
 Procedia Computer Science 9 (2012) 176 – 185

1877-0509 © 2012 Published by Elsevier Ltd.
doi: 10.1016/j.procs.2012.04.019

International Conference on Computational Science, ICCS 2012

 Composite Scheduling Strategies in Distributed Computing with
Non-dedicated Resources

Victor Toporkov ,*, Alexey Tselishchevb, Dmitry Yemelyanova, Alexander Bobchenkova

a National Research University “MPEI”, ul. Krasnokazarmennaya 14, Moscow, 111250 Russia,
E-mail: ToporkovVV@mpei.ru, {groddenator, yemelyanov.dmitry}@gmail.com

b CERN (European Organization for Nuclear Research), CERN CH-1211 Genève 23 Switzerland
E-mail: Alexey.Tselishchev@cern.ch

Abstract

This work presents dispatching strategies based on methods of job-flow and application-level scheduling in virtual organizations
of distributed computational environments with non-dedicated resources. Job-flow management is implemented with the set of
specific rules for resource usage. Applications are considered as parallel jobs. Strategies are based on economic scheduling
models and diverse administration policies inside resource domains (clusters, computational nodes equipped with multicore
processors etc.). Methods of priority economic scheduling of global job flows and local-level applications in distributed
computations are studied. Job management structures and economic mechanisms for load balancing in distributed environments
are considered.

Keywords: scheduling; strategy; resource management; slot; job; batch; task; economic mechanisms

1. Introduction

Distributed computational environments such as Grid have been known for significant efficiency increase in
shared computational resource usage and provision of scientific and enterprise communities with solutions for
complex computational tasks. However, those who are responsible for setting up Grid infrastructure and economy
encounter difficulties while defining policies and strategies for efficient resource management and job scheduling. A
strategy, for instance, may be a tradeoff between optimal resource load and fulfillment of all the user requirements.
Heterogeneity, changing composition, different owners of different nodes whose computing time is partially shared
by users turn the organization of a distributed computational environment into an especially difficult problem.

* Corresponding author. Tel. +7-495-362-7145; fax: +7-495-362-5506.
E-mail address: ToporkovVV@mpei.ru.

Available online at www.sciencedirect.com

Open access under CC BY-NC-ND license.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82661759?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.0/

177 Victor Toporkov et al. / Procedia Computer Science 9 (2012) 176 – 185

Utility Grid [1], multi-agent systems [2] and cloud computing [3] are types of distributed environments where
usage of economic mechanisms is seen as promising. Those economic mechanisms are designed to solve tasks like
resource management and scheduling of user jobs in a transparent and efficient way. Within the context of any used
economic model the interests of different participants of a distributed computing environment (such as end-users or
node owners) are often contradictory. It is assumed that node owners may have local job flows (their own tasks) and
global job flow (which is formed by external user jobs) competing for limited computational resources of the node.
Elaboration of pricing rules which are used to calculate a fee for node computing time usage and take into account
user-required quality of service (QoS) is also a very serious problem [1-3]. An overview of various approaches to
this problem is given in [4]. Heuristic algorithms that are responsible for resource selection based on user-given
utility function are described in [5]. Some resource management models offer simple search and selection of
resources required by a user [6] and do not support any optimization. Others do not take into account features related
to global and local job competition, the competition among users and other characteristics of distributed
environments with non-dedicated computational resources [7]. When constructing a computing environment based
on the available resources, e.g. in the model which is used in X-Com system [6], one normally does not create a set
of rules for resource allocation as opposed to constructing clusters or Grid-based virtual organizations. This reminds
of some techniques, implemented in Condor project [8]. Non-clustered Grid resource computing environments are
using similar approach. For example, @Home projects which are based on BOINC system realize cycle stealing, i.e.
either idle computers or idle cycles of a specific computer. Another still similar approach is related to the
management of distributed computing based on resource broker assignment. Besides Condor project [8], one can
also mention several application-level scheduling projects: AppLeS, APST, Legion, DRM, Condor-G, and
Nimrod/G. A survey of these systems is given in [9, 10].

A resource broker model [1-5] dynamically employs various economic policies which perform resource
management. It is decentralized and application-specific and has two parties: node owners and brokers representing
users. Another common trend is related to virtual organizations [7, 9, 10] with central schedulers providing job-flow
level scheduling and optimization. While former type of resource management is well-scalable, the simultaneous
satisfaction of various application optimization criteria submitted by independent users is unreachable in essence
and also can deteriorate such integral QoS rates as total execution time of a sequence of jobs or overall resource
utilization. The latter type, virtual organizations naturally restrict the scalability. However, scheduling based on
uniform and controlled rules for allocation and consumption of resources makes it possible to improve the efficiency
of resource usage and find a tradeoff between contradictory interests of different participants.

In this work, we propose two-level model of resource management system which is functioning within a virtual
organization (VO). Resource management is implemented with a hierarchical structure consisting of a
metascheduler and subordinate job schedulers that are controlled by the metascheduler and in turn interact with
resource managers (e.g., with batch job processing systems). The advantages of hierarchically organized resources
managers are obvious, e.g., the hierarchical job-queue-control model is used in X-Com [6], GrADS [11], and Moab
scheduler [12]. Hierarchy of intermediate servers allows decreasing idle time for the processor nodes, which can be
inflicted by transport delays or by unavailability of the managing server while it is dealing with the other processor
nodes. Tree-view manager structure in the network environment of distributed computing allows avoiding deadlocks
when accessing resources. Another important aspect of computing in heterogeneous environments is that processor
nodes with the similar architecture, contents, administrating policy are grouped together under the job manager
control. The application-level optimization begins when the job-flow level optimization is finished. Such a flexible
structure coupled with complex metascheduling approach enables multiaspect resource management and makes
possible to control dynamic priority of job execution, resource selection and provide multicriteria optimization both
on the job-flow scale and for a specific job, according to its requirements and optimization criteria. In some
applications jobs require co-scheduling and resource co-allocation on several resources [13-16]. In this case resource
allocation has a number of substantial specific features caused by autonomy, heterogeneity, dynamic content
changes, and node failures [6, 7, 9, 10].

The proposing approach is similar one in gLite Workload Management System [17], where Condor [8] is used as
a scheduling module. But the significant difference between the approach proposed in this work and well-known
scheduling solutions for distributed environments such as the Grid [1, 3-7, 17, 18] is the fact that the execution
strategy is formed on a basis of formalized efficiency criteria, which efficiently allows to reflect economic principles
of resource allocation by using relevant cost functions and solving a load balance problem for heterogeneous

178 Victor Toporkov et al. / Procedia Computer Science 9 (2012) 176 – 185

processor nodes. At the same time the inner structure of the job is taken into account when the resulting schedule is
formed. Thus, two approaches are uniquely combined in a proposed two-tier scheduling model.

This work is organized as follows. Section 2 overviews model components and metascheduling workflow. In
section 3 a strategy search is formalized. Section 4 contains simulation results. Section 5 summarizes the work and
describes further research topics.

2. Model components

Let us define basic model components presented in this work. Resource is defined as an abstract computational
entity, which can be used for execution of one and only one task. The complex set of connected interrelated tasks
form a job. Our model has the following components.
• VO, that defines resource co-allocation dispatching strategies, pricing policies and resource load-balancing

mechanisms.
• Heterogeneous hierarchical computational environment that contains computational resources (Grid nodes, CPUs

or others) with different performance indices. Each resource is considered as non-dedicated.
• Metascheduler, which implements resource management strategies and policies of VO.
• Application-level schedulers that analyze internal job structure and schedule single tasks.

Each computational node of the heterogeneous environment is mapped to a computational resource line in the
metascheduler resource management routine. Several resource lines are combined into a virtual resource domain.
Each resource line has two static attributes which are its performance P and its base price tag F for a computing

time unit. The performance is an inherent parameter of a node and the base price tag is assigned by its owner. The
dynamic characteristic of a node is represented with its local schedule which is a list of slots available for
reservation. This list is sent to metascheduler by request. A slot is a continuous interval of time and is described with
three parameters: its start time, its length and its fee [13-15]. A resource request is a set of a few constraints
determined by a user which correspond to the properties of the respective user job. They include: minimal
performance requirement for computational nodes, minP ; maximal price tag for a single timeslot, maxF ; number n

of simultaneously reserved timeslots; minimal slot length; the internal structure of a job as a directed acyclic graph
(DAG), where vertices represent single tasks and edges represent data dependencies [16]; deadline for the job
execution. A job may require more than one timeslot if it includes several segments that can be executed in parallel
way, for instance. Then the user specifies the number of reserved timeslots and minimal performance requirement
that applies for them all. The whole job budget is determined by the timeslot number and the maximum price per
timeslot. The minimal timeslot length requires an additional explanation. This is the minimal time estimated by the
user which is required to complete job execution given the performance of the nodes meet the minimal requirement

minP .

The hierarchical model of the computational environment implies two-tier scheduling (Fig. 1). On the job-flow
level the set of independent jobs is distributed between resource domains according to dispatching strategies and
economic criteria. Schedule on this level is defined by a metascheduler as a slot set for each job, which is optimal in
terms of a whole job set. Application-level schedulers receive the list of resources which were meant to execute the
job on and a strategy, which defines the rule used to execute tasks of a concrete job. On this level an optimal slot
and specific resource are defined for each single task in a job, thus, making it possible to take internal job structure
into account. The metascheduler works in cycles which are quanta of its process. For each cycle it has following
information: a set of resource lines and a global job queue. What it needs then is a batch of jobs which is a ranked
job list and a subset of available slots for a specific virtual resource domain and a certain timeframe which is called
a scheduling interval. The length of the batch and the scheduling interval are parameterized by VO administrators.
Jobs are fetched into the batch accordingly to several variables, such as the maximum price tag, deadline, and the
number of failed scheduling attempts for a job. These variables being weighted and added up determine job rank
according to which it takes a position closer to head or tail of a batch. The preparation phase ends and the actual
scheduling process is executed as follows (see Fig. 1). The metascheduler analyzes available slots and finds an
optimal slot combination to accommodate every job in a batch using economic criteria. The budget and the deadline
defined by the end-user are considered during this step. The algorithms for this step were detailed in [13-15]. After
the domain is determined metascheduler defines the strategy for each job. For example as shown on Fig. 1, the user,

179 Victor Toporkov et al. / Procedia Computer Science 9 (2012) 176 – 185

who has sent the job i has the higher budget than the one who has sent the job k. The strategy for i may be expressed
as “execute as soon as possible” while the strategy for k may be expressed as “execute as late as possible within the
defined deadline”. These jobs are later sent to application-level schedulers and the application-level scheduling
begins. Application-level schedulers query internal schedules for all the resources which were selected for each job,
analyze the job DAG and form a resulting schedule for every task according to the strategy. Application-level
schedulers are guaranteeing that there are no collisions between the tasks which were scheduled and local tasks,
which may have priority over the job-flow.

3. Formalization of job-flow and application-level scheduling

Let us note a global resource set { }M,..,p,rR pg 1== , which includes all resources. A global job-flow is a set of

jobs received by the metascheduler in time: { },I,..i,G,T,c,lFL iiiig ,1== where the job i is represented as il – the

amount of resource slots required, ic - the maximal budget end-user is ready to allocate for execution of the job, iT

– deadline, iG – the job DAG. Metascheduler at any time moment may query each resource, receive its local

schedule and build a set of slots gtS – idle time intervals.

Fig.1. Model components

180 Victor Toporkov et al. / Procedia Computer Science 9 (2012) 176 – 185

Let us introduce a set of strategies },..,1,{ LlstST l == , which are based on economic criteria and are defined by

Grid-managers and developers. Let SL be a set of K slots suitable to execute a subset of jobs gp FlFL ⊆ . A slot

set is considered as suitable for the job i if the execution is possible in terms of the resource number, the budget ic

and the deadline iT . It is assumed that for every job there is at least one suitable slot set

},..,1{,, KkkslSLsl ii ∈=∈ . On a job-flow level for each job metascheduler aims at finding a slot set isl and a

strategy ist for which the value of the function)(ii slg , that defines whether the slot set is being effective for the

job i , would be optimal [14]. The internal job structure iG is not taken into account at this time. The mechanism to

define)(ii slg which was developed in the previous works [13-15] is now improved. According to the resource

request it is required to find a “window” with the following description: n concurrent time-slots providing resource
performance rate at least P and maximal resource price not higher than maxF should be reserved for a time span

iT . The length of each slot in the window is determined by the performance rate of the node on which it is allocated.

Thus as a result we have a window with a “rough right edge” (Fig. 2). In addition, the criterion of selecting the most
suitable set of slots could be specified. This could be the minimum cost, the minimum runtime or, for example, the
minimum power consumption criterion. The window search is performed on the list of all available slots sorted by
their start time in ascending order. This condition is necessary to examine every slot in the list and for operation of
search algorithms of linear complexity [13-15].

Fig. 2. Window with a “rough right edge”

The scheme of a search for a window that meets the requirements and effective by the given criterion can be
represented as follows.

1°. From the list of available system slots the next suitable slot ks is extracted and examined.

Slot ks suits, if following conditions are met:

a) Resource performance rate () PsP k ≥ for slot ks ;

b) Slot length (time span) is enough (depending on the actual performance of the slot's resource)
() () PsPTsL kik /∗≥ .

If conditions a) and b) are met, the slot ks is successfully added to the window list.

2°. A current window start time is a set equal to the start time of the last added slot.
3°. Slots whose length has expired considering new window start time lastT are removed from the list. The

expiration means that remaining slot length ()ksL′ , calculated like shown in step 1°b, is not enough assuming the

k -th slot start is equal to the last added slot start: () ()()() () PsPsTTTsL kkik /last −+<′ , where ()ksT is the slot's

start time. Any combination of the remaining slots can form a window of necessary length.
4°. If the number of slots m in the current window is greater or equal to n , it is required to select n slots,

effective on the specified criteria and at the same time satisfying the total cost and deadline restrictions. Suppose the
window W of size n with a target criterion value equal to crW was selected. (The problem of selecting efficient
window consisting of n slots in the case of nm > will be described below.)

181 Victor Toporkov et al. / Procedia Computer Science 9 (2012) 176 – 185

5°. The target criterion value crW of window W is compared with the 'cr – the current best target criterion
value for all previously found windows. If rccrW ′< (in case of a minimization problem) the window W
announced as a new window-candidate and crW becomes the new best criteria value: crWrc =′ . Go to step 1°.

6°.The algorithm ends after the last available slot is processed. The result of the algorithm is the window-
candidate with the best target criteria value.

The described algorithm can be compared to the algorithm of maximum/minimum value search in an array of flat
values. The expanded window of size m “moves” through the ordered list of available system slots. At each step any
combination of n slots inside it (in case when mn ≤) can form a window that meets all the requirements to run the
job. The effective on the specified criteria window of size n is selected from this m slots and compared with the
results in the previous steps. By the end of the slot list the only solution with the best criteria value will be selected.
Consider the problem of selecting a window of size n with a total cost not more than S from the list of nm > slots
(in case when nm = the selection is trivial). The maximal budget is counted as nFtS s= , where st is a time span

to reserve and n is the necessary number of slots. The current extended window consists of m slots msss ,...,, 21 .

The cost of using each of the slots according to their required length is: mccc ,...,, 21 . Each slot has a numeric

characteristic iz the total value of which should be minimized in the resulting window. Then the problem could be

formulated as follows: min...2211 →+++ mm zazaza , Scacaca mm ≤+++ ...2211 , na...aa m =+++ 21 ,

{ } mrar ,...,1,,10 =∈ . Additional restrictions can be added, for example, considering the specified value of deadline.

Finding the coefficients maaa ,...,, 21 each of which takes integer values 0 or 1 (and the total number of ‘1’ values is

equal to n), determine the window with the specified criteria extreme value. Job-flow level scheduling ends here.
Application-level schedulers receive following input data.

• The optimal slot set sl and the description of all corresponding resources: gj RJjrR ⊆== },..,1,{ .

• The directed acyclic information graph { }E,VG = , where { }n,..i,vV i 1== is a set of vertices that correspond to

job tasks, for each of those execution time estimates 0
ijτ on each of resources in R are provided, E is a set of

edges that define data dependencies between tasks and data transfer time intervals.
• The dispatching strategy st , which defines the criterion for a schedule expected
• The deadline iT or the maximal budget ic for the job (depends on a dispatching strategy and)(ii slg).

The schedule which is being defined on an application level is presented as follows: []{ }nifsSh iii ,..,1, , , =α= ,

where],[ii fs is a time frame for a task i of a job and iα defines the selected resource. Sh is selected in the way

that the criterion function)(ShfC = achieves an optimum value. The critical jobs method [16] which is used to

find the optimal schedule and to define f consists of three main steps: 1) forming and ranging a set of critical jobs

(longest sets of connected tasks) in the DAG; 2) consecutive planning of each critical job using dynamic
programming methods; 3) resolution of possible collisions. A detailed algorithm description is presented in [19].

4. Simulation results

The two-tier model described in the sections 2 and 3 was implemented in a simulation environment on two
different and separated levels: on the job-flow level, where job-flows are optimally distributed between resource
domains and on the application level, where jobs are decomposed and each task is executed in an optimal way on a
selected resource.

4.1. Job-flow level scheduling simulation results

Job-flow level metascheduling was simulated in a specially implemented and configured software that was
written to test the features of the two-tier resource management. An experiment was designed to compare the
performance of our job-flow level metascheduling method with other approaches such as FCFS and backfilling [12,

182 Victor Toporkov et al. / Procedia Computer Science 9 (2012) 176 – 185

20]. Let us remind that our scheduling method detailed in works [13-15] involves two stages that backfilling does
not have at all, namely, slot set alternative generation and further elaboration of specific slots combination to
optimize either time or cost characteristic for an entire job batch. Backfilling simply assigns “slot set” found to
execute a job without an additional optimization phase [20]. This behavior was simulated within our domain with
random selection from an alternative slot, each job having one or more of them. So two modes were tested: with
optimization (“OPT”) and without optimization (“NO OPT”).

The experiment was conducted as follows. Each mode was simulated in 5000 independent scheduling cycles. A
job batch and environment condition was regenerated in every cycle in order to minimize other factor influence. A
job batch contained 30 jobs. Slot selection was consistent throughout the experiment. If a job resource request could
not be satisfied with actual resources available in the environment, then it was simply discarded. For optimization
mode as well as for no-optimization mode four optimization criteria or problems were used: 1) maximize total
budget, limit slot usage; 2) minimize slot usage, limit total budget; 3) minimize total budget, limit slot usage; 4)
maximize slot usage, limit slot budget.

Results presented in Table 1 apply for the problem 1. As one can see optimization mode, which is using
additional optimization phase after slot set generation wins against random slot selection with about 13% gain in the
problem 1 whose concern is about maximizing total slot budget thus raising total economical output per cycle and
owners' profits.

Table 1. Experimental results for the problem 1: Total budget maximization with limited slot usage

Mode

Average jobs
being processed
per cycle (max

30)

Average total
slot cost per

cycle, cost units

Average total
slot usage per

cycle, time
units

Average slot usage
limit per cycle, time

units

OPT 20.0 11945.98 421.22 471.14

NO OPT 20.0 10588.53 459.36 471.85

Comparable results were obtained for other problems which are summarized in Table 2. Optimized values are
outlined in light grey.

Table 2. Experimental results for the problems 2-4

Mode Average jobs
being processed
per cycle (max

30)

Average total
budget (slot

cost) per cycle,
cost units

Average total
slot usage per

cycle, time
units

GAIN, %

Problem 1: Maximize total budget, limit slot usage

OPT 20.0 11945.9 421.2
+12.8

NO OPT 20.0 10588.5 459.4
Problem 2: Minimize slot usage, limit total budget

OPT 12.4 7980.4 300.9
+10.6

NO OPT 12.4 7830.9 332.8
Problem 3: Minimize total budget, limit slot usage
OPT 15.1 9242.4 410.057

+6.2
NO OPT 15.3 9813.9 406.612
Problem 4: Maximize slot usage, limit total budget
OPT 15.28 9870.8 416.835

+3.0

NO OPT 15.4 9718.1 404.8

183 Victor Toporkov et al. / Procedia Computer Science 9 (2012) 176 – 185

These results are showing the advantage of the metascheduling on the job-flow level. The next section describes
the experiments on the application level.

4.2. Application level scheduling simulation results

The experiment results presented in Table 3 shows the advantage of the critical jobs method usage in a two-tier
scheduling model compared to consecutive application-level scheduling.

Here k=0.75 means that each job is sent to be scheduled after 75% of the time allocated for the previous one:
while the scheduling cost for a job is more or less the same, 1000 jobs are planned 25% faster.

Consider another experiment: while changing the length of the scheduling interval, we will estimate the
proportion of successfully distributed jobs. The length of the scheduling interval is equal to ,6.2,..,0.1,* == hhlL

with step 2.0 , where l is the length of the longest critical path of tasks in the job and h is a distribution interval
magnification factor. There were carried 200 experiments for each h (bold points in Fig. 3).

Table 3. Two-tier model vs consecutive application-level scheduling

Parameter Application-level scheduling Two-tier model (k=0.75)
Jobs number 1000 1000
Execution time 531089 time units 399465 time units
Optimal schedules 687 703
Mean collision count 3.85 4.41
Mean load (forecast) 0.1843 0.1836
Mean load (fact) 0.1841 0.1830
Mean job cost 14.51 units 14.47 units

Analysis of the Fig. 3 shows that increasing the scheduling interval (relatively to the execution time of the longest
critical path on the nodes with the highest performance) is accompanied by a significant increase in the number of
successfully distributed jobs. The detailed study of this dependence can give a priori estimates of an individual job
successful distribution probability.

Scheduling interval factor, h

Su
cc

es
sf

ul
 J

ob
 d

is
tr

ib
ut

io
ns

 p
ro

po
rt

io
n

Fig. 3. Dependence of the proportion of the successful job distributions on the length of the distribution interval

In the next experiment we will consider the dependence of successful distributions number and the number of
collisions per experiment on the level of resource instances availability. The experiments were performed in
conditions of limited resources using the specific instances of the resources. The number of resources J in each
experiment was determined as NjJ *= , where j – factor (x-axis) and N – number of tiers in the graph. Fig. 4

shows results of the experiments with different j values and 7,5,3=N . The obtained dependencies (Fig. 4) suggest

that the collisions number depends on the resources availability. The lower the number of resource instances and the
greater the number of tiers in the graph – the more collisions occurred during the scheduling. At the same time the

184 Victor Toporkov et al. / Procedia Computer Science 9 (2012) 176 – 185

number of resource instances affects the successful distribution probability. With a value of 4>j (that is, when the

number of available resource instances is more than 4 times greater than the number of tiers in the graph) all cases
provide the maximum value of successful distribution probability. These results are subject of future research of
refined strategies on a job-flow level.

Available resource instances factor, j

A
ve

ra
ge

 n
um

be
r

of
 c

ol
li

si
on

s
 p

er
 J

ob

(a)

Available resource instances factor, j

Su
cc

es
sf

ul
 J

ob
 d

is
tr

ib
ut

io
ns

pr

op
or

ti
on

(b)

Fig. 4. Simulation results: (a) resource dependencies of collisions number; (b) successful job distribution proportion

5. Conclusions

In this work, we address the problem of independent job-flow scheduling in heterogeneous environment with
non-dedicated resources.

Each job consists of a number of interrelated tasks with data dependencies. Using the combination of existing
methods with a number of original algorithms the resulting schedules are computed. These schedules meet the
defined deadlines and budget expectations, provide optimal load-balance for all the resources and follows VO
strategies, thus, allowing to achieve unprecedented QoS and economic competitiveness for distributed systems such
as Grid. The experiments which were conducted are showing the efficiency of methods developed for both job-flow
and application level scheduling. The model proposed is showing the way these methods and advantages can be
converged in one place making it possible to achieve the main goal. Currently there is no direct comparison with the
existing systems made due to the fact, that today’s systems do not perform optimization on both job-flow and

185 Victor Toporkov et al. / Procedia Computer Science 9 (2012) 176 – 185

application levels.
Future research will include the simulation of connected job-flow and application levels and experiments on real

Grid-jobs in order to get finer view on advantages of the approach proposed.

Acknowledgements

This work was partially supported by the Council on Grants of the President of the Russian Federation for State
Support of Leading Scientific Schools (SS-316.2012.9), the Russian Foundation for Basic Research (grant no. 12-
07-00042), and by the Federal Target Program “Research and scientific-pedagogical cadres of innovative Russia”
(state contracts nos. 16.740.11.0038 and 16.740.11.0516).

References

1. S.K. Garg, R. Buyya, H.J. Siegel, Scheduling Parallel Applications on Utility Grids: Time and Cost Trade-off Management. Proc of ACSC

2009, Wellington, New Zealand (2009) 151-159.

2. G. Tesauro, J.L. Bredin, Strategic Sequential Bidding in Auctions Using Dynamic Programming. Proc. of the First International Joint

Conference on Autonomous Agents and Multiagent Systems: part 2, ACM New York, NY, USA (2002) 591 – 598.

3. S.K. Garg, C.S. Yeo, A. Anandasivam, R. Buyya, Environment-conscious Scheduling of HPC Applications on Distributed Cloud-oriented

Data Centers. Journal of Parallel and Distributed Computing. 71 (6) (2011) 732-749.

4. R. Buyya, D. Abramson, J. Giddy, Economic Models for Resource Management and Scheduling in Grid computing. J. of Concurrency and

Computation: Practice and Experience. 14(5) (2002) 1507–1542.

5. C. Ernemann, V. Hamscher, R. Yahyapour, Economic Scheduling in Grid Computing. Proc. of the 8th Job Scheduling Strategies for

Parallel Processing. Eds D.G. Feitelson, L. Rudolph, U. Schwiegelshohn. Heidelberg: Springer, LNCS. 2537 (2002) 128-152.

6. V. Voevodin, The Solution of Large Problems in Distributed Computational Media. Automation and Remote Control. Pleiades Publishing,

Inc. 68 (5) (2007) 773-786.

7. K. Kurowski, J. Nabrzyski, A. Oleksiak t al., Multicriteria Aspects of Grid Resource Management. Grid resource management. State of

the art and future trends. Eds J. Nabrzyski, J.M. Schopf and J. Weglarz. Kluwer Acad. Publ. (2003) 271–293.

8. D. Thain, T. Tannenbaum, M. Livny, Distributed Computing in Practice: the Condor Experience. J. of Concurrency and Computation:

Practice and Experience 17 (2-4) (2004) 323 – 356.

9. V. Toporkov, Application-level and Job-flow Scheduling: an Approach for Achieving Quality of Service in Distributed Computing. Proc.

of PaCT 2009, LNCS 5698. Berlin, Heidelberg (2009) 350 – 359.

10. V.V. Toporkov, Job and Application-level Scheduling in Distributed Computing. Ubiquitous Comput. Commun. J. 4 (2009) 559-570.

11. H. Dail, O. Sievert, F. Berman et al., Scheduling in the Grid Application Development Software project. Grid resource management. State

of the art and future trends. Eds J. Nabrzyski, J.M. Schopf and J. Weglarz. Kluwer Acad. Publ. (2003) 73 – 98

12. Moab Adaptive Computing Suite, http://www.adaptivecomputing.com/products/moab-adaptive-computing-suite.php.

13. V. Toporkov, A. Toporkova, A. Bobchenkov, D. Yemelyanov, Resource Selection Algorithms for Economic Scheduling in Distributed

Systems. Procedia Computer Science. Elsevier. 4 (2011) 2267-2276.

14. V. Toporkov, D. Yemelyanov, A. Toporkova, A. Bobchenkov, Resource Co-allocation Algorithms for Job Batch Scheduling in

Dependable Distributed Computing. Dependable Computer Systems. Springer-Verlag, AICS. 97. Berlin, Heidelberg (2011) 243-256.

15. V. Toporkov, A. Bobchenkov, A. Toporkova, A. Tselishchev, D. Yemelyanov, Slot Selection and Co-allocation for Economic Scheduling

in Distributed Computing. Proc. of the 11th Intern. Conf. on Parallel Computing Technologies. Springer-Verlag, LNCS. 6873. Berlin, Heidelberg

(2011) 368–383.

16. V.V. Toporkov, A.S. Tselishchev, Safety Scheduling Strategies in Distributed Computing. Intern. J. of Critical Computer-Based Systems.

1(1/2/3) (2010) 41-58.

17. M. Cecchi, F. Capannini, A. Dorigo et al., The gLite Workload Management System. J. Phys.: Conf. Ser. 219 (6) (2010) 062039.

18. J. Yu, R. Buyya, K. Ramamohanarao, Workflow Scheduling Algorithms for Grid Computing. Metaheuristics for Scheduling in

Distributed Computing Environments, Studies in Computational Intelligence. 146. Springer-Verlag. Berlin Heidelberg (2008) 173–214.

19. A. Tselishchev, V.V. Toporkov, Compound Job Scheduling and Job-flows Management in Distributed Computing. Proc. of the 54 Int.

Colloquium. Ilmenau, Germany (2009) 21 – 26.

20. D. Jackson, Q. Snell, M. Clement, Core Algorithms of the Maui Scheduler, Springer, Heidelberg, LNCS 2221 (2001) 87-102.

