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Abstract 

This work presents dispatching strategies based on methods of job-flow and application-level scheduling in virtual organizations 
of distributed computational environments with non-dedicated resources. Job-flow management is implemented with the set of 
specific rules for resource usage. Applications are considered as parallel jobs. Strategies are based on economic scheduling 
models and diverse administration policies inside resource domains (clusters, computational nodes equipped with multicore 
processors etc.). Methods of priority economic scheduling of global job flows and local-level applications in distributed 
computations are studied. Job management structures and economic mechanisms for load balancing in distributed environments 
are considered.  
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1. Introduction 

Distributed computational environments such as Grid have been known for significant efficiency increase in 
shared computational resource usage and provision of scientific and enterprise communities with solutions for 
complex computational tasks. However, those who are responsible for setting up Grid infrastructure and economy 
encounter difficulties while defining policies and strategies for efficient resource management and job scheduling. A 
strategy, for instance, may be a tradeoff between optimal resource load and fulfillment of all the user requirements. 
Heterogeneity, changing composition, different owners of different nodes whose computing time is partially shared 
by users turn the organization of a distributed computational environment into an especially difficult problem.  
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Utility Grid [1], multi-agent systems [2] and cloud computing [3] are types of distributed environments where 
usage of economic mechanisms is seen as promising. Those economic mechanisms are designed to solve tasks like 
resource management and scheduling of user jobs in a transparent and efficient way. Within the context of any used 
economic model the interests of different participants of a distributed computing environment (such as end-users or 
node owners) are often contradictory. It is assumed that node owners may have local job flows (their own tasks) and 
global job flow (which is formed by external user jobs) competing for limited computational resources of the node. 
Elaboration of pricing rules which are used to calculate a fee for node computing time usage and take into account 
user-required quality of service (QoS) is also a very serious problem [1-3]. An overview of various approaches to 
this problem is given in [4]. Heuristic algorithms that are responsible for resource selection based on user-given 
utility function are described in [5]. Some resource management models offer simple search and selection of 
resources required by a user [6] and do not support any optimization. Others do not take into account features related 
to global and local job competition, the competition among users and other characteristics of distributed 
environments with non-dedicated computational resources [7]. When constructing a computing environment  based 
on the available resources, e.g. in the model which is used in X-Com system [6], one normally does not create a set 
of rules for resource allocation as opposed to constructing clusters or Grid-based virtual organizations. This reminds 
of some techniques, implemented in Condor project [8]. Non-clustered Grid resource computing environments are 
using similar approach. For example, @Home projects which are based on BOINC system realize cycle stealing, i.e. 
either idle computers or idle cycles of a specific computer. Another still similar approach is related to the 
management of distributed computing based on resource broker assignment. Besides Condor project [8], one can 
also mention several application-level scheduling projects: AppLeS, APST, Legion, DRM, Condor-G, and 
Nimrod/G. A survey of these systems is given in [9, 10].  

A resource broker model [1-5] dynamically employs various economic policies which perform resource 
management. It is decentralized and application-specific and has two parties: node owners and brokers representing 
users. Another common trend is related to virtual organizations [7, 9, 10] with central schedulers providing job-flow 
level scheduling and optimization. While former type of resource management is well-scalable, the simultaneous 
satisfaction of various application optimization criteria submitted by independent users is unreachable in essence 
and also can deteriorate such integral QoS rates as total execution time of a sequence of jobs or overall resource 
utilization. The latter type, virtual organizations naturally restrict the scalability. However, scheduling based on 
uniform and controlled rules for allocation and consumption of resources makes it possible to improve the efficiency 
of resource usage and find a tradeoff between contradictory interests of different participants. 

In this work, we propose two-level model of resource management system which is functioning within a virtual 
organization (VO). Resource management is implemented with a hierarchical structure consisting of a 
metascheduler and subordinate job schedulers that are controlled by the metascheduler and in turn interact with 
resource managers (e.g., with batch job processing systems). The advantages of hierarchically organized resources 
managers are obvious, e.g., the hierarchical job-queue-control model is used in X-Com [6], GrADS [11], and Moab 
scheduler [12]. Hierarchy of intermediate servers allows decreasing idle time for the processor nodes, which can be 
inflicted by transport delays or by unavailability of the managing server while it is dealing with the other processor 
nodes. Tree-view manager structure in the network environment of distributed computing allows avoiding deadlocks 
when accessing resources. Another important aspect of computing in heterogeneous environments is that processor 
nodes with the similar architecture, contents, administrating policy are grouped together under the job manager 
control. The application-level optimization begins when the job-flow level optimization is finished. Such a flexible 
structure coupled with complex metascheduling approach enables multiaspect resource management and makes 
possible to control dynamic priority of job execution, resource selection and provide multicriteria optimization both 
on the job-flow scale and for a specific job, according to its requirements and optimization criteria. In some 
applications jobs require co-scheduling and resource co-allocation on several resources [13-16]. In this case resource 
allocation has a number of substantial specific features caused by autonomy, heterogeneity, dynamic content 
changes, and node failures [6, 7, 9, 10].  

The proposing approach is similar one in gLite Workload Management System [17], where Condor [8] is used as 
a scheduling module. But the significant difference between the approach proposed in this work and well-known 
scheduling solutions for distributed environments such as the Grid [1, 3-7, 17, 18] is the fact that the execution 
strategy is formed on a basis of formalized efficiency criteria, which efficiently allows to reflect economic principles 
of resource allocation by using relevant cost functions and solving a load balance problem for heterogeneous 
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processor nodes. At the same time the inner structure of the job is taken into account when the resulting schedule is 
formed. Thus, two approaches are uniquely combined in a proposed two-tier scheduling model.  

This work is organized as follows. Section 2 overviews model components and metascheduling workflow. In 
section 3 a strategy search is formalized. Section 4 contains simulation results. Section 5 summarizes the work and 
describes further research topics. 

2. Model components  

Let us define basic model components presented in this work. Resource is defined as an abstract computational 
entity, which can be used for execution of one and only one task. The complex set of connected interrelated tasks 
form a job. Our model has the following components.  
• VO, that defines resource co-allocation dispatching strategies, pricing policies and resource load-balancing 

mechanisms. 
• Heterogeneous hierarchical computational environment that contains computational resources (Grid nodes, CPUs 

or others) with different performance indices. Each resource is considered as non-dedicated.  
• Metascheduler, which implements resource management strategies and policies of VO. 
• Application-level schedulers that analyze internal job structure and schedule single tasks. 

Each computational node of the heterogeneous environment is mapped to a computational resource line in the 
metascheduler resource management routine. Several resource lines are combined into a virtual resource domain. 
Each resource line has two static attributes which are its performance P and its base price tag F for a computing 

time unit. The performance is an inherent parameter of a node and the base price tag is assigned by its owner. The 
dynamic characteristic of a node is represented with its local schedule which is a list of slots available for 
reservation. This list is sent to metascheduler by request. A slot is a continuous interval of time and is described with 
three parameters: its start time, its length and its fee [13-15]. A resource request is a set of a few constraints 
determined by a user which correspond to the properties of the respective user job. They include: minimal 
performance requirement for computational nodes, minP ; maximal price tag for a single timeslot, maxF ; number n

of simultaneously reserved timeslots; minimal slot length; the internal structure of a job as a  directed acyclic graph 
(DAG), where vertices represent single tasks and edges represent data dependencies [16]; deadline for the job 
execution. A job may require more than one timeslot if it includes several segments that can be executed in parallel 
way, for instance. Then the user specifies the number of reserved timeslots and minimal performance requirement 
that applies for them all. The whole job budget is determined by the timeslot number and the maximum price per 
timeslot. The minimal timeslot length requires an additional explanation. This is the minimal time estimated by the 
user which is required to complete job execution given the performance of the nodes meet the minimal requirement 

minP .  

The hierarchical model of the computational environment implies two-tier scheduling (Fig. 1). On the job-flow 
level the set of independent jobs is distributed between resource domains according to dispatching strategies and 
economic criteria. Schedule on this level is defined by a metascheduler as a slot set for each job, which is optimal in 
terms of a whole job set. Application-level schedulers receive the list of resources which were meant to execute the 
job on and a strategy, which defines the rule used to execute tasks of a concrete job. On this level an optimal slot 
and specific resource are defined for each single task in a job, thus, making it possible to take internal job structure 
into account. The metascheduler works in cycles which are quanta of its process. For each cycle it has following 
information: a set of resource lines and a global job queue. What it needs then is a batch of jobs which is a ranked 
job list and a subset of available slots for a specific virtual resource domain and a certain timeframe which is called 
a scheduling interval. The length of the batch and the scheduling interval are parameterized by VO administrators. 
Jobs are fetched into the batch accordingly to several variables, such as the maximum price tag, deadline, and the 
number of failed scheduling attempts for a job. These variables being weighted and added up determine job rank 
according to which it takes a position closer to head or tail of a batch. The preparation phase ends and the actual 
scheduling process is executed as follows (see Fig. 1). The metascheduler analyzes available slots and finds an 
optimal slot combination to accommodate every job in a batch using economic criteria. The budget and the deadline 
defined by the end-user are considered during this step. The algorithms for this step were detailed in [13-15]. After 
the domain is determined metascheduler defines the strategy for each job. For example as shown on Fig. 1, the user, 
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who has sent the job i has the higher budget than the one who has sent the job k. The strategy for i may be expressed 
as “execute as soon as possible” while the strategy for k may be expressed as “execute as late as possible within the 
defined deadline”. These jobs are later sent to application-level schedulers and the application-level scheduling 
begins. Application-level schedulers query internal schedules for all the resources which were selected for each job, 
analyze the job DAG and form a resulting schedule for every task according to the strategy. Application-level 
schedulers are guaranteeing that there are no collisions between the tasks which were scheduled and local tasks, 
which may have priority over the job-flow.  

3. Formalization of job-flow and application-level scheduling 

Let us note a global resource set { }M,..,p,rR pg 1== , which includes all resources. A global job-flow is a set of 

jobs received by the metascheduler in time: { },I,..i,G,T,c,lFL iiiig ,1== where the job i  is represented as il  – the 

amount of resource slots required, ic  - the maximal budget end-user is ready to allocate for execution of the job, iT

– deadline, iG  – the job DAG. Metascheduler at any time moment may query each resource, receive its local 

schedule and build a set of slots gtS  – idle time intervals. 

Fig.1. Model components 



180   Victor Toporkov et al.  /  Procedia Computer Science   9  ( 2012 )  176 – 185 

Let us introduce a set of strategies },..,1,{ LlstST l == , which are based on economic criteria and are defined by 

Grid-managers and developers. Let SL  be a set of K  slots suitable to execute a subset of jobs gp FlFL ⊆ . A slot 

set is considered as suitable for the job i if the execution is possible in terms of the resource number, the budget ic

and the deadline iT . It is assumed that for every job there is at least one suitable slot set

},..,1{,, KkkslSLsl ii ∈=∈ . On a job-flow level for each job metascheduler aims at finding a slot set isl  and a 

strategy ist  for which the value of the function )( ii slg , that defines whether the slot set is being effective for the 

job i , would be optimal [14]. The internal job structure iG  is not taken into account at this time. The mechanism to 

define )( ii slg  which was developed in the previous works [13-15] is now improved. According to the resource 

request it is required to find a “window” with the following description: n  concurrent time-slots providing resource 
performance rate at least P  and maximal resource price not higher than maxF  should be reserved for a time span 

iT . The length of each slot in the window is determined by the performance rate of the node on which it is allocated. 

Thus as a result we have a window with a “rough right edge” (Fig. 2). In addition, the criterion of selecting the most 
suitable set of slots could be specified. This could be the minimum cost, the minimum runtime or, for example, the 
minimum power consumption criterion. The window search is performed on the list of all available slots sorted by 
their start time in ascending order. This condition is necessary to examine every slot in the list and for operation of 
search algorithms of linear complexity [13-15].  

Fig. 2. Window with a “rough right edge” 

The scheme of a search for a window that meets the requirements and effective by the given criterion can be 
represented as follows. 

1°. From the list of available system slots the next suitable slot ks  is extracted and examined.  

Slot ks  suits, if following conditions are met:  

a) Resource performance rate ( ) PsP k ≥  for slot ks ;  

b) Slot length (time span) is enough (depending on the actual performance of the slot's resource) 
( ) ( ) PsPTsL kik /∗≥ .  

If conditions a) and b) are met, the slot ks is successfully added to the window list. 

2°. A current window start time is a set equal to the start time of the last added slot. 
3°. Slots whose length has expired considering new window start time lastT  are removed from the list. The 

expiration means that remaining slot length ( )ksL′ , calculated like shown in step 1°b, is not enough assuming the 

k -th slot start is equal to the last added slot start: ( ) ( )( )( ) ( ) PsPsTTTsL kkik /last −+<′ , where ( )ksT  is the slot's 

start time. Any combination of the remaining slots can form a window of necessary length. 
4°. If the number of slots m in the current window is greater or equal to n , it is required to select n  slots, 

effective on the specified criteria and at the same time satisfying the total cost and deadline restrictions. Suppose the 
window W  of size n with a target criterion value equal to crW  was selected. (The problem of selecting efficient 
window consisting of n  slots in the case of nm > will be described below.) 
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5°. The target criterion value crW  of window W is compared with the 'cr  – the current best target criterion 
value for all previously found windows. If rccrW ′<  (in case of a minimization problem) the window W
announced as a new window-candidate and crW  becomes the new best criteria value: crWrc =′ . Go to step 1°. 

6°.The algorithm ends after the last available slot is processed. The result of the algorithm is the window-
candidate with the best target criteria value. 

The described algorithm can be compared to the algorithm of maximum/minimum value search in an array of flat 
values. The expanded window of size m “moves” through the ordered list of available system slots. At each step any 
combination of n  slots inside it (in case when mn ≤ ) can form a window that meets all the requirements to run the 
job. The effective on the specified criteria window of size n  is selected from this m  slots and compared with the 
results in the previous steps. By the end of the slot list the only solution with the best criteria value will be selected. 
Consider the problem of selecting a window of size n  with a total cost not more than S  from the list of nm >  slots 
(in case when nm =  the selection is trivial). The maximal budget is counted as nFtS s= , where st  is a time span 

to reserve and n  is the necessary number of slots. The current extended window consists of m slots msss ,...,, 21 . 

The cost of using each of the slots according to their required length is: mccc ,...,, 21 . Each slot has a numeric 

characteristic iz  the total value of which should be minimized in the resulting window. Then the problem could be 

formulated as follows: min...2211 →+++ mm zazaza , Scacaca mm ≤+++ ...2211 , na...aa m =+++ 21 , 

{ } mrar ,...,1,,10 =∈ . Additional restrictions can be added, for example, considering the specified value of deadline. 

Finding the coefficients maaa ,...,, 21 each of which takes integer values 0 or 1 (and the total number of ‘1’ values is 

equal to n ), determine the window with the specified criteria extreme value. Job-flow level scheduling ends here. 
Application-level schedulers receive following input data. 

• The optimal slot set sl  and the description of all corresponding resources: gj RJjrR ⊆== },..,1,{ . 

• The directed acyclic information graph { }E,VG = , where { }n,..i,vV i 1==   is a set of vertices that correspond to 

job tasks, for each of those execution time estimates 0
ijτ  on each of resources in R  are provided, E  is a set of 

edges that define data dependencies between tasks and data transfer time intervals.   
• The dispatching strategy st , which defines the criterion for a schedule expected 
• The deadline iT  or the maximal budget ic  for the job (depends on a dispatching strategy and )( ii slg ). 

The schedule which is being defined on an application level is presented as follows: [ ]{ }nifsSh iii ,..,1, , , =α= , 

where ],[ ii fs  is a time frame for a task i  of a job and iα  defines the selected resource. Sh  is selected in the way 

that the criterion function )(ShfC =  achieves an optimum value. The critical jobs method [16] which is used to 

find the optimal schedule and to define f  consists of three main steps: 1) forming and ranging a set of critical jobs 

(longest sets of connected tasks) in the DAG; 2) consecutive planning of each critical job using dynamic 
programming methods; 3) resolution of possible collisions. A detailed algorithm description is presented in [19]. 

4. Simulation results 

The two-tier model described in the sections 2 and 3 was implemented in a simulation environment on two 
different and separated levels: on the job-flow level, where job-flows are optimally distributed between resource 
domains and on the application level, where jobs are decomposed and each task is executed in an optimal way on a 
selected resource.  

4.1. Job-flow level scheduling simulation results 

Job-flow level metascheduling was simulated in a specially implemented and configured software that was 
written to test the features of the two-tier resource management. An experiment was designed to compare the 
performance of our job-flow level metascheduling method with other approaches such as FCFS and backfilling [12, 
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20]. Let us remind that our scheduling method detailed in works [13-15] involves two stages that backfilling does 
not have at all, namely, slot set alternative generation and further elaboration of specific slots combination to 
optimize either time or cost characteristic for an entire job batch. Backfilling simply assigns “slot set” found to 
execute a job without an additional optimization phase [20]. This behavior was simulated within our domain with 
random selection from an alternative slot, each job having one or more of them. So two modes were tested: with 
optimization (“OPT”) and without optimization (“NO OPT”).  

The experiment was conducted as follows. Each mode was simulated in 5000 independent scheduling cycles. A 
job batch and environment condition was regenerated in every cycle in order to minimize other factor influence. A 
job batch contained 30 jobs. Slot selection was consistent throughout the experiment. If a job resource request could 
not be satisfied with actual resources available in the environment, then it was simply discarded. For optimization 
mode as well as for no-optimization mode four optimization criteria or problems were used: 1) maximize total 
budget, limit slot usage; 2) minimize slot usage, limit total budget; 3) minimize total budget, limit slot usage; 4) 
maximize slot usage, limit slot budget.  

Results presented in Table 1 apply for the problem 1. As one can see optimization mode, which is using 
additional optimization phase after slot set generation wins against random slot selection with about 13% gain in the 
problem 1 whose concern is about maximizing total slot budget thus raising total economical output per cycle and 
owners' profits. 

Table 1. Experimental results for the problem 1: Total budget maximization with limited slot usage 

Mode 

Average jobs 
being processed 
per cycle (max 

30) 

Average total 
slot cost per 

cycle, cost units

Average total 
slot usage per 

cycle, time 
units

Average slot usage 
limit per cycle, time 

units

OPT 20.0 11945.98 421.22 471.14 

NO OPT 20.0 10588.53 459.36 471.85 

Comparable results were obtained for other problems which are summarized in Table 2. Optimized values are 
outlined in light grey. 

Table 2. Experimental results for the problems 2-4 

Mode Average jobs 
being processed 
per cycle (max 

30) 

Average total 
budget (slot 

cost) per cycle, 
cost units

Average total 
slot usage per 

cycle, time 
units

GAIN, % 

Problem 1: Maximize total budget, limit slot usage 

OPT 20.0 11945.9 421.2  
+12.8 

NO OPT 20.0 10588.5 459.4 
Problem 2: Minimize slot usage, limit total budget 

OPT 12.4 7980.4 300.9 
+10.6 

NO OPT 12.4 7830.9 332.8 
Problem 3: Minimize total budget, limit slot usage 
OPT 15.1 9242.4 410.057  

+6.2 
NO OPT 15.3 9813.9 406.612 
Problem 4: Maximize slot usage, limit total budget 
OPT 15.28 9870.8 416.835 

+3.0 

NO OPT 15.4 9718.1 404.8 
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These results are showing the advantage of the metascheduling on the job-flow level. The next section describes 
the experiments on the application level. 

4.2. Application level scheduling simulation results 

The experiment results presented in Table 3 shows the advantage of the critical jobs method usage in a two-tier 
scheduling model compared to consecutive application-level scheduling.  

Here k=0.75 means that each job is sent to be scheduled after 75% of the time allocated for the previous one: 
while the scheduling cost for a job is more or less the same, 1000 jobs are planned 25% faster.  

Consider another experiment: while changing the length of the scheduling interval, we will estimate the 
proportion of successfully distributed jobs. The length of the scheduling interval is equal to ,6.2,..,0.1,* == hhlL

with step 2.0 , where l  is the length of the longest critical path of tasks in the job and h  is a distribution interval 
magnification factor. There were carried 200 experiments for each h  (bold points in Fig. 3).  

Table 3. Two-tier model vs consecutive application-level scheduling   

Parameter Application-level scheduling Two-tier model (k=0.75) 
Jobs number 1000 1000 
Execution time 531089 time units 399465 time units 
Optimal schedules 687 703 
Mean collision count 3.85 4.41 
Mean load (forecast) 0.1843 0.1836 
Mean load (fact) 0.1841 0.1830 
Mean job cost 14.51 units 14.47 units 

Analysis of the Fig. 3 shows that increasing the scheduling interval (relatively to the execution time of the longest 
critical path on the nodes with the highest performance) is accompanied by a significant increase in the number of 
successfully distributed jobs. The detailed study of this dependence can give a priori estimates of an individual job 
successful distribution probability. 

Scheduling interval factor, h
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Fig. 3.  Dependence of the proportion of the successful job distributions on the length of the distribution interval 

In the next experiment we will consider the dependence of successful distributions number and the number of 
collisions per experiment on the level of resource instances availability. The experiments were performed in 
conditions of limited resources using the specific instances of the resources. The number of resources J  in each 
experiment was determined as NjJ *= , where j  – factor (x-axis) and N  – number of tiers in the graph. Fig. 4 

shows results of the experiments with different j  values and 7,5,3=N . The obtained dependencies (Fig. 4) suggest 

that the collisions number depends on the resources availability. The lower the number of resource instances and the 
greater the number of tiers in the graph – the more collisions occurred during the scheduling. At the same time the 
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number of resource instances affects the successful distribution probability. With a value of 4>j  (that is, when the 

number of available resource instances is more than 4 times greater than the number of tiers in the graph) all cases 
provide the maximum value of successful distribution probability. These results are subject of future research of 
refined strategies on a job-flow level. 
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Fig. 4. Simulation results: (a) resource dependencies of collisions number; (b) successful job distribution proportion  

5. Conclusions 

In this work, we address the problem of independent job-flow scheduling in heterogeneous environment with 
non-dedicated resources.  

Each job consists of a number of interrelated tasks with data dependencies. Using the combination of existing 
methods with a number of original algorithms the resulting schedules are computed. These schedules meet the 
defined deadlines and budget expectations, provide optimal load-balance for all the resources and follows VO 
strategies, thus, allowing to achieve unprecedented QoS and economic competitiveness for distributed systems such 
as Grid. The experiments which were conducted are showing the efficiency of methods developed for both job-flow 
and application level scheduling. The model proposed is showing the way these methods and advantages can be 
converged in one place making it possible to achieve the main goal. Currently there is no direct comparison with the 
existing systems made due to the fact, that today’s systems do not perform optimization on both job-flow and 
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application levels.  
Future research will include the simulation of connected job-flow and application levels and experiments on real 

Grid-jobs in order to get finer view on advantages of the approach proposed.  
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