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In this paper,we introducean improvedboundon the2-normofHer-

mite matrix polynomials. As a consequence, this estimate enables

us to present and prove a matrix version of the Riemann–Lebesgue

lemma for Fourier transforms. Finally, our theoretical results are

used to develop a novel procedure for the computation of matrix

exponentials with a priori bounds. A numerical example for a test

matrix is provided.
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1. Introduction

Orthogonal matrix polynomials emerge in various important areas of applied mathematics. In

previous work, an extension of the classical family of Hermite polynomials to the matrix framework

has been proposed [8]. Later on some essential properties of series expansions of Hermite matrix

polynomials and their boundswere shown [2,3]. Only very recently, new extensions of Hermitematrix

polynomials have been given in the literature, see e.g. [1,14].

The principal aim of this paper is to provide some answers to problems arising in the study of the

expansions of matrix functions in terms of Hermite matrix polynomials Hn(x, A). In particular, a new

boundon their Euclideannorm‖Hn(x, A)‖2 is derived. This newboundnot only improves considerably
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upon previously established estimates of Ref. [2], but also permits to prove that the Fourier coefficients

corresponding to the Hermite matrix polynomials Hn(x, A) vanish when n → ∞, which previously

was not possible.

Subsequently amatrix analogue of the Riemann–Lebesgue lemma for a sequence of Hermitematrix

polynomials is proven. Then, this new bound is used to compute matrix exponential approximations

with a predetermined accuracy.

The organization of the paper is as follows: in Section 2, thematrix functional associated toHermite

matrix polynomials is defined in an appropriate Banach space, whose norm is related to the matrix

functional. Unlike the scalar case, the norm in the Banach space of matrix functions does not require

a Hilbert structure. Section 3 contains the explicit derivation of the new bound on ‖Hn(x, A)‖2 and

demonstrates how this bound is used to obtain a matrix version of the Riemann–Lebesgue lemma.

Finally, a numerical example follows to illustrate a new method to compute the matrix exponential,

which is based on this lemma.

Throughout this paper, a matrix polynomial of degree n in C
r×r is denoted by P(x) = Anx

n +
An−1x

n−1 + · · · + A1x + A0, where x ∈ R, and Aj ∈ C
r×r represents a complex square matrix for

0 � j � n. Also, the set of all matrix polynomials in C
r×r , for all n � 0, will be given by P[x]. Further,

let f (z) and g(z) be holomorphic functions of the complex variable z, which are defined in an open set

Ω of the complex plane. If C is a matrix in C
r×r so that the set of all its eigenvalues, σ(C), lies in Ω ,

then, from the properties of the matrix functional calculus [5, p. 558], it follows that

f (C)g(C) = g(C)f (C). (1)

As usual, the 2-norm of a matrix C ∈ C
r×r is defined by (see [7, p. 56]):

‖C‖2 = sup
x �=0

‖Cx‖2

‖x‖2

,

where for a vector y in C
r , ‖y‖2 denotes the ordinary Euclidean norm. Using the matrix components

C = (cij)1�i,j�r , by Golub and van Loan [7, p. 57] one obtains

max
1�i,j�r

|cij| � ‖C‖2 � r max
1�i,j�r

|cij|. (2)

For an estimation on the bound of the exponential matrix, we introduce the real value β(A) =
min {Re(z); z ∈ σ(A)}. Then, by [6, p. 336, 556] it follows that

∥∥∥e−A t2
∥∥∥
2

� e−β(A)t2MA
r−1(t

2), with t � 0, (3)

where MA
r−1(t

2) is defined by the following expansion

MA
r−1(t

2) =
r−1∑
k=0

(
‖A‖2

√
rt2

)k
k! .

If D0 is the complex plane cut along the negative real axis, and log(z) denotes the principal loga-

rithm of z, [11, p. 72], then z
1
2 represents exp

(
1
2
log(z)

)
.

If B is a matrix with σ(B) ⊂ D0, then B
1
2 = √

B denotes the image of z
1
2 of the matrix functional

calculus acting on the matrix B. We say that matrix A in C
r×r is a positive stable matrix if Re(z) > 0

for all z ∈ σ(A). For a positive stable matrix A in C
r×r , the nth Hermite matrix polynomial is defined

by Jódar and Company [8]

Hn(x, A) = n!
	 n

2
∑
k=0

(−1)k
(√

2A
)n−2k

k!(n − 2k)! xn−2k, (4)
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where 	x
 is the standard floor function which maps a real number x to its next smallest integer.

Furthermore, we will also use the analogous ceiling function �x�, producing the next largest integer

to x ∈ R.

Note also that if A(k, n) is amatrix inC
r×r for n � 0, k � 0, onemay use the following identity [3]:

∑
n�0

∑
k�0

A(k, n) = ∑
n�0

	 n
2
∑

k=0

A(k, n − 2k). (5)

In what follows, integrable will always imply integrable in the Lebesgue sense.

2. Some preliminaries on Hermite matrix polynomials and Hermite matrix functionals

Let A be a positive stable matrix in C
r×r . Then, L2A

(
R, C

r×r
)
is the vector space for all Cr×r valued

functions f : R → C
r×r such that

∫ +∞
−∞

‖f (x)‖2
2 e

− β(A)x2

2 dx < ∞,

and is endowed with the norm

‖f‖ =
{∫ +∞

−∞
‖f (x)‖2

2 e
− β(A)x2

2 dx

} 1
2

. (6)

Notice that the scalar functions h(x), having an appropriately normed space,may be defined to possess

the following Banach structure

L2A (R, C) =
{
h : R → C;

∫ +∞
−∞

|h(x)|2 e− β(A)x2

2 dx < ∞
}

,

with the norm [6]

‖h‖2 =
{∫ +∞

−∞
|h(x)|2 e− β(A)x2

2 dx < ∞
} 1

2

.

Takingalso intoaccount the limitsgiven inEq. (2), it is straightforward tosee that thespaceL2A
(
R, C

r×r
)

is likewise a Banach space. The Banach structure of scalar functions essentially induces the Banach

structure of the matrix case with the 2-norm of Eq. (6).

We are now in the position to introduce the Hermite matrix functional L : L2A
(
R, C

r×r
) ×

L2A
(
R, C

r×r
) → C

r×r defined by

L(f , g) =
∫ +∞
−∞

f (x) e−
Ax2

2 g(x) dx. (7)

Thus, the following properties of L are obvious:

(i) L(Pf , g) = PL(f , g), L(f , gP) = L(f , g)P, for P ∈ C
r×r;

(ii) L(f + g, h) = L(f , h) + L(g, h), L(f , g + h) = L(f , g) + L(f , h),

for f , g, h ∈ L2A
(
R, C

r×r
)
.
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By applying the commutation property Eq. (1) to the Hermite matrix polynomials sequence
{Hn(·, A)}n�0, one readily obtains

L (Hn(·, A),Hm(·, A)) = L (Hm(·, A),Hn(·, A)) ,

and by Ref. [8, Eqs. (4.4) and (4.9)], it follows that

L (Hn(·, A),Hm(·, A)) = 0, for n �= m,

and also

L (Hn(·, A),Hn(·, A)) = 2nn!
(
2πA−1

) 1
2 , for n � 0.

Therefore, the sequence {Hn(·, A)}n�0 specifies a sequence of orthogonal matrix polynomials in

L2A
(
R, C

r×r
)
with respect to L [4].

3. A new bound for Hermite matrix polynomials

The primary purpose of this paper is to develop an upper bound on ‖Hn(x, A)‖2. The bound will be

given in Theorem 1. As an immediate application, we can deduce a matrix version of the Riemann–

Lebesgue lemma,whichwouldbe impossible toprovewithpreviouslypublishedbounds, as e.g.Ref. [2].

Another direct application is the design of a novel algorithm for computing eA, where A is any r × r

matrix. This computational scheme, in fact, has the advantage of complying with an arbitrary approx-

imation error condition which may be prescribed a priori.

Theorem 1. If A ∈ C
r×r is a positive stable matrix, then

‖Hn(x, A)‖2 � n! e
(
|x|

∥∥∥√2A
∥∥∥
2
+1

)
, ∀ x ∈ R, n � 0. (8)

Proof. Taking the norm of Eq. (4), one finds

‖Hn(x, A)‖2 � n!
	 n
2

∑

k=0

(
|x|

∥∥∥√2A
∥∥∥
2

)n−2k

k!(n − 2k)! . (9)

On the other hand, applying the summation rule (5), it follows that

e
|x|

∥∥∥√2A
∥∥∥
2
+1 = ∑

n�0

(
|x|

∥∥∥√2A
∥∥∥
2

)n
n!

∑
k�0

1

k! = ∑
n�0

∑
k�0

(
|x|

∥∥∥√2A
∥∥∥
2

)n
k!n!

= ∑
n�0

	 n
2

∑

k=0

(
|x|

∥∥∥√2A
∥∥∥
2

)n−2k

k!(n − 2k)! . (10)

And consequently it is

	 n
2

∑

k=0

(
|x|

∥∥∥√2A
∥∥∥
2

)n−2k

k!(n − 2k)! � e
|x|

∥∥∥√2A
∥∥∥
2
+1

, (11)

which by Eqs. (9)–(11) proves Eq. (8). �
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It is noteworthy to mention that our matrix bound Eq. (8) for r = 1 and A = 2 reduces to the

following expression

|Hn(x)| � n! e2|x|+1, ∀ x ∈ R, n � 0,

because in this case the Hermite matrix polynomials Eq. (4) coincide with the standard Hermite poly-

nomials. This formula is similar to the scalar expression derived by Cramer who found the bound:

|Hn(x)| � k
√

n! 2n/2ex2/2, ∀ x ∈ R, n � 0,

with constant k = 1.086435, see [12, p. 324].

3.1. A theoretical application: proof of a Riemann–Lebesgue matrix lemma

Following the procedure presented in Ref. [13], the kth left matrix Fourier coefficient of f ∈
L2A

(
R, C

r×r
)
with respect to {Hn(·, A)}n�0 is introduced by

Ck(f ) = 1√
2π2kk! L(f ,Hk(·, A))A 1

2

= 1√
2π2kk!

(∫ +∞
−∞

f (t) e−
At2

2 Hk(t, A) dt

)
A

1
2 , (12)

and the corresponding left Fourier series of f ∈ L2A
(
R, C

r×r
)
with respect to {Hn(·, A)}n�0 is then

defined by

S(f )(x) = ∑
n�0

Cn(f )Hn(x, A).

Our aim is to show that lim
n→∞ Cn(f ) = 0. First, we can observe that by using Eq. (12), it follows that

‖Cn(f )‖2 �

∥∥∥A 1
2

∥∥∥
2√

2π2nn!
∫ +∞
−∞

‖f (t)‖2

∥∥∥∥e− A
2
t2

∥∥∥∥
2

‖Hn(t, A)‖2 dt. (13)

Taking into account the estimate Eq. (3) and substituting Eq. (8) into Eq. (13), one finds by using

the Cauchy–Schwarz inequality:

‖Cn(f )‖2 �

∥∥∥A 1
2

∥∥∥
2
e√

2π2n

r−1∑
k=0

(
‖A‖2

√
r
)k

k!
∫ +∞
−∞

‖f (t)‖2 e
− β(A)

2
t2 t2ke

|t|
∥∥∥√2A

∥∥∥
2dt

=
∥∥∥A 1

2

∥∥∥
2
e√

2π2n

r−1∑
k=0

(
‖A‖2

√
r
)k

k!
(∫ +∞

−∞
‖f (t)‖2

2 e
− β(A)

2
t2dt

) 1
2

×
(∫ +∞

−∞
e−

β(A)
2

t2e
2|t|

∥∥∥√2A
∥∥∥
2 t4kdt

) 1
2

=
∥∥∥A 1

2

∥∥∥
2
e ‖f‖√

2π2n

r−1∑
k=0

(
‖A‖2

√
r
)k

k!
(∫ +∞

−∞
e−

β(A)
2

t2e
2|t|

∥∥∥√2A
∥∥∥
2 t4kdt

) 1
2

,

since

(∫ +∞
−∞

‖f (t)‖2
2 e

− β(A)
2

t2dt

) 1
2 = ‖f‖ by Eq. (6). Furthermore, we can simplify
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‖Cn(f )‖2 �
2

∥∥∥A 1
2

∥∥∥ e‖f‖2√
2π2n

r−1∑
k=0

(
‖A‖2

√
r
)k

k!
(∫ +∞

0
e−

β(A)
2

t2e
2t

∥∥∥√2A
∥∥∥
2 t4kdt

) 1
2

�

∥∥∥A 1
2

∥∥∥
2
e‖f‖R√

2π2n−1

r−1∑
k=0

(
‖A‖2

√
r
)k

k! ,

where R = max

⎧⎨
⎩

(∫ +∞
0

e−
β(A)
2

t2e
2t

∥∥∥√2A
∥∥∥
2 t4kdt

) 1
2 ; k = 0, 1, . . . , r − 1

⎫⎬
⎭ , and hence it follows that

lim
n→∞ Cn(f ) = 0.

In conclusion, the following result has been demonstrated:

Theorem 2 (Matrix Riemann–Lebesgue property). Let L be the Hermite matrix functional on

L2A
(
R, C

r×r
)
defined by Eq. (7). If f ∈ L2A

(
R, C

r×r
)
, then it follows that lim

n→∞ Cn(f ) = 0.

Remark 1. Following again Ref. [13], the kth right matrix Fourier coefficient of f ∈ L2A
(
R, C

r×r
)
with

respect to {Hn(·, A)}n�0, is denoted by

Ck(f ) = A
1
2√

2π2kk!L(Hk(·, A), f ) = A
1
2√

2π2kk!
(∫ +∞

−∞
Hk(t, A) e

− At2

2 f (t) dt

)
,

and the right Fourier series of f ∈ L2A
(
R, C

r×r
)
with respect to {Hn(·, A)}n�0 is defined by

S(f )(x) = ∑
n�0

Hn(x, A)Cn(f ).

With these definitions, a similar version of Theorem 2 for the right case can easily be derived by

adapting the previously outlined case.

3.2. A numerical application: matrix exponential computation

Let A be a matrix in C
r×r . The problem of computing eA has attracted considerable attention both,

in the past [9] and in recent years [10]. According to Ref. [8], one has

extA−t2I = ∑
n�0

1

n!Hn

(
x,

1

2
A2

)
tn, |t| < ∞. (14)

It is important to pay attention to the fact that the matrix A which defines the Hermite matrix poly-

nomial sequence must be positive definite, see [3, p. 196], i.e. Re(z) > 0 for all z ∈ σ(A). This positive

stable condition was imposed on the matrix A to guarantee the existence of
√

A and some integral

properties of Hermite polynomials [8]. Note, however, that this condition is not required for expansion

Eq. (14). In an analogous manner to the demonstration of Theorem 1, one finds the following bound:

∥∥∥∥Hn

(
x,

1

2
A2

)∥∥∥∥
2

� n! e(|x|‖A‖2+1), ∀ x ∈ R, n � 0, ∀ A ∈ C
r×r . (15)

Using Eq. (15) in the form

∥∥∥∥∥∥
Hn

(
x, 1

2
A2

)

n! tn

∥∥∥∥∥∥
2

� |t|ne(|x|‖A‖2+1), n � 0,
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and taking into account that
∑∞

n=0 |t|n is convergent for |t| < 1, we conclude that convergence of

Eq. (14) is uniform for x in any compact interval of R, provided that |t| < 1.

Assuming that x = λ and t = 1
λ
for λ > 1, one finds for Eq. (14):

eA = e
1

λ2
∑
n�0

1

n!λn
Hn

(
λ,

1

2
A2

)
.

Observe that the particular caseλ = 1 is in full agreementwith thematrix exponential approximation

E(A; 1;N) previously derived in Ref. [3].

We may now define the approximation of the matrix exponential eA as

hN(λ, A) = e
1

λ2

N∑
n=0

1

n!λn
Hn

(
λ,

1

2
A2

)
≈ eA. (16)

Taking the approximate value hN(λ, A) given by (16) and considering the bound (8), it follows that

∥∥∥eA − hN(λ, A)
∥∥∥
2
� e

1

λ2
∑

k�N+1

1

λkk!
∥∥∥∥Hk

(
λ,

1

2
A2

)∥∥∥∥
2

� e
1

λ2
∑

k�N+1

eλ‖A‖2+1

λk

= e

(
1

λ2
+λ‖A‖2+1

) ⎡
⎣∑
k�0

1

λk
−

N∑
k=0

1

λk

⎤
⎦ . (17)

Simplifying the geometric series in Eq. (17), one finally obtains the error bound for approximation

(16):

∥∥∥eA − hN(λ, A)
∥∥∥
2

� e

(
1

λ2
+λ‖A‖2+1

)

(λ − 1)λN
. (18)

For numerical estimates of the bound, let ε > 0 be some fixed a priori error. Also, choose n0 to be

the first positive integer such that

n0 >

log

⎛
⎝ e

(
1

λ2
+λ‖A‖2+1

)

ε(λ−1)

⎞
⎠

log λ
. (19)

The, by combining Eqs. (18) and (19), we conclude

∥∥∥eA − hn0(λ, A)
∥∥∥
2

� ε.

In summary, the following result, similar to Theorem 3.1 of Ref. [3], has been proven.

Theorem 3. Let A be a matrix in C
r×r and let λ > 1. Let ε > 0. If n0 is the first positive integer such that

n0 >

log

⎛
⎝ e

(
1

λ2
+λ‖A‖2+1

)

ε(λ−1)

⎞
⎠

log λ
, (20)
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then

∥∥∥eA − hn0(λ, A)
∥∥∥
2

� ε. (21)

Example 1. For a numerical illustration of Theorem 3 let us consider the following matrix

A =

⎛
⎜⎜⎜⎝

3 −1 1

2 0 1

1 −1 2

⎞
⎟⎟⎟⎠

with σ(A) = {1, 2}. Matrix A is non-diagonalizable, and with the help of the minimal theorem the

exact value of exp (A) is shown to be (see Refs. [5, p. 571, 3]):

eA =

⎛
⎜⎜⎜⎝

2e2 −e2 e2

e(2e − 1) e(1 − e) e2

e(e − 1) e(1 − e) e2

⎞
⎟⎟⎟⎠ .

As already pointed out in Ref. [3], for an admissible error of ε = 10−5 we need at least n0 = 30 to

provide the required accuracy. Of course, in practice the number of terms to obtain a prefixed accuracy

uses to be smaller than the one provided by Theorem 3.1 of Ref. [3], which always supplies a safe

estimate. So for instance, taking n0 = 19 and omitting irrelevant digits, one calculates

E (A, 1, 19) =

⎛
⎜⎜⎜⎝

14.778109507 −7.389054626 7.389054626

12.059826871 −4.670771990 7.389054626

4.670772244 −4.670772244 7.389054881

⎞
⎟⎟⎟⎠ ,

and therefore

∥∥∥eA − E (A, 1, 19)
∥∥∥
2

= 6.36 × 10−6.

Wewill compare these results obtained for λ = 1 in Theorem 3.1 of Ref. [3] with the results from the

new Theorem 3.

It is ‖A‖2 = 4.41302, which we will use for the evaluation of Eq. (19). It is also convenient to

introduce the auxiliary function

f (λ) :=
log

⎛
⎝ e

(
1

λ2
+4.41302λ+1

)

10−5(λ−1)

⎞
⎠

log λ
with λ > 1. (22)

As Fig. 1 illustrates, this function possesses a minimum in the interval [4, 7]. By using numerical

standard routines, we can compute that this minimum is reached at

λ0 ≈ 4.980662706.

Hence, one gets for the minimum

f (λ0) ≈ 20.6479.
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Fig. 1. Graph of the function f (λ) defined by Eq. (22) with minimum at λ0 ≈ 4.98 and �f (λ0)� = 21.

As a consequence, Theorem3withour choice forλ0 precisely indicates thatwerequiren0 = �f (λ0)� =
21 approximation steps to reach the prefixed accuracy. In fact, an exact computation yields

∥∥∥eA − h21(λ0, A)
∥∥∥
2

= 4.626 × 10−15.

Again, it becomes clear that the number of terms required to obtain a prefixed accuracy usually is

smaller than the one provided by themore conservative estimate Eq. (21). For instance, taking n0 = 12

yields

h12(λ0, A) =

⎛
⎜⎜⎜⎝

14.778110374 −7.389054440 7.389054440

12.059828545 −4.670772611 7.389054440

4.670774106 −4.670774106 7.389055935

⎞
⎟⎟⎟⎠ ,

with a corresponding error

∥∥∥eA − h12(λ0, A)
∥∥∥
2

= 4.212 × 10−6.

4. Conclusions

As a continuation and substantial improvement of Ref. [2], this work provides a new upper bound

on the 2-norm of the family of Hermite matrix polynomials Hn(x, A), where A is a parameter matrix

with all its eigenvalues in the open right-half plane. As indicated in some illustrative examples, this

bound is not merely of analytic interest and for use in a general theory of orthogonal matrices, but has

potential for several other interesting practical applications.

As a first application a matrix version of the Riemann–Lebesgue lemma for a sequence of Hermite

matrix polynomials was introduced. This derivation opens up new avenues to obtain further theorems

formatrix function expansions in terms of Hermitematrix polynomials, similar to the analysis already

carried out in the existing literature for another class of matrix polynomials [13].

The second application considered an approximation of the matrix exponential as a weighted sum

of certainHn(x, A), towithin an error tolerancewhichmay be prescribed a priori. The algorithmic steps

of the computational process was explained in one specific example.

It is hoped that in future work our proposed matrix expansion for the Hermite case might inspire

other interesting applications for matrix calculus.
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