Section 4. The interval [ξ1, η1] is sometimes referred to as the true interval of
orthogonality, since there exists a unique orthogonalizingmeasurewith support in [ξ1, η1]whether the Hamburgermoment
problem is determined or not.
In this paper we focus on representations for the extreme zeros xn1 and xnn, and for the endpoints ξ1 and η1 of the true

interval of orthogonality. We note that if xn1 < xn2 < · · · < xnn are the zeros of Pn(x), then−xnn < −xn,n−1 < · · · < −xn1
are the zeros of Pn(−x).Moreover, the polynomials P̄n(x) := (−1)nPn(−x) are readily seen to satisfy a recurrence relation
of the type (1) with parameters c̄i := −ci and λ̄i := λi. So a representation for xn1 (or ξ1) yields a representation for xnn (or
η1), and vice versa, simply by reversing the sign and replacing ci by−ci.

3. Representations

It will be convenient in what follows to let λ1 := 0. The null vector will be denoted by 0, and we write a > 0 (a ≥ 0)
whenever each element of the vector a is positive (nonnegative).
Denoting the n× n identity matrix by In, and defining the tri-diagonal matrix

Tn ≡ (t
(n)
ij ) :=


c1 λ2 0 · · · 0 0 0
1 c2 λ3 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 1 cn−1 λn
0 0 0 · · · 0 1 cn

 , (7)

it is easily seen that det(xIn − Tn) = Pn(x), so that the zeros of Pn(x) are precisely the eigenvalues of Tn. This observation
enables us to prove our main result using matrix theory.
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Theorem 1. Let n > 1, a ≡ (a1, a2, . . . , an), and an+1 := 0. Then one has

xn1 = max
a>0

{
min
1≤i≤n

{
ci − ai+1 −

λi

ai

}}
= min

a>0

{
max
1≤i≤n

{
ci − ai+1 −

λi

ai

}}
, (8)

and

xnn = min
a>0

{
max
1≤i≤n

{
ci + ai+1 +

λi

ai

}}
= max

a>0

{
min
1≤i≤n

{
ci + ai+1 +

λi

ai

}}
. (9)

Proof. We will prove (9). The representations for xn1 then follow immediately by the argument given in the last paragraph
of Section 2.
Let c ∈ R be such that ci+c > 0, for all i, 1 ≤ i ≤ n. Then all elements of thematrix T ≡ (tij) := Tn+cIn are nonnegative,

so that we can apply the Perron–Frobenius theory to T (see, for example, Meyer [2, Chapter 8]). It follows in particular that
T has a positive real eigenvalue equal to its spectral radius ρ(T ), and, since T is irreducible, that the corresponding left and
right eigenvectors are positive. Moreover,

ρ(T ) = max
x>0

min1≤i≤n


n∑
j=1
tij xj

xi


 = minx>0

max1≤i≤n


n∑
j=1
tij xj

xi


 , (10)

where x ≡ (x1, x2, . . . , xn). Without loss of generality we can normalize x such that x1 = 1. Writing ai = λixi/xi−1 for i ≥ 2
and a1 = 1, say, the expression

∑n
j=1 tij xj/xi reduces to ci + c + ai+1 + λi/ai. Also, we must have ρ(T ) = xnn + c, since

xni + c are the eigenvalues of T . The representations (9) are therefore implied by (10). �

Remark. Result (10) is known as the Collatz–Wielandt formula. The first representation in (10) can be slightly strengthened
by requiring a ≥ 0 only, and taking the minimum over all i such that ai 6= 0. A similar strengthening of the second
representation is not valid. (Cf. Exercises 8.2.9 and 8.2.10 in the updates on [2, Chapter 8].)

Theminmax representation for xnn and itsmaxmin counterpart for xn1were first obtained in [3] by cleverly exploiting the
recurrence relation (1). The same results appeared in [4]with a proof involving Geršgorin’s circles. The other representations
in Theorem 1 seem to be new. The computational benefits of the representations are clear: any choice a > 0 yields the
bounds

min
1≤i≤n
{ci − ai+1 − λi/ai} ≤ xn1 ≤ max

1≤i≤n
{ci − ai+1 − λi/ai} . (11)

We note that that by letting ai = −Pi−1(xn1)/Pi−2(xn1) for 2 ≤ i ≤ n and a1 = 1, say, we have a > 0 and

xn1 = ci − ai+1 −
λi

ai
, 1 ≤ i ≤ n,

so that the two inequalities in (11) becomeequalities simultaneously. A similar statement obviously holds for xnn. In the same
vein we observe that ξ1 is the limit point of the decreasing sequence {xn1}, so that, by choosing ai = −Pi−1(ξ1)/Pi−2(ξ1) for
i ≥ 2 and a1 = 1, say, we have a ≡ (a1, a2, . . .) > 0, and

ξ1 = ci − ai+1 − λi/ai, i ≥ 1,

with a similar result being valid for η1. These observations and Theorem 1 yield the following representations for the
endpoints of the true interval of orthogonality.

Corollary 2. Let n > 1 and a ≡ (a1, a2, . . .). Then one has

ξ1 = max
a>0

{
inf
i≥1

{
ci − ai+1 −

λi

ai

}}
= min

a>0

{
sup
i≥1

{
ci − ai+1 −

λi

ai

}}
, (12)

and

η1 = min
a>0

{
sup
i≥1

{
ci + ai+1 +

λi

ai

}}
= max

a>0

{
inf
i≥1

{
ci + ai+1 +

λi

ai

}}
. (13)

The max inf representation for ξ1 was first given in [5]. The other representations seem to be new.
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4. Applications

In this section we describe an application of our results – Corollary 2 in particular – to a class of stochastic processes. But
we must introduce some terminology and basic results first.
A birth–death process with killing X ≡ {X(t), t ≥ 0} is a Markov chain taking values in S := {0, 1, . . .} with q-matrix

Q ≡ (qij, i, j ∈ S) given by

qi,i+1 = αi, qi+1,i = βi+1, qii = −(αi + βi + γi),
qij = 0, |i− j| > 1,

(14)

where αi > 0 and γi ≥ 0 for i ≥ 0, βi > 0 for i > 0, and β0 = 0. The parameters αi and βi are the birth and death
rates in state i, while γi may be regarded as the rate of absorption, or killing, into a fictitious state ∂ , say. We refer toX as
a pure birth–death process if all killing rates are zero, with the possible exception of γ0. The processX is ergodic (positive
recurrent) if it is a pure birth–death process satisfying γ0 = 0 and

∞∑
n=0

πn <∞,

where πn are constants given by

π0 := 1 and πn :=
α0α1 . . . αn−1

β1β2 . . . βn
, n > 0.

We will assume that the processX is uniquely determined by its rates. (See [6] for the precise condition.)
Generalizing a classic result of Karlin andMcGregor [7],wehave shown in [6] (see also [8]) that the transition probabilities

pij(t) ≡ Pr{X(t) = j | X(0) = i}, t ≥ 0, i, j ∈ S,

of the processX can be represented in the form

pij(t) = πj

∫
∞

0
e−xtRi(x)Rj(x)ψ(dx), t ≥ 0, i, j ∈ S, (15)

where Rn(x), n ≥ 0, are polynomials defined by the recurrence relation

αnRn+1(x) = (αn + βn + γn − x)Rn(x)− βnRn−1(x), n ≥ 1,
α0R1(x) = α0 + γ0 − x, R0(x) = 1,

(16)

and ψ is a measure of total mass 1 on the interval [0,∞) with respect to which the polynomials {Rn(x)} are orthogonal.
Letting

cn+1 := αn + βn + γn, λn+2 := αnβn+1 n ≥ 0,

it is easily seen that the polynomials Pn(x) := (−1)nα0α1 . . . αn−1Rn(x), n ≥ 1, and P0(x) := R0(x) = 1 satisfy (1), so that
we can identify the orthogonalizing measure with the measure ψ of Section 2.
The decay parameter δ of X is defined as the minimum of the exponential rates of convergence of the transition

probabilities pij(t) to their limits, and may be identified with the exponential rate of convergence of p00(t) to its limit (see
[9–12] for proofs and developments.) A straightforward generalization of [11, Theorem 4.1] (which is formulated in terms
of a pure birth–death process) expresses δ in terms of the quantities ξi, namely

δ =

{
ξ2 ifX is ergodic
ξ1 otherwise. (17)

Applying Corollary 2 therefore immediately yields the following.

Theorem 3. Let α−1 := 0 and a ≡ (a0, a1, . . .). The decay parameter δ of a nonergodic (that is, transient or null recurrent)
birth–death process with killing satisfies

δ = max
a>0

{
inf
i≥0

{
ζi − ai+1 −

αi−1βi

ai

}}
= min

a>0

{
sup
i≥0

{
ζi − ai+1 −

αi−1βi

ai

}}
, (18)

where ζi ≡ αi + βi + γi.

Themax inf representation for δ is known for pure birth–death processes (see [13] and [10]), but themin sup representation
seems to be entirely new.
If X is ergodic (so that, in particular, γi = 0 for all i) we can use the technique described in [9] (see also [10]) by

which the calculation of ξ2 is reduced to the calculation of the smallest point in the support of an orthogonalizing measure
corresponding to a dual birth–death process. Subsequently applying Corollary 2 to this dual process and translating the
result in terms of the parameters of the original processX, we obtain the following theorem.
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Theorem 4. Let a ≡ (a0, a1, . . .). The decay parameter of an ergodic birth–death process satisfies

δ = max
a>0

{
inf
i≥0

{
αi + βi+1 − ai+1 −

αiβi

ai

}}
= min

a>0

{
sup
i≥0

{
αi + βi+1 − ai+1 −

αiβi

ai

}}
. (19)

The max inf representation for δ is well known and has been proven by various techniques (see [13–15] and [10]). With
the help of [14, Lemma 2.1] it can be seen that both representations in (19) are essentially given in [16, Theorem 2.3] (see
also [17]). The min sup representation was observed earlier (in a finite setting) in [18] by the third author, and in [15] (see
also [19]) by Granovsky and Zeifman, who established its counterpart for the other end of the spectrum in [20]. These results
have inspired the research reported in this paper.
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